Running a typical ROOT HEP analysis on Hadoop/MapReduce

Stefano Alberto Russo – Michele Pinamonti – Marina Cobal

CHEP 2013 - Amsterdam - 14-18/10/2013

- The Hadoop/MapReduce model
- Hadoop and High Energy Physics
- How to run ROOT on Hadoop
- A real case: a top quark analysis
- Results and conclusions

DISCLAIMER: This talk is about computing architecture, it is not a not performance study.

Background

"Standard" distributed computing model:

storage and computational resources of a cluster as two independent, well logically-separated components.

The Hadoop/MapReduce model

New idea: overlap storage elements with the computing ones

) t

the computation can be scheduled on the cluster elements holding a copy of the data to analyze: *data locality*

Two components:

- **1.** The Hadoop Distributed File System (HDFS)
- 2. The MapReduce computational model and framework

The Hadoop Distributed File System (HDFS)

On HDFS, files are:

- Stored by slicing them in chunks (i.e. 64 MB, 1 GB)
- ..which are replicated across the cluster for redundancy and workload distribution.
- No RAID
- Commodity hardware: a disk can (and will) fail, sooner or later

The MapReduce model and framework

The MapReduce model and framework

MapReduce requires an embarrassing parallel problem.

No communication between Maps...

Another basic assumption: a trivial Reduce phase. —— easy to compute and almost I/O free

Hadoop and HEP (1)

In High Energy Physics (HEP):

Particle collision events are *independent*: **embarrassing parallel problems**

Simple merging operations: **sum numbers, sum historgrams..**

Usually, data to analyse accessed *over and over again* to finalize physics results: **potential advantage from data localiy**

(Store once, read many)

Hadoop and HEP (2)

"Natural" approach:

- Map: processes a chunk of the data set, analysing it event by event
- Reduce: collect Map's partial result merging them.

Hadoop and HEP (2)

"Natural" approach:

- Map: processes a chunk of the data set, analysing it event by event
- Reduce: collect Map's partial result merging them.

Drowbacks:

Not column-based storage ...

1) Events in plain text, CSV style: lot of unnecessary I/O reads (typical HEP analysis requires only a few out of the many variables available)

→ Ref: Maaike Limper, An SQL-based approach to Physics Analysis, CHEP2013

Hadoop and HEP (2)

"Natural" approach:

- Map: processes a chunk of the data set, analysing it event by event
- Reduce: collect Map's partial result merging them.

Drowbacks:

Not column-based storage ...

 Events in plain text, CSV style: lot of unnecessary I/O reads (typical HEP analysis requires only a few out of the many variables available)

→ Ref: Maaike Limper, An SQL-based approach to Physics Analysis, CHEP2013

2) Frameworks for HEP developed, maintained and used by large communities over several years (ROOT):

porting code could be very challenging and time consuming
 ...and non-optimised MapReduce code can easily lead to waste CPU

Ref: Zbigniew Baranowski, et Al, Sequential Data access with Oracle and Hadoop: a performance comparison, CHEP2013

Hadoop and HEP (3)

IDEA:

- run ROOT on Hadoop, and
- use its original data format which provides column-based storage.

GOALS:

1) Transparency for the data:

let binary datasets be uploaded on HDFS without changing format;

2) Transparency for the code:

let the original code run without having to modify a single line;

3) Transparency for the user:

avoid the users to have to learn Hadoop/MapReduce, and let them interact with Hadoop in a classic, batch-fashioned behavior.

Hadoop and HEP (4)

PROBLEMS:

- The Hadoop/MapReduce framework and its native API are written in the Java programming language.
- Support for other programming languages is provided, **but**: serious limitations on the input/output side when working with binary data sets. (Hadoop was developed with textual analyses in mind)
- ROOT data is binary

...chunking binary files without corrupting data is NOT possible!

ROOT on Hadoop/MapReduce (1)

SOLUTIONS: Transparency for the (binary) data

NO chunking:

One Map = One file = one HDFS block (chunk)

(set chunk size >= file size per file)

- Map tasks will be in charge of analyzing one file, in its entirety
 - Corruptions due to chunking binary data are avoided
 - Data can be stored on the Hadoop cluster without conversions, in its original format.

Other approaches are possible, but much more effort required

ROOT on Hadoop/MapReduce (1.1)

SOLUTIONS: ...and what about parallelism?

Working conditions imposed:

One Map Task = One chunk = one file to analyze

Now the parallelization degree goes with the number of files!

ROOT on Hadoop/MapReduce (1.2)

SOLUTIONS: ...and what about parallelism?

HEP datasets are usually composed by several files

I.e. ATLAS D3PD's storage schema:

Object	Order of Magnitude	Туре	On Hadoop/Mapreduce
Event	1	ROOT data	Unknown (binary)
File	10 ² - 10 ⁴	ROOT file	One chunk
Luminosity block	104	Set of Files	Directory
LHC Run	10 ⁵ - 10 ⁶	Set of Lum. blocks	Directory
Data set	10 ⁵ - 10 ⁹	Set of LHC Runs	Directory (input dataset)

ROOT on Hadoop/MapReduce (2)

SOLUTIONS: Transparency for the code

Bottom line: bypass Hadoop

- **1.** Java Map and Reduce tasks as *wrappers for ROOT*
- 2. Let ROOT access the data from a standard file system

For every Map task:

• Local replica available:

- HDFS file (block) to analyze can be found and therefore accessed on the local, standard file system, i.e. Ext3.
- Local replica *not* available:

or., use FUSF

access the file to analyze via network using Hadoop's file system tools

ROOT on Hadoop/MapReduce (3)

SOLUTIONS: Transparency for the user

Easy to write a Java MapReduce job acting as a wrapper for user's code, i.e **RootOnHadoop.java**:

• Just few guidelines for the user code to make it work

hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"

Hadoop/MapReduce framework

hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"

Hadoop/MapReduce framework

ROOT on Hadoop has been tested on a real case: the top quark pair production search and cross section measurement analysis performed by the ATLAS collaboration

Basics of the analysis:

Based on a cut-and-count code: every event undergoes a series of selection criteria, and at the end is accepted or not.

Мар

Cross section obtained by comparing numbers (number of selected events with the luminosity, the efficiency in the selection of signal events, and the expected background events.)
Reduce

The dataset, data taking conditions:

Data has been taken with all the subsystems of the ATLAS detector in fully operational mode, with the LHC producing proton-proton collisions corresponding to a centre of mass energy of 7 TeV with stable beams condition during the 2011 run up to August.

The dataset, in numbers:

- 338,6 GB (only electron channel D3PDs)
- 8830 files
- average size: ~ 38 MB
- maximum file size: ~ 48 MB

Every file fits in a default HDFS chunk size of 64 MB!

Data copied straightforward from CERN Tier-0 to the Hadoop Cluster

A real case: a top quark analysis (3)

The test cluster:

- Provided by CERN IT-DSS group
- 10 nodes, 8 cpus per node
- Max 10 Map tasks per node
- 2 replicas per file

The top quark analysis code:

- ROOT-based, treated as a black magic box
- Compiled without <u>any</u> modification!
- Has ben stored on the Hadoop File System as well

Worked as expected:

Kind	% Complete	Num Tasks	Pending	Running	Complete
map	48.33%	8830	4462	100	4268
reduce	16.07%	1	0	1	0

• Data locality ratio: 100% (every file is read locally)

Using the Delayed Fair Scheduler By Facebook

designed for (and tested to) give data locality ratios close to 100% in the majority of the use-cases.

Results (2)

Data locality 100% and data transfers <u>at runtime</u>:

	Hadoop	Standard
	Computing	Computing
Data transfers:	Model	Model
Code	0,12 GB	0,12 GB
Infrastructure overhead	1,17 GB	-
Input data set	0 GB	336,6 GB
Output events count	-	-
Total:	1,29 GB	336,72 GB

Performance in terms of time still to be evaluated
 — ...coparision is hard (apples Vs bananas issue)

Conclusions – Pros and Cons

Typical HEP analyses can be easily ported to a MapReduce model

In Hadoop *network usage* for accessing the data *reduced by several orders of magnitude* thanks to the data locality feature

Transparency can be achieved quite easily

Bypassing some Hadoop components permits to:

- run standard code on standard, local file systems at maximum speed
- fine tuning (SSD caching, BLAS/LAPACK..)

..while:

exploiting the innovative features of Hadoop/MapReduce and HDFS

easy to manage, fault tollerant and scalable infrastructure (plug/unplug)

open source, widely used and well maintained

...and the method actually works, positive feedback received

i.e. Uni LMU ATLAS group, poster here at CHEP 2013 "Evaluation of Apache Hadoop for parallel data analysis with ROOT"

Conclusions – Pros and Cons

Java and ROOT overhead to start many jobs *Performance to be evaluated*

Tuning: - JVM reuse, Map startup improvement; - Latency (Heartbeat) optimization...

Bottomline: Hadoop forced to work unnaturally bugs when working with blocksize > 2 Gb to be fixed (already investigated by the community)

...worth to investigate, spend time for tuning, find a metric to measure performance?

Conclusions – Pros and Cons

- Typical HEP analyses can be easily ported to a MapReduce model
- Network usage for accessing the data reduced by several orders of magnitude thanks to
- Hadoop's data locality feature. Same data accessed over and over.
- Transparency can be achieved quite easily
- Bypassing some Hadoop components permits to:
 - run standard code on standard, local file systems at maximum speed
 - fine tuning (SSD caching, BLAS/LAPACK..)

..while:

exploiting the innovative features of Hadoop/MapReduce and HDFS

- easy to manage, fault tollerant and scalable infrastructure
- ...and is open source, widely used and well maintained
- Hadoop and ROOT overhead to start many jobs (Performance to be evaluated)
- Hadoop forced to work unnaturally bugs when working with blocksize > 2 Gb to be fixed (already investigated)

Thanks for your attention!

Demo code → stefano.alberto.russo@cern.ch

...questions?