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Abstract

The grid storage manager DPM is used successfully at many Tier 2 sites in
the WLCG. With Taiwan as the first Tier 1 deploying DPM, the performance
requirements are increasing.

This projects extends the performance measurement suite Perfsuite [1] and
implements tools for a performance analysis of DPM. The resulting under-
standing of DPM from this project assists the developers for further improve-
ments of DPM and also provides ideas and tools for DPM performance mea-
surement. All software is available through the developer repository and most

tests have been included in the latest Perfsuite release.
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1 Introduction

CERN [2] is certainly most-known for running Large Hadron Collider (LHC), the worlds largest particle
accelerator. Through it, the most pressing questions in particle physics, such as the existence of the
Higgs boson or the behaviour of anti-matter, should be answered. For this, very sensitive detectors

related to the six experiments on the LHC, record the particle collisions.

These collisions, occurring at a very high rate, produce an enormous amount of data, which has to be
saved and later analysed. The ATLAS experiment [3] alone has a data rate of more than 18 GByte

per minute.

All data is first collected at CERN, but for the long time archiving and the analysis of the data
by physicists in institutions world-wide, the World Wide LHC Computing Grid (WLCG) has been
established. This two tier computing grid provides about 200,000 processors on more than 140 sites

around the globe [4].

Another matter beside computing on the grid is storage. Storage solutions must be able to allow
high-performance access to large amounts of data, both for sequential and random access. They also
must provide various transfer methods to suit the needs of the researchers from different institutes and

LHC experiments.

DPM [5] is a storage solution mainly used at Tier 2 sites as it is scalable and well performing, yet easy
to administer. Also Tier 1 sites need tape management for long term archival, which DPM does not
support. However, DPM can be a interesting solution if Tier 1 centres distinguish between archiving

and live file access and employ two specialised systems.

This project aims at understanding the DPM architecture through analysis and performance measure-
ment. It builds on the performance measurement suite Perfsuite [1] and uses different measurement
environments. During the project, performance factors of DPM could be discovered which help eval-

uating future DPM developments.
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2 Implementation

This chapter covers the description of the implementation of the tools necessary for the performance
measurements taken during the project. It is separated in two parts: the first introduces Perfsuite, a
performance measurement suite used for the development, the second the implementation of tests and
other tools. The next setion then describes the setup of the testing environment and a description of

how the tests were conducted.

2.1 Perfsuite

The DPM performance testing suite has been developed at the IT-GT-DMS group at CERN by
Alexandre Beche and the author has contributed to its current version 0.2.0. It is available online [1]

with support.

Perfsuite is a framework to run test cases, which can be written in any language and have arbitrary
functionality, but have to provide their output in a specific format. The tests are then invoked through
a central configuration file, which allows tests to be repeated and run with different command line

arguments.

Current tests written for file transfer measurements include one part for ‘putting’ files to the DPM
storage and one for ‘getting’. Most of them create random files for the tests, but the developed tests

here alternatively use files specified in the Perfsuite configuration file.

2.2 Extensions to Perfsuite

Perfsuite as it is shows to be a very good tool to run multithreaded file transfer tests with throughput
results from a single client. The plugin structure for tests and especially the common template makes
it very easy to develop and deploy your tests. For distributed testing and a detailed analysis of the
tests, changes to Perfsuite had to be made and a surrounding execution environment implemented. In

the following, the author’s tests and extensions made to Perfsuite are described in more detail.

2.2.1 Test for RFCP

This test uses the command line programme rfcp to copy files to DPM and back to the local disk.
It exists in two flavours: one takes a local file and copies it, the other, using the common template,

generates files of the desired size for copying. It runs multithreaded and reads from one local file, but
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test name | function

rfcp put and get autogenerated files
rfget get one file

rfgetmany | get different files

Table 1: The three rfcp test flavours

changes the designated file name on the server accordingly so that n files get created. For the reading
part, also two version exist: either all client threads read different files, the file names coming from the
files put on DPM in the first place, or they all read the same file. The latter reproduces the effect of
a file being used by many analyses at the same time. Table 1 shows the test types.

To exclude the client’s disk as a limiting factor here, all output is written to /dev/null. The disk

speed can of course be a factor for the ‘put’ test and has to be considered.

Using the command line client RFCP instead of a self-written program gives the advantage of having
the same circumstances as in a production environment. Experiments use the same tool to copy files
to the computing nodes when working with RFIO. This way the test profits from the same speed ups
in newer version of rfcp as real jobs do, e.g. the ability to open multiple streams when sending a file

to saturate the network in RFIO version 3.

All these tests forward the throughput reports from rfcp to Perfsuite and comparative measurements

can be done using the timestamps that Perfsuite itself records.

2.2.2 Test for Pretend RFCP

This test uses the functionality of the DPM API to simulate creating/writing or reading files with the
RFIO protocol. The test requests a file on DPM either with the dpm_get or dpm_put command, polls
for it with dpm_getstatus, opens the file with rfio_open, but closes it immediately and signals a

successful file transfer with dpm_putdone.

This behaviour allows us to test the DPM performance with many concurrent clients simulating real-
world file access patterns, while putting almost no load on the clients or the DPM disk nodes. Also,

as no data is transferred, the network throughput from the client to the server remains limited.

The test has been fully instrumented with respect to the client - DPM interaction: A precise timestamp

is taken before and after executing each of the three DPM API calls and the durations of each call
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are reported as well as the timestamps themselves. Together with similar information taken from the

DPM log files, this gives a detailed view on the internal behaviour.

2.2.3 Test for Root over RFIO

This test represents partial read of a Root file on DPM. It uses the C program IOPerformerGrid
provided to me by Wahid Bhimji which I developed further to accommodate different test situations.

The program is used in a python wrapper allowing a multithreaded test just like the others.

In a test, either all events in the file are read or only a fraction of them. For specifying the read ratio,
the tester gives a fraction and the stdlib.h random function is used to decide which events should be
read. The resulting event reads are distributed uniformly over the file length. Additionally, one can

choose between reading all branches of the events or only a subset of them.

The root version used is 5.26.00 with two different files. Both are taken from the ATLAS experiment
and contain the same data but one, as indicated by the filename ‘ByEntry’ is ordered, the other file
is not. The ordering influences the file access patterns, especially the possibility of sequential reads,

which is important for the file read speed.

The output is given through the TTreePerfStats module of Root, which presents detailed information

about the overall the read duration, disk usage and the impact of the file compression among others.

2.2.4 Test for NFS

The test designated for NFS is the simplest one developed, using /bin/cp to copy files. It can be run
in Perfsuite to measure the throughput for a locally mounted file system like NFS.

The report values come from the timestamps recorded before and after the test. A short discussion

about the accuracy of these timestamps is given in the following section about changes to Perfsuite.

2.3 DPM Logging

During the test, the DPM log files are examined to give detailed information about the internals when
issuing a file request. I focussed on extracting information from the DPM daemon running on the head

node and left the log files of the DPNS.

Parsing the DPNS log files is an easy task because the DPNS serves requests only synchronously.

Tools parsing these logs exist at CERN to generate information used by the system monitoring tool
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NAGIOS [6]. These NAGIOS plugins examine the logs immediate past and report the average request
duration which triggers an alarm to the system administrator if it is above a threshold. While such

tools help the administration, the DPNS log file was of little use for these detailed system analyses.

In my tests, the DPNS was only accessed indirectly through the DPM daemon. These interactions are
documented in the DPM log, but only by mentioning the DPNS function used without a possibility
to link this specific APT call to the entry of a call in the DPNS log file. While this is a drawback in
understanding the complete interaction between the DPM and the DPNS in one request, I found out
that the DPM log itself holds a sufficient amount of detailed information for the analysis of the system.
Therefore parsing the DPM log file is an important part of the project.

2.3.1 DPM Log Parsing

Due to the asynchronous requests the DPM uses, log file parsing is not a trivial task. I developed a
script to do that with focus on ease of use, flexibility and re-use. The script contains one parsing loop,
in which the contents of the log file are grouped by request so that every entry corresponds to one file

interaction. I will explain the case for a ‘put’ request to DPM, the ‘get’ case is similar.

Every request consists of a dpm_put issued by a client and at least one dpm_putstatus command, with
which the client polls for the physical location of the file on DPM. As one dpm_putstatus command is
successful, the client engages in direct interaction with the corresponding disk server and only returns
to the head node after all modifications have finished and transmits a dpm_putdone. After the dpm_put,
which returns a 128-bit UUID to the client, the server starts a dpm_proc_put command to check if the
file exists and for sufficient rights and retrieves the file’s physical location (TURL, transfer URL). This
function calls the DPNS several times to do this, since all these information are stored in the name
server database. The file’s UUID is used in the dpm_putstatus call as reference to retrieve the right
file location. In the DPM log, all status requests are stored and they finish with return of QUEUED
if the processing method has not started yet, ACTIVE if it is running or SUCCESS if the TURL is
ready.

The challenging part for parsing is that multiple threads are involved in one request as the client
opens several connections to DPM which are each processed just by the next free thread. For sure, the
dpm_proc_put method is run in a separate thread taken from the slow threads pool. To chain them
all together, the parser has to find the file’s UUID in the first connection and then group according to
these. Additionally, it has to be taken care that no intermediate results get deleted if a thread takes

on another request, before the first file interaction has been completed.
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The parser also has to be sensible to the fact that requests can overlap: a dpm_putstatus can occur
during the internal processing of this request in a dpm_proc_put. The resulting script serializes those
requests in a way that log messages belonging to one method are always next to each other, independent
of the timestamp. This decision has the advantage that getting the duration information for one method
call is easy, but estimating the time between function calls is more difficult because the entries have
to be reordered. Fortunately, the overlapping only occurs for the dpm_putstatus call where the time
relative to other functions was of lesser interest — the time between functions calls can be measured
on the client more easily and the other functions reappear in the parsed log in the same order as they

have been executed on the server.

It is notable that the script stores all log messages for one interaction through the assumption that
all output coming one specific DPM thread must belong to the same function if the function has not
ended with a return signal. This is possible, because all DPM methods log their return value in a log

line containing the string “returns”. Also, functions which are not used for later analysis are kept.

This is made necessary by a change to DPM to issue a log message as soon as an incoming client request
is allocated to a thread. The message gives us information about the duration of the authentication
process, as a thread accepts a request, then runs the authentication and then starts the desired function.
By comparing the timestamp of the acceptance to the first timestamp of the function executed, an

estimate of the time spent for authentication can be made.

2.3.2 The Parsing Script Usage

The script is written in Python, reads the DPM log file from standard input and prints its results to

standard output as shown below.

cat dpm-log-file.txt | ./a_dpm_parse_log.py -r put > dpm_out.csv

It uses, as mentioned before, one loop in the main method to aggregate results in a dictionary.
These results are then given to an analysis function, which calculates the durations of the dpm_put,
dpm_putdone, dpm_putdone and putstatus functions as well as the durations between the executions
of the first three. The script is able to handle multiple status requests, as it might be necessary if the
processing takes too long. The output file consists of comma-separated values with the header files

stored in the last row.

In future versions of DPM, the log file format might change. Even now in the to-be-released version

1.8.2 it is possible to choose between the internal DPM logging mechanism logit and using the syslog
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daemon. Different substitutes for the syslogd like rsyslogd or syslog-ng bring more format with it.
During my tests, for example, I used rsyslogd to benefit from higher resolution timestamps than
provided by DPM’s logit. The parsing script is adaptable to changing formats as it relies on regular
expressions to parse the lines. As long as the information needed, e.g. the DPM process and thread
number, the file UUIDs, etc., is still in the logs, changing these regular expression is sufficient to adapt

the script to a new format.

With multiple purposes in mind the script has been written so that the analysis method can be easily
exchanged or rewritten with another focus. By changing the behaviour of the parsing algorithm so
that complete server-client interactions are not stored, but immediately printed out, the script could
be used for streaming parsing of DPM logs, with the analysis part moved to another stage of the
pipeline. It has, however, to be shown that the amount of data from the logs is not too heavy for a

streaming application.

2.3.3 DPM Logging Conclusion

As mentioned before, the DPM log file provides an investigator with all information needed for a
detailed profiling of the head node itself. It records the beginning and the end of each function, as with
a change to DPM, which might be incorporated in future versions, the start of the authentication as

well. Therefore, the log file parsing has been the only development necessary to receive this information.

The script itself can be used on an analysis computer with a partial log file, but, as mentioned, can
also be changed for use on the DPM head node to provide real-time information. The direction, which
is likely to be pursued at CERN is the conversion into a NAGIOS monitoring probe. A future change
in DPM might include using unique identifiers for the function calls from DPM to the name server to

create a full overview over the methods and their durations or failures during one client access.

10
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3 DPM Testing and Analysis Setup

After the last chapter introduced the software developed for DPM testing, this part reports the test
setup with hard- and software used, the test execution and then discusses their results. The test
discussion focuses on one DPM parameter which has been investigated thoroughly and whose test
results influence the future development of DPM. For the other tests I provide data which shows their

correct behaviour and the success to run Perfsuite in a distributed testing environment.

3.1 DPM Setup

The DPM head node runs the DPM and the DPNS daemon in version 1.8.2 from the development
repository of DPM. The disk nodes still run the 1.8.0 versions of the file transfer protocol plugins,
which are compatible with the new head node. The DPNS runs, as not to be the bottleneck of the
tests, with the maximum of 99 threads, while DPM runs with the 20/20 configuration for fast and

slow threads.

Both daemons are placed on the same machine and one disk server is attached to the setup using a
single file system for DPM. Another disk server is still attached to the test bed, but is configured as
read-only, so it does not affect further tests. DPM then effectively uses one pool with one file system

on one disk node.

The computers for the head node and disk node are from the Ixfsra test bed setup for DPM performance

tests, which will be described shortly, as we also used these machines as clients.

3.2 Client Setup

For the test with multiple clients we had different possibilities where to take the client from with
advantages and drawbacks. All configurations were expected to allow certain conclusions about the
DPM server and also about preferred configurations for future tests. There were three different con-
figurations available: the lxfsra test bed using the servers on which DPM is installed, 20 dedicated

virtual machines and CERN’s Ixplus machines.

The Ixplus environment consists of 75 machines, of which 28 systems have 8 cores and 47 systems have
16 cores. It enables us to run up to 976 instances of every test, if we follow the guideline that only one
instance per core is allowed. This is especially sensitive to do as the Ixplus machines are not dedicated
and a high CPU load is expected on these servers during the tests, which is also why we cannot use

this test configuration for client side measurements.

11
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Instead, we use this test bed to put pressure on the DPM, as the advantage is to have a large networking
infrastructure at our disposal. So this test bed is useful to run actual copy tests to see whether the

dedicated disk node suffers from too many connections or can keep up the throughput.

Because the Ixplus machines are shared resources, there are problems accessing them. Some machines
did not run the tests at all, others failed during the tests due to other users taking up the resources.
Tests run on these machines are probably not reproducible in detail, but give an indication whether
the load induced by physical machines with dedicated network connections is different from the other

test beds.

The dmstestvm, in contrast, consists of 20 dedicated virtual machines with one core each, running on
two hypervisors. The v hypervisors are kept private to assure that no other vim could be deployed on
them during the time of testing. Each hypervisor has access to a 10 GBps network link, which allows

us to compare the results with other test setups with 1 GBps each.

The third configuration runs on the same machines as the DPM head and disk node: three former disk
nodes are disconnected from the pool and used as client machines. This has the advantage that the
client is as powerful as the server and that they are located in the same computing cabinet, therefore

having a direct network connection with little unrelated traffic.

All test bed computers are running Scientific Linux 5.5 [7] and tools are taken out of the standard
repository. The programs installed, besides the DPM client libraries, are Python 2.6, tcpdump and
iperf for initial network speed measurements. A more detailed description of the client hardware can

be found in the Appendix 2.

3.3 Distributed Execution

Perfsuite is built to be invoked directly on the command line. When using it on multiple machines at
the same time, invoking tests manually is not feasible, so I used wassh, an ssh client for simultaneous

command execution on multiple clients and the UNIX tool at to time the start of a test run.

Also, Perfsuite’s features of launching several tests one after another cannot be used as it can not be
guaranteed that the second and third test start at the same times on all Perfsuite clients. Now, every

test is started separately.

For the tests, the Perfsuite installation resides on my AFS home directory, which is accessible from
every client used. This directory is copied to the working directory in /tmp, where the results are also

written. So in the script managing a test run, I first make sure that all required directories exist, copy

12
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Perfsuite, run it with the desired parameters and then collect the results from all clients with another

script.

The program wassh is developed at CERN for internal use. It takes a list of host names or a file
listing host names as an argument and executes the command given as second argument on all of
them. With this, it functions as a couple of ssh commands executed in a for-loop with the advantage
of concurrent connections. An advantage of wassh is that it prints the standard output of the remote
command together with the host name, which makes collecting and parsing the Perfsuite results later
simple. It also gives meaningful information about unresponsive hosts and executes correctly for all

other machines.

The execution of Perfsuite on the client is managed through another script residing in AFS which
launches Perfsuite with the desired configuration file and redirects its status output to a file in the
client working directory. The execution of this script, however, is managed by at. This UNIX program
launches its argument at a given time and by specifying a time in the near future I can be sure that
all clients start the test at almost the exact same time. The clock differences on the machines used

should be minimal as they all adjust their time to the same NTP server.

Using at introduces new problems to running Perfsuite: the command is no longer executed in a shell.
Firstly, it makes it impossible to access my AFS home directory, which is the main reason to switch to
a working directory in /tmp and secondly, shell variables and sourced files set are not valid. Especially
sourcing files is problematic, as each Perfsuite test is executed in its own shell environment. Usually
the tests inherit the shell environment from the shell Perfsuite is running in, but since Perfsuite is

executed in a new environment through at, this is no longer possible.

The solution is found in wrapping every test in a shell script that sets the environment variables and
then executes its parameters. This keeps changes to Perfsuite to a minimum (calling the script instead
of the test directly) and also provides the possibility to print timestamps before and after the test’s

execution which is discussed in the following section.

Another difficulty in running Perfsuite on various machines is that they mostly do not have the required
software installed. Python 2.6, a prerequisite for Perfsuite, is installed on all machines, but the DPM
client and Root libraries are not. Since I do not have the rights to install software on these machines,

the Root libraries are sourced from AFS.

Due to this, the tests allow to define the executable to run, making the deployment of these files
together with Perfsuite easier. Also, the source includes paths that can be changed in the single

wrapper script.

13
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Retrieving the results from the Perfsuite instances is a straightforward process: wassh reads the result
files from each test and prints it to standard output. Because it adds the host name to each output,

the result file on the controlling host can easily be parsed to obtain results grouped by host name.

The following section deals with the way Perfsuite opens the tests and its implications on timestamps
used for measurements. In Perfsuite, timestamps are collected in the main programme before and after
test execution and give another way to, for example, calculate the throughput. Here, accuracy is of

importance.

14
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Figure 1: The duration of creating a zero-length file on DPM. The colours differentiate the clients.

4 DPM Performance Analysis

Using the Ixfsra test bed and the test Pretend RFCP, an analysis of DPM behaviour when many
clients create files on the DPM has been performed. The test setup is as follows: three Ixfsra clients
run Perfsuite with the test which starts 25 threads on each machine to open 25 connections to DPM

simultaneously.

Our expectation, given that 75 simultaneous requests are reasonable for a file server and that the file is
only opened and then immediately closed, is that the requests finish very fast. They will not complete
at the same time, because the DPM daemon only uses 20 threads per type, but creating an empty file

should be quick.

We can see, however, that from the client’s point of view, the file creation process, from the beginning
of the dpm_put to the end of the dpm_putdone takes a notable long time, up to 20 seconds, as can be

seen in Figure 1.

The duration values are grouped by the client machine and we can see that none of them is penalised
against the others. The Figure shows the duration the interaction takes on the y-axis corresponding
to the start time on the client. In this plot we see that the test does not start at the same time for
all threads, but within a reasonable time frame of 250 ms. We also see that the duration increases the
later the interaction starts, and it increases in discrete steps. The increase over time suggests a buffer

filling up, which is investigated further.

15
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Figure 2: Measurements for the dpm put on the client and server side. The functions start at the
same time on the client, but with a delay on the server. This delay corresponds to the added duration
as measured on the client side. Because of large differences in the duration as well as the starting time,

both axes use a logarithmic scale.

If we inspect the server logs, we can see that the functions do not take enough time to explain the
delay on the client. We see that there is a significant difference between the perceived execution time
of the dpm_put and that the server is contacted with a delay after the client starts the request. This
is shown in Figure 2 with the start of the function on the server side in green and on the client side
in red. The Figure displays that all requests star on the client at approx. the same time, but start
later on the server. We can also see the differences in the duration on the y-axis. To better distinguish

between the times measured on the server, the y-axis is shown on a logarithmic scale.

4.1 Increasing the Socket Queue Length

Recording all exchanged packets between server and client shows the connection establishment where
we can see that a client needs more than one SYN request to open a connection in about half the
cases. A SYN retry is necessary when the server does not respond to the client’s request, i.e., the
server does not accept the connection, nor denies it. This is the case when the socket queue, which
holds connection attempts until they are accepted by the program listening on the server, is full:
further attempts to connect to the socket are silently discarded. The results are retries from the clients

which follow the regulations given by the specific operating system. Running Scientific Linux, the

16
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Figure 3: File access durations with a socket queue length of 5 vs a queue length of 128. (a) shows that
the duration of a file create request is much shorter, largely contributed to a faster perceived executing

time of the dpm_put as shown in (b).

retries for SYN packets are limited to 5 retries corresponding to a waiting time of about 180 seconds,
while the waiting time increases with each retry. The value for the number of retries can be seen and

adjusted in /proc/sys/net/ipv4/tcp_syn_retries.

The DPM source shows that the listening socket is initialised with a queue length of five, which could
explain this behaviour. As the connections cannot be accepted as fast as they appear, the queue fills
up and further connection attempts are discarded. After a waiting period, the queue is free with a

high probability and the connection is accepted.

In a test with a larger socket queue of 128 places, the maximum possible value for systems running
Scientific Linux, we obtain the results as shown in Figure 3a. The duration of all interactions is lower
with the larger socket queue and in particular, the duration of the dpm_put method as perceived by

the client, has plummeted (see Figure 3b).

However, the DPM log files show that in the case of the large socket queue, the processing time, in the
dpm_proc_put function has increased in average from 1.2 seconds to about 1.8 seconds, lessening the
speedup gained. This can be accounted to the fact that now, as all requests can be accepted almost
immediately, the server makes more use of its resources. The log files for the case with a short buffer
queue show that although all threads are used, there are waiting periods on the server induced by the

second-long waits on the client side. An analysis reveals an idle time during the test with a socket
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Figure 4: These plots compare the large socket queue length to the old value for higher load, i.e., more
simultaneous requests. The number of clients remains three, but the number of requests started per

client increases to 50 in (a) and to 100 in (b).

queue of length five, while the larger socket queue reduces the idle time per thread, thereby reducing

the overall time for all requests.

At this point we can say that the short queue length seems to act as a gatekeeper to the DPM head
node. If requests cannot be handled immediately, there is almost no space to queue on the server and
the client begins a minimal two seconds waiting period. On the one hand, this eases the load on the

server as requests coming in bulks are stretched out and the DPM daemon is not overloaded.

On the other hand, this load limiting mechanism might be too strict on DPM. As we have seen with a
larger buffer queue, DPM seems to handle many more simultaneous requests with only a slight increase

in the duration of the computations than allowed in the standard configuration.

The next step in the analysis is to see whether the new solution also works faster on a higher loaded
server. Figure 4 shows two plots with the test repeated with 150 and 300 concurrent requests; these
are 50 and 100 requests per client respectively. Both graphs compare the durations between a queue

length of 5 and 128.

The long durations for the requests to succeed indicates that the DPM server is under heavy load. While
Figure 4a gives a similar picture as the test with 75 requests for the durations, Figure 4b is different:
this might partly be due to the fact, that the requests are spread over several seconds, or, which we

do not see in the graph, that 50 requests fail with the error message Connection reset by peer in
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the test with the short buffer queue.

Thus we can say that the DPM configured with the larger socket queue is performing better than with
a small one, either responding faster to requests or succeeding to process more during the same time
frame. How bad a request failure is in a production environment is not straightforward, as application
software will have their own retry mechanisms built-in, which might resubmit requests we have seen

failing.

For our analysis, it is notable that the durations for a request rise as the DPM is exposed to a higher
load. A profiling of the functions on DPM shows that the major hold-up for processing is a waiting
period before the dpm_proc_put method. As seen in Figure 5, the waiting time before a request is
assigned to a slow thread on DPM for processing the request, is much longer using a large socket
queue. This can be explained given the information we extracted earlier that the DPM accepts more
request in a time frame. As we only have 20 slow threads for 75 requests available, the requests have to
queue internally for up to two durations that it takes DPM to process a request in the dpm_proc_put

method.

Through this, we see the importance of the partitioning of fast and slow threads in combination with
the short socket queue. Requests can be accepted very fast by the dpm_put function in a fast thread
which can immediately serve the next request and thus the socket queue is growing relatively slowly.
The DPM load is better represented by the number of requests queued in the DPM database waiting

for a slow thread than by the socket queue size.
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Figure 6: DPM with 75 concurrent requests in two configurations: with 20 slow threads and 70. (a)

shows the DPM view and (b) the client view for the duration.

In Figure 5 we also see that the dpm_proc_put takes longer in average for the large socket queue. This
might be due to the better utilisation of the server’s resources, inducing a higher computational load

and more concurrent accesses to the DPNS.

4.2 Adjusting the Number of Threads

These results suggest that DPM would perform better with a higher number of slow threads, as more
requests queued internally could be served at the same time. A comparison between 20 slow threads
and a new configuration with 70 slow threads, almost reaching the maximum of 100 with 20+70
threads is shown in Figure 6. The Figures display the results for 75 concurrent requests to DPM. In
Figure 6a we see that the waiting time for the dpm_proc_put, an available slow thread, has decreased.
This is expected as 70 out of 75 requests are assigned a thread immediately. On the other hand, the
processing time of the dpm_proc_put has increased and the overall speedup is minimal, as can be seen

in Figure 6b which displays the client view.

The long duration for the dpm_proc_put methods can be explained by DPM’s behaviour when creating
files. The dpm_proc_put method contacts the DPNS to check whether the file can be created and to
create the necessary entries in the database. For this, also the database entry of the parent directory
must be updated as it contains a counter for the number of files in it. With a new file being created,
this counter is updated. Also, during these requests, it must be assured that the directory is not

deleted, so a lock is set on the directory entry.
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Many concurrent file create requests in the same directory lead to the effect that the creatx call issued
in dpm_proc_put to the DPNS creating the file takes several seconds to complete due to the lock on
the directory. Changing this behaviour would imply changes to the DPNS and to the name server
database, which why we do not follow that path any further.

Instead, inspecting the speedup of our changes to DPM in a case where this limitation does not apply,
we can see that te duration of the spm_proc_put method is reduced from 3.5 seconds to under 1
second. A reduction in processing time is measurable both for a DPM configuration with 20 as for one
with 70 slow threads. In this scenario, the increase of slow threads has very little effect on the overall

duration, as the function takes much less time as if it had to wait for the directory database entry.

21



.~ } oA
i 5 CONCLUSION

5 Conclusion

Overall, we can look at three possible optimisations. The first is setting the queue of the listening
socket to a higher value and involves a change in the DPM source code. The second is adjusting the
number of threads to a suitable value and is already common practise. The third method involves the
client behaviour: if we see the DPNS part as a black box at the moment, the only way to avoid the
directory lock when creating many files in one directory is to use several directories, if a large number
of files is involved. We discuss all three methods shortly with some remarks about the performance

gain from these measures.

In our test situation with bursty requests, increasing the queue length has proven to be beneficial to
the overall duration of client-server interaction. We have seen that the short queue leads to connection
retries on the client side, which render the interactions longer as necessary, given the resources of DPM.

Here, extending the DPM socket queue length leads to a better utilisation of the server.

Of course it has to be noted that increasing the queue length does not help if DPM is under continuous
heavy load. If that is the case, the functions processing the request itself must be faster, otherwise
even the largest queue fills up at some time. Here action is undertaken by the developers creating a
synchronous method for ‘getting’ and ‘putting’ files, which needs less internal communication. However,

a larger queue length helps the server to cope with short bursts of requests.

The case for the socket queue is especially interesting in the context of a synchronous put method
where DPM only uses one kind of threads which handle the whole request. Then, the internal queue
would no longer exist and, in the case of all threads being in use, new requests would queue at the

socket. A short value there could lead to more connection failures on a highly loaded DPM.

When increasing the number of threads I could see that for file put requests, the number of fast
threads seems to play a minor role, while the number of slow threads should be higher. Bearing in
mind the limitation of the total number of DPM threads it might make sense to use an asymmetric
configuration of threads. Other workloads where the slow threads are not involved, should be tested
thoroughly to see if these suffer from such a configuration. Also, the asymmetrical configuration only
gives a significant speedup if the function computed in the slow threads takes sufficiently long. This
is in the case for creating files in one directory, but not for different ones.

As for the third point, application developers working with DPM might wish to check if their pro-
grammes do create files this way and might be interested in testing them with multiple target directo-
ries. Relaxing the lock on the parent directory while creating a file can easily introduce inconsistencies

and might involve changes to the DPNS database.
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Test Bed machines | Processor Cores | RAM / GByte | Network Link / Mbps
Ixfsra 3 15520 2.27 GHz | 4 12 1000
15 E5410 2.33 GHz | 8 16 1000
Ixplus 13 L5420 2.5 GHz 8 16 1000
47 L5520 2.27 GHz | 16 48 1000
dmstestvm | 2 2.27 GHz 8 24 10000

Table 2: Hardware Description of the test beds used. Note that 10 virtual machines run on one server

in the dmstestvm test bed and they have a 10 Gbps network link. The exact processor type of these

machines is not known to me. All processors used are Intel Xeon x86.
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