
Introduction: As part of the CERN openlab collaboration an
investigation has been made into the use of an SQL-based
approach for physics analysis. Currently, physics analysis is done
using data stored in centrally produced root-ntuples that are
accessible through the LHC computing grid. We'll present an
alternative approach to physics analysis where analysis data is
stored in a database. This would remove the need for customized
ntuple production, and allows some of the calculations that are
part of the analysis to be done on the database side.

Physics Analysis in SQL: The SQL-version of the
benchmark analysis is built through a series of select
statements on each object-table, each with a WHERE-
clause to apply selection criteria. Object-selection can be
done via temporary tables using the WITH-AS statement:
WITH goodmuons AS (SELECT … FROM muon WHERE pt>25.)
or by explicitly creating a table holding the objects.
Materialized views can be used to define common selection
criteria. For example, the benchmarks used a materialized
view to define the good luminosity-block selection.
At the end of the query, JOIN statements on the
RunNumber,EventNumber attributes are used to put
information from the different selections together:
SELECT … FROM good_muons INNER JOIN good_bjets USING
(RunNumber,EventNumber) WHERE goodmuons.N=2 AND
goodbjets.N=2
The user might be not be able (or willing) to re-write all
analysis code as SQL. Simple calculations can be written in
PL/SQL but one can also call exisisting C++ libraries from
inside the SQL-query. In this case the external libraries
need to be uploaded to the DB machines and linked to
PL/SQL functions. For example, one of the external C++
libraries used by the benchmarks was used in the b-jet
identification to re-calculate the b-tagging likelihood.

M. Limper

Benchmarks: A simplified version of the
search for the Higgs in association with a Z boson
was implemented, both as a single root-macro and
as an SQL-query. This analysis returns the
invariant mass of the lepton- and jet-pair and uses
40 variables.

In addition, a cutflow analysis for the top-pair
production cross-section measurement was
implemented as a benchmark. In this case the
original “RootCore”-packages used by ATLAS are
compared to a modified set of packages that
retrieve data from the DB via an SQL-query. This
more realistic analysis involves 319 variables, and
used data from the same tables as the Higgs+Z
benchmark as well as data from the photon-table.

Display of a Higgs +Z candidate event, as recorded by the ATLAS experiment, with two selected electrons
(green lines) and two identified b-jets (blue cones).

CPU usage: The mapred-cluster
was used to study CPU usage. Here,
the ntuple-version was executed
using 60 root-jobs (1 per disk). The
plots on the right show that the
Higgs+Z benchmark was fastest with
the ntuple-version and both version
were limited by iowait. The ttbar
cutflow benchmark was faster with
the DB-version as the RootCore-
packages were limited by CPU.

Conclusion: Physics Analysis
using SQL on data stored in a
database can provide an
alternative way to analyse the
large datasets produced by the
LHC experiments. Row-based
storage in combination with
wide tables limits performance
by the I/O read speed of the
system. Future studies will
focus on columnar stores to
improve performance.

SELECT HIGGS
FROM DATA_LHC;

Hadoop: On the mapred-cluster the test dataset was also
stored as comma-delimited text-files in the hadoop filesystem
(hdfs). The Hadoop system was configured to have 40 task
slots (8 per node) to match the number of cores in the
system. The Higgs+Z benchmark analysis was reproduced
using MapReduce-code written in java. The Higgs+Z analyis
in Hadoop used a relatively large amount of CPU and was
slower than both the ntuple and DB-version.

Test setups: Two types of test setups were used. The “test3”-setup
used 2 machines with network-based file storage (NFS) accessible from all
nodes. The 2nd test setup, “mapred”, was designed to run either Hadoop or
Oracle RAC and was optimized for fast I/O using 5 machines connected to 5
disk arrays holding a total of 60 disks. On this test-setup the Oracle
database used the Automatic Storage Management feature, and Hadoop
used its hdfs filesystem, to spread
the data evenly over all devices.
For the comparison with root on
the mapred-cluster, the ntuples
were distributed evenly over all disks.

Test setup "test3" "mapred"
nodes 2 5

Max. I/O speed 250 MB/s 2500 MB/s
total CPU cores 32 40

Parallel execution: An SQL query
can be executed in serial or in parallel and
the degree of parallelism can be set on the
table or by a hint inside the query. For the
ntuple analysis, parallelism was mimicked
by running multiple simultaneous root-jobs,
each analysing a subset of files. The root-
version gained more from parallelism than
the DB-version of the analysis. This is
because the DB-version is limited by I/O
speed as it needs to read many columns in
the table to find the relevant variables.

Dataset and database design: The benchmark analysis was tested
using a subset of ATLAS experiment data from root-ntuples that were centrally
produced for the ATLAS top-physics group. Root-ntuples store data column-wise,
while Oracle groups all related attributes together by row. A database design was
chosen where physics objects were stored in separate tables.
Data consistency is guaranteed through the
PrimaryKey constraint on the RunNumber,
EventNumber attributes in the eventData-table,
which is referred to by all other tables through
a ForeignKey constraint.
The table on the right shows the volume of the
test-data in our database, extracted from a subset
of 127 ntuples containing a total of 7.2 million
events, with 4000 analysis variables per event.

Table name columns M rows size in GB
photon 216 89.9 114.4
electron 340 49.5 94.6
jet 171 26.8 26.3
muon 251 7.7 14.2
primary_vertex 25 89.5 11.9
EF (trigger) 490 7.2 7.9
MET_RefFinal 62 6.6 2.3
eventData 52 7.2 1.4

60 root-jobs:
71 seconds

SQL parallel 40:
135 seconds

60 root-jobs:
588 seconds

SQL parallel 40:
372 seconds

Hadoop 40 task slots:
179 seconds

mapred-cluster

mapred-cluster mapred-cluster

mapred-cluster

