
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 137.138.37.24

This content was downloaded on 27/01/2016 at 16:10

Please note that terms and conditions apply.

 New approaches for boosting to uniformity

View the table of contents for this issue, or go to the journal homepage for more

2015 JINST 10 T03002

(http://iopscience.iop.org/1748-0221/10/03/T03002)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-0221/10/03
http://iopscience.iop.org/1748-0221
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


2
0
1
5
 
J
I
N
S
T
 
1
0
 
T
0
3
0
0
2

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: October 26, 2014
REVISED: December 22, 2014

ACCEPTED: February 18, 2015
PUBLISHED: March 30, 2015

TECHNICAL REPORT

New approaches for boosting to uniformity

A. Rogozhnikov,a,b,1 A. Bukva,c V. Gligorov,d A. Ustyuzhaninb,e, f and M. Williamsg

aLomonosov Moscow State University,
Moscow, Russia

bYandex,
Moscow, Russia

cFaculty of Physics,
Belgrade, Serbia
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1 Introduction

Methods of machine learning play an important role in modern particles physics. Multivariate
classifiers, e.g., boosted decision trees (BDTs) and artificial neural networks (ANNs), are now
commonly used in analysis selection criteria. BDTs are now even used in software triggers [1, 2].
To enhance the performance, a series of classifiers is typically trained; this is a technique known as
boosting. Boosting involves training many simple classifiers and then building a single composite
classifier from their responses. The classifiers are trained in series with the inputs of each member
being augmented based on the performance of its predecessors. This augmentation is designed such
that each new classifier targets those events which were poorly classified by previous members of
the series. The classifier obtained by combining all members of the series is typically much more
powerful than any of the individual members.

In particle physics, the most common usage of BDTs is in classifying candidates as signal or
background. The BDT is determined by optimizing some figure of merit (FOM), e.g., the signal
purity or approximate signal significance. This approach is optimal for a counting experiment;
however, in many cases the BDT-based selection obtained in this way is not optimal. For example,
in a Dalitz-plot (or any angular or amplitude analysis) analysis, obtaining a selection efficiency
for signal candidates that is uniform across the Dalitz-plot is more important than any integrated
FOM. Similarly, when measuring a mean particle lifetime, obtaining an efficiency that is uniform
in lifetime is what is desired. In both cases, obtaining a uniform selection efficiency greatly reduces
the systematic uncertainties involved in the measurement. When searching for a new particle, an
analyst may want a uniform efficiency in mass for selecting background candidates so that the BDT-
based selection does not generate a fake signal peak. Furthermore, the analyst may also desire a
uniform selection efficiency of signal candidates in mass (or other variates) since the mass of the
new particle is not known. In such cases, the BDT is often trained on simulated data generated with
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several values of mass (lifetime, etc.). A uniform selection efficiency in mass ensures that the BDT
is sensitive to the full range of masses involved in the search.

2 Uniformity boosting methods

The variates used in the BDT are denoted by ~x, while the variates in which uniformity is desired
are denoted by~y. Some (perhaps all) of the~x variates will be biasing in~y, i.e. they provide discrim-
inating power between signal and background that varies in~y. A uniform BDT selection efficiency
can be obtained by removing all such variates; however, this will also reduce the power of the
BDT. The goal of boosting algorithms presented in this paper is to balance the biases to produce
the optimal uniform selection.

One category of boosting works by assigning training events more weight based on classifi-
cation errors made by previous members of the series. For example, the AdaBoost [3] algorithm
updates the weight of event i, wi, according to

w′i = wi× exp [−γi pi] , (2.1)

where γ = +1(−1) for signal(background) events and p is the prediction for each event produced
by last classifier in the series. The uBoost technique, described in detail in ref. [4], alters the event-
weight updating procedure to achieve uniformity in the signal-selection efficiency. The uBoost
method uses a product of the AdaBoost weights to penalize mis-classification and weights defined
to penalize non-uniformity. The non-uniformity weights are obtained by comparing the efficiency
of an event’s k-nearest-neighbor events1 to the global efficiency.

Another approach to obtain uniformity, introduced in this paper, involves defining a more
general expression of the AdaBoost criteria:

w′i = wi× exp

[
−γi ∑

j
ai j p j

]
, (2.2)

where ai j are the elements of some square matrix A. For the case where A is the identity matrix,
the AdaBoost weighting procedure is recovered. Other choices of A will induce non-local effects,
e.g., consider the sparse matrix Aknn given by

aknn
i j =

{
1
k , j ∈ knn(i), events i and j belong to the same class

0, otherwise,
(2.3)

where knn(i) denotes the set of k-nearest-neighbor events to event i. This procedure for updating
the event weights, which we refer to as kNNAdaBoost, accounts for the score of each event’s k
nearest neighbors and not just each event individually. The idea here is that a signal event in a less
efficiently selected region will be given more weight than a signal event in an efficiently selected
one, which may lead to a more uniform response.

1Throughout this report the k-nearest-neighbor events are always determined based on a distance metric that uses the
~y variates.
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The gradient boosting [5] (GB) algorithm category requires the analyst to choose a differen-
tiable loss function with the goal of building a classifier that minimizes the loss. A popular choice
of loss function is the so-called AdaLoss function

Lada =
n

∑
i=1

exp [−γisi] . (2.4)

The scores s are obtained for each event as the sum of predictions of all elements in the series.
At each stage in the gradient boosting process, a regressor (a decision tree in our case) is trained
whose purpose is to decrease the loss. This is accomplished using the gradient decent method and
the pseudo-residuals

− ∂Lada

∂ si
= γiexp [−γisi] , (2.5)

which are positive(negative) for signal(background) events and have larger moduli for poorly clas-
sified events.

The gradient-boosting algorithm is general in that it only requires the analyst specify a loss
function and its gradient. The AdaLoss function considers each event individually, but can easily
be modified to take into account non-local properties of the classifier as follows:

Lgeneral =
n

∑
i=1

exp

[
−γi ∑

j
ai js j

]
. (2.6)

For example, the loss function obtained from eq. (2.6) using2 Aknn, which we refer to as kN-
NAdaLoss and denote Lknn, accounts for the score of each event’s k nearest neighbors and not just
each event individually. The pseudo-residuals of Lknn are

− ∂Lknn

∂ sk
= ∑

i
γiaknn

ik exp

[
−γi ∑

j
aknn

i j s j

]
. (2.7)

One can see that the direction of the gradient will be influenced the most by events whose k-nearest-
neighbor events are classified poorly. We generically refer to GB methods designed to achieve
uniform selection efficiency as uniform GB (uGB). The specific algorithm that uses kNNAdaLoss
will be called uGBkNN.

Another approach is to include some uniformity metric in the definition of the loss function.
Consider first the case where the data have been binned in ~y. If the distribution of classifier re-
sponses in each bin, fb(s), is the same as the global response distribution, f (s), then any cut made
on the response will produce a uniform selection efficiency in ~y. Therefore, performing a one-
dimensional goodness-of-fit test of the hypothesis fb ≡ f in each bin provides an assessment of the
selection uniformity. For example, one could perform the Kolmogorov-Smirnov test in each bin
and define a loss function as follows:

Lflat(KS) = ∑
b

wbmax|Fb(s)−F(s)|, (2.8)

where F(b)(s) denotes the cumulative distribution of f(b)(s) and wb = ∑δ (bini−b)/nsignal, i.e. wb

is the fraction of signal events in the bin.3

2A natural choice is a square n×n matrix, but this is not required.
3If weighted events are used, then the fractional sum of weights should be used for wb.

– 3 –



2
0
1
5
 
J
I
N
S
T
 
1
0
 
T
0
3
0
0
2

Table 1: Description of uniform boosting algorithms.

Name Description
uBoost algorithm introduced in ref. [4]

kNNAda AdaBoost modification using matrix Aknn

uGBkNN gradient boost using kNNAdaLoss loss function
uGBFL(bin) gradient boost using flatness loss +α AdaLoss as in eq. (2.11) (data binned for FL)

uGBFL(kNN) same as uGBFL(bin) except kNN events are used rather than bins

The gradient of the Kolmogorov-Smirnov loss function is zero for events with responses
greater than the value of s at which max|Fb(s)−F(s)| occurs. Thus, it is not suitable for gradient
boosting due to its instability. Instead, we use the following flatness loss function:

Lflat = ∑
b

wb

∫
|Fb(s)−F(s)|2ds, (2.9)

whose pseudo-residuals are (b is the bin containing the kth event)

− ∂Lflat

∂ sk
≈−2wb [Fb(sk)−F(sk)] . (2.10)

This so-called flatness loss penalizes non-uniformity but does not consider the quality of the clas-
sification. Therefore, the full loss function used is

Lada+flat = Lflat +αLada, (2.11)

where α is a real-valued parameter that is typically chosen to be small. The first term in eq. (2.11)
penalizes non-uniformity, while the second term penalizes poor classification. We refer to this al-
gorithm as uGB with flatness loss (uGBFL). In principle, many different flatness loss functions can
be defined and could be substituted for our choice here. See appendix A for a detailed discussion
on this topic.

The loss function given in eq. (2.11) can also be constructed without binning the data using k-
nearest-neighbor events. The cumulative distribution Fknn(s) is easily obtained and the bin weight,
wb, is replaced by a k-nearest-neighbor weight, wknn. First, each event is weighted by the inverse
of the number of times it is included in the k-nearest-neighbor sample of another event. Then, wknn

is the sum of such weights in a k-nearest-neighbor sample divided by the total sum of such weights
in the full sample. This procedure is followed to offset the fact that some events are found in more
k-nearest-neighbor samples than other events. We study two versions of uGBFL below: uGBFL
using bins denoted by uGBFL(bin) and uGBFL using kNN collections denoted by uGBFL(kNN).
The algorithms are summarized in table 1.

3 Example analysis

The example analysis studied here involves a so-called Dalitz-plot analysis. In such analyses, the
distribution of events in a 2-D space is typically fit to extract some information of physical interest.
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Figure 1: Dalitz-plot distributions for (left) signal and (right) background for the D±s → π+π−π±.
The three pions are labeled here as 1, 2 and 3 and ordered according to increases momentum.

The regions of the Dalitz-plot that tend to have the highest sensitivity to the desired information are
the edges. Unfortunately, the edge regions also typically have the most background contamination
and the least discrimination against background. Therefore, traditional classifier-based selections
tend to produce selections for Dalitz-plot analyses with lower efficiency near the edges.

This study uses simulated event samples produced using the official LHCb simulation frame-
work. The software used for the generation of the events is described in LHCb publications as
follows:

In the simulation, pp collisions are generated using PYTHIA [6] with a specific LHCb
configuration [7]. Decays of hadronic particles are described by EvtGen [8], in which
final state radiation is generated using PHOTOS [9]. The interaction of the gener-
ated particles with the detector and its response are implemented using the GEANT
toolkit [10, 11] as described in ref. [12].

All simulated event samples are generated inside the LHCb detector acceptance. The signal
used in this analysis consists of D±s → π+π−π± decays, simulated using the D DALITZ model of
EvtGen to simulate the intermediate resonances which contribute to the three pion final state. The
background candidates are three pion combinations reconstructed in simulated samples of cc̄ and
bb̄ events, where the charm and bottom quark decays are inclusively modelled by EvtGen. The
simulated events contain “truth” information which identifies them as signal or background, and
which identifies the physical origin of the three pion combinations reconstructed in the cc̄ and bb̄
simulated samples.

Figure 1 shows the Dalitz-plot distributions for signal and background events. These sam-
ples are split into training and testing samples and then various BDTs are trained. For the BDTs
designed to produce uniform selections, the~y variates are the Dalitz masses with the choice of uni-
form selection efficiency on signal candidates in the Dalitz-plot. Figure 2 shows the ROC curves
obtained for the various classifiers studied in this paper. For the uGBFL algorithms, there is a
choice to be made for the value α which defines the relative weight of the flatness loss vs AdaLoss.
As expected, increasing α , which increases the weight of AdaLoss, drives the ROC curve to be
similar to AdaBoost. Analysts will need to choose how much ROC performance to sacrifice to gain
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Figure 2: (left) ROC curves for classifier algorithms studied in this paper. For the uGBFL algo-
rithms α = 0.02 is shown. (right) ROC curves for uGBFL(bin) for differnet values of α .
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Figure 3: Uniformity of the selection efficiency across the Dalitz plot, as measured using the
so-called SDE metric described in detail in the appendix, vs α for uGBFL(bin). The dashed line
indicates the SDE value for AdaBoost. Lower values of α produce more uniform selection effi-
ciencies.

uniformity in the selection efficiency. In general, the ROC curves for the uniform-driven BDTs are
not too different from AdaBoost. Figure 3 shows how the uniformity of the selection efficiency
depends on α . As expected, as α is decreased the selection becomes more uniform.

Table 2 shows the uniformity of the selection efficiency obtained for each classifier as mea-
sured using the standard deviation of efficiency (SDE) in bins metric (described in detail in the
appendix). All methods except the uGBkNN improve the uniformity of the selection efficiency.
The uGBkNN algorithm appears to overcompensate and drives the efficiency higher than the mean
where AdaBoost produces lower efficiencies. This suggests that if this algorithm is to be used some
stopping criteria or throttle of the event-weighting updating should be implemented. The efficiency
in the corners of the Dalitz plot, defined as events for which the distance4 to any corner is less than
0.5 GeV, is also shown in table 2. The AdaBoost algorithm, as expected, produces a much lower
efficiency in the interesting corner regions. The kNNAdaBoost algorithm does not improve upon

4The Dalitz-plot is essentially a triangle with three corners. Our definition of this distance is the square root of
MIN

[
(m(Ds)−m(π))2−m2

i j

]
, where i j is 12, 13 and 23.
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Table 2: SDE uniformity metric measured using different boosting algorithms for the Dalitz-plot
analysis (smaller SDE values correspond to a more uniform selection efficiency). The efficiency in
the corners of the Dalitz plot (see text for details) for an arbitrary working point of a mean signal
efficiency of 50% is also shown. The statistical uncertainy on the corner efficiencies due to limited
simulation sample size is 2%.

Name SDE Corner Efficiency (%)
AdaBoost 0.08 41

uBoost 0.07 50
kNNAda 0.07 41
uGBkNN 0.09 68

uGBFL(bin) 0.05-0.07 (see figure 3) 50
uGBFL(kNN) 0.05-0.07 (see figure 3) 51

the AdaBoost result much. This is likely due to the fact that while kNNAdaBoost uses non-local
kNN information, it does not utilize global information. The uGBFL (binned and unbinned kNN)
and uBoost algorithms each produce an efficiency which is statistically consistent with uniform
across the Dalitz plot. As stated above, the analyst is free to optimize the choice of α for uGBFL
by defining a metric that involves signal efficiency, background rejection and uniformity, e.g., using
uniformity metrics discussed in detail in appendix A.

As a separate study using the same data samples, consider the case where one has simulated
signal events and uses data from a nearby region, a so-called sideband, for background. This is a
common situation in particle physics analyses. Figure 4 shows the training samples used. A major
problem can arise in these situations as typically input variates to the BDT are correlated with the
parent particle mass. Therefore, the BDT may learn to reject the background in the training using
the fact that the mass of the background and signal candidates is different. This is just an artifact
of how the background sample is obtained and will not be true for background candidates under
the signal peak. Figure 4 shows the background mis-identification rate vs D candidate mass for the
case where no dedicated effort to remove all inputs correlated with mass has been made. AdaBoost
has clearly learned to use this mis-match in signal and background candidate masses in the training.
The background in the region of the signal is about three times higher than one would expect from
looking only at the sideband data.

Figure 4 also shows the background mis-identification rate vs D candidate mass for the various
uniform classifiers where y = m(D) and the choice is for uniformity in the background efficiency.5

The uBoost algorithm does better than AdaBoost here but is still not optimal. The way that uBoost
achieves uniformity is not such that it can be trusted to work outside the region of training. The
algorithms presented in this paper each does well in achieving similar performance in the training
and signal regions. Consider, e.g., the uGBFL approach to achieving uniform selection efficiency.
In this case the training drives the BDT response itself to have the same PDF everywhere in the

5The algorithms in this paper can easily be made uniform on signal, background or both.
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Figure 4: (left) Signal and (filled) background samples used in training. (right) Background
mis-identification vs D candidate mass for an arbitrary working point of 10% background mis-
identification in the training region 1.75 < m(D) < 1.85 GeV is displayed.

region 1.75 < m(D) < 1.85 GeV (the training region). This does not guarantee that the BDT re-
sponse is truly independent of m(D) outside the training region, but does strongly suppress learning
to use m(D) and in this example results in the desired behavior. Finally, if both high and low m(D)
sidebands had been used, it is possible for a BDT to create a fake peak near the signal peak location.
The use of uGBFL greatly reduces the chances and possible size of such an effect.

4 CPU resources

One drawback of the uBoost technique is that it has a high degree of computational complexity:
while AdaBoost trains M trees (a user-defined number), uBoost builds 100×M trees. The al-
gorithms presented in this paper only build M trees; however, the boosting involves some more
complicated algorithms. Training each of the M trees scales as follows for N training events (k
below refers to the number of k-nearest-neighbor events used):

• kNNAdaBoost: O(k×N);

• uGBkNNknn: O(k×N) for Aknn, and O(#nonzero elements in the matrix) for arbitrary ma-
trix A;

• uGBFL(bin): O(N lnN);

• uGBFL(kNN): O(N lnN +Nk lnk).

In the example analysis studied in this paper, we find that the training time for these new algorithms
is within a factor of two the same as AdaBoost. The CPU-resource usage of these new algorithms
is not prohibitive.

5 Summary

A number of novel boosting algorithms have been presented that consider uniformity of selection
efficiency in a multivariate space in addition to mis-classifcation errors. Of these, the uGBFL
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algorithm has the best performance on the example analyses studied in this paper. This algorithm
is expected to be useful in a wide-variety of analyses performed in particle physics.

6 Source code

The code for classifiers proposed in this article as well as for metrics of uniformity is publicly
available at repository https://github.com/anaderi/lhcb trigger ml.
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A Measures of uniformity

In this section we discuss different methods for measuring the uniformity of prediction. One typ-
ical way of ‘checking’ uniformity of prediction used by physicists is fitting the distribution of the
events that were classified as signal (or background) over the feature for which you wish to check
uniformity. This approach requires assumptions about the shape of the distribution, which makes
quantitative comparisons of different classifiers difficult. Our aim here is to explore uniformity
figures of merit which make comparing classifiers easier, analogously to how the area under the
ROC curve can be used to compare absolute classifier performance.

The output of event classification is the probability of each event being signal or background,
and it is only after we apply a cut on this probability that events are classified. An ideal uniformity
of signal prediction can then be defined for a given “uniform feature” of interest. It means that
whichever cut we select, the efficiency for a signal event to pass the cut doesn’t depend on the
uniform feature. Uniformity for background can be defined in the same manner, but for simplicity,
in what follows we will only discuss the uniformity of efficiency for signal events.

A trivial example of a classifier that has ideal uniformity is a classifier which returns a ran-
dom classification probability, but such a classifier is of course not very useful. One can try to
design a uniform classifier with respect to a given feature by not using this feature, or any corre-
lated features, in the classification; in practice, however, this approach also tends to lead to poorly
performing classifiers. The approach which we take in this paper is to explicitly let the classifier
learn how to balance non-uniformities coming from different features in such a way as to generate
a classification which is uniform on average. It is then important to be able to accurately measure
the uniformity of classification.

Before proceeding, it is useful to define some desirable properties of uniformity metrics

1. The metric shouldn’t depend strongly on the number of events used to test uniformity;

2. The metric shouldn’t depend on the normalization of the event weights: if we multiply all
the weights by some arbitrary number, it shouldn’t change at all;
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3. The metric should depend only on the order of predictions, not the exact values of probabili-
ties. This is because we care about which events pass the cut and which don’t, not about the
exact values of predictions. For example: correlation of prediction and mass doesn’t satisfy
this restriction.

4. The metric should be stable against any of its own free parameters: if it uses bins, changing
the number of bins shouldn’t affect the result, if it uses k-nearest neighbors, it should be
stable against different values of k.

In what follows we will consider different metrics which satisfy these criteria, and then compare
their performance in some test cases.

Standard Deviation of Efficiency on bins (SDE)

If the space of uniform features is split into bins, it is possible to define the global efficiency

eff =
total weight of signal events that passed the cut

total weight of signal events
,

as well as the efficiency in every bin,

effbin =
weight of signal events in bin that passed the cut

weight of signal events in this bin
.

One measure of non-uniformity is the standard deviation of bin efficiencies from the global effi-
ciency: √

∑
bin

(effbin− eff)2.

To make the metric more stable against fluctuations in bins which contain very few events, we
add weights to the bins (note that ∑bin weightbin = 1):

weightbin =
total weight of signal events in bin

total weight of signal events
,

giving the weighted standard deviation (SDE) formula

SDE(eff) =
√

∑
bin

weightbin× (effbin− eff)2.

This formula is valid for any given cut value. To measure the overall non-flatness of the
selection, we take several global efficiencies and use

SDE2 =
1
k ∑

eff∈[eff1...effk]
SDE2(eff)

Another power p 6= 2 can be used as well, but p = 2 is considered as the default value.
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Figure 5: Demonstration of the distribution similarity approach. (left) Predictions are uniform
in mass, the distribution of predictions in the bin (yellow) is close to the global (blue). (right)
Distribution with peak in the middle, the distribution in the bin is quite different from the global
distribution. In both cases the yellow rectangle shows the events in the bin over mass.

Theil index of efficiency

The Theil Index is frequently used to measure economic inequality:

Theil =
1
N ∑

i

xi

< x >
ln

xi

< x >
, < x >=

1
N ∑

i
xi

In our case we have to alter formula a bit to take into account that different bins have different
impact, thus the formula turns into

Theil(eff) = ∑
bin

weightbin
effbin

eff
ln

effbin

eff
.

To measure the overall non-flatness, we average values for several global efficiencies:

Theil =
1
k ∑

eff∈[eff1...effk]
Theil(eff)

Distribution similarity approach

Instead of measuring uniformity in terms of binned efficiencies, it is possible to consider the dis-
tribution of the binned classifier predictions, Fbin, directly. Ideal uniformity means that all the
distributions Fbin are equal and hence equal to the global distribution F(x). This is demonstrated
on figure 5. To ‘measure’ non-flatness we can use some distribution distance, like Kolmogorov-
Smirnov:

∑
bin

weightbin max
x
|Fbin(x)−F(x)| ,

but Cramér-von Mises similarity is more informative (usually p = 2 is used):

∑
bin

weightbin

∫
|Fbin(x)−F(x)|p dF(x),

in particular because Kolmogorov-Smirnov measures are too sensitive to local non-uniformities.
The advantage of this method is that we don’t need to select some global efficiencies like in the
previous metrics.
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Knn-based modifications

Though operating with bins is usually both simple and very efficient, in many cases it is hard to find
the optimal size of bins in the space of uniform features (specifically in the case of more than two
dimensions). As mentioned earlier, problems can also arise due to bins with very low populations.

In these cases we can switch to k-nearest neighbors: for each signal event we find k nearest
signal events (including the event itself) in the space of uniform features. Now we can compute
the efficiency effknn(i), from the empirical distribution Fknn(i) of nearest neighbors. The weights for
knn(i) are proportional to the total weight of events in knn(i):

weightknn(i) = α ∑
j∈knn(i)

w j, α
−1 = ∑

i
∑

j∈knn(i)
w j,

so again weights are normed to 1: ∑i weightknn(i) = 1.
It is then possible to write the knn versions of SDE

knnSDE2(eff) = ∑
i∈events

weightknn(i)
∣∣effknn(i)− eff

∣∣2 ,

knnSDE2 =
1
k ∑

eff∈[eff1,...effk]
knnSDE2(eff),

the Theil index of efficiency

knnTheil(eff) = ∑
i∈events

weightknn(i)
effknn(i)

eff
ln

effknn(i)

eff
,

knnTheil =
1
k ∑

eff∈[eff1,...effk]
knnTheil(eff),

and the similarity-based measure:

∑
i∈events

weightknn(i)

∫ ∣∣Fknn(i)(x)−F(x)
∣∣p dF(x).

The knn approach suffers from a drawback: the impact of different events has very little con-
nection with the weights, because some events are selected as nearest neighbours much more fre-
quently than others. This effect can be suppressed by dividing the initial weight of the event by the
number of times it is selected as a nearest neighbour.

Advantages and disadvantages of different metrics

Theil and SDE

Let us compare two metrics that have proven most appropriate for our problem, SDE and Theil.
We have some masses distributed uniformly in [0,1], some constant α from interval [0,1]. The
predictions are correlated with mass via beta distribution. First distribution with a peak is obtained
by generating a prediction for each event according to its mass:

ppeak ∼ Beta(1+α f (m),1), f (m) = 5× e−100|m−m|2
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(a) Mass vs prediction.
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(b) Mass vs efficiency. The different coloured lines correspond to different global classifier efficiencies,
as explained in the legend on the leftmost subplot.

Figure 6: Peak response distribution and efficiencies as a function of mass.

The second distribution is obtained by flipping:

ppit ∼ 1−Beta(1+α f (m),1)

SDE should show no changes if we flip the distribution, while the Theil should make difference
between pit and peak.

Figures 6 and 7 show the distribution of the predictions and classifier efficiency as a function
of mass for the peak and pit distributions, respectively.

From figure 8 we can see that SDE doesn’t make any difference between these distributions,
while Theil has lower value in the second case which indicates that distribution is flatter. This
example demonstrates that Theil has larger penalty for distributions with narrow peaks rather than
with narrow pits in the distribution of efficiecies.

D→ hhh

Finally, we compare the SDE and Theil uniformity measures for the classifiers applied to the D→
hhh data set, as shown in figure 9. Both measures show similar results, so there is no significant
difference between them, nor the CvM metric, on this dataset.
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(a) Mass vs prediction.
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(b) Mass vs efficiency. The different coloured lines correspond to different global classifier efficiencies,
as explained in the legend on the leftmost subplot.

Figure 7: Pit response distribution and efficiencies as a function of mass.

α
0 0.2 0.4 0.6 0.8 1

un
ifo

rm
ity

0

0.05

0.1

0.15

0.2

0.25

mse pit
mse peak
theil pit
theil peak

Figure 8: Comparison of SDE and Theil uniformity measures for different values of the constant
α for the peak and pit distributions. The Theil can clearly distinguish between these two while the
SDE measure cannot.
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(a) Metrics for D→ hhh signal.
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(b) Metrics for D→ hhh background.

Figure 9: Uniformity metrics for the D→ hhh data set. The (top) signal and (bottom) background
uniformities are plotted as a function of the training stage of a given classifier, listed in the legends
on the leftmost plots. Within each figure the leftmost plot is the SDE and the rightmost plot is the
Theil uniformity metric.
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