
Performan
eMeasurement andAnalysis of theGrid StorageManager DPM
Author: Martin Hellmi
h

CERN openlab

12/08/2011

CONTENTS

Contents

1 Introdu
tion 4

2 Implementation 5

2.1 Perfsuite . 5

2.2 Extensions to Perfsuite . 5

2.2.1 Test for RFCP . 5

2.2.2 Test for Pretend RFCP . 6

2.2.3 Test for Root over RFIO . 7

2.2.4 Test for NFS . 7

2.3 DPM Logging . 7

2.3.1 DPM Log Parsing . 8

2.3.2 The Parsing S
ript Usage . 9

2.3.3 DPM Logging Con
lusion . 10

3 DPM Testing and Analysis Setup 11

3.1 DPM Setup . 11

3.2 Client Setup . 11

3.3 Distributed Exe
ution . 12

4 DPM Performan
e Analysis 15

4.1 In
reasing the So
ket Queue Length . 16

4.2 Adjusting the Number of Threads . 20

5 Con
lusion 22

2

CONTENTS

Abstra
t

The grid storage manager DPM is used su

essfully at many Tier 2 sites in

the WLCG. With Taiwan as the �rst Tier 1 deploying DPM, the performan
e

requirements are in
reasing.

This proje
ts extends the performan
e measurement suite Perfsuite [1℄ and

implements tools for a performan
e analysis of DPM. The resulting under-

standing of DPM from this proje
t assists the developers for further improve-

ments of DPM and also provides ideas and tools for DPM performan
e mea-

surement. All software is available through the developer repository and most

tests have been in
luded in the latest Perfsuite release.

3

1 INTRODUCTION

1 Introdu
tion

CERN [2℄ is
ertainly most-known for running Large Hadron Collider (LHC), the worlds largest parti
le

a

elerator. Through it, the most pressing questions in parti
le physi
s, su
h as the existen
e of the

Higgs boson or the behaviour of anti-matter, should be answered. For this, very sensitive dete
tors

related to the six experiments on the LHC, re
ord the parti
le
ollisions.

These
ollisions, o

urring at a very high rate, produ
e an enormous amount of data, whi
h has to be

saved and later analysed. The ATLAS experiment [3℄ alone has a data rate of more than 18 GByte

per minute.

All data is �rst
olle
ted at CERN, but for the long time ar
hiving and the analysis of the data

by physi
ists in institutions world-wide, the World Wide LHC Computing Grid (WLCG) has been

established. This two tier
omputing grid provides about 200,000 pro
essors on more than 140 sites

around the globe [4℄.

Another matter beside
omputing on the grid is storage. Storage solutions must be able to allow

high-performan
e a

ess to large amounts of data, both for sequential and random a

ess. They also

must provide various transfer methods to suit the needs of the resear
hers from di�erent institutes and

LHC experiments.

DPM [5℄ is a storage solution mainly used at Tier 2 sites as it is s
alable and well performing, yet easy

to administer. Also Tier 1 sites need tape management for long term ar
hival, whi
h DPM does not

support. However, DPM
an be a interesting solution if Tier 1
entres distinguish between ar
hiving

and live �le a

ess and employ two spe
ialised systems.

This proje
t aims at understanding the DPM ar
hite
ture through analysis and performan
e measure-

ment. It builds on the performan
e measurement suite Perfsuite [1℄ and uses di�erent measurement

environments. During the proje
t, performan
e fa
tors of DPM
ould be dis
overed whi
h help eval-

uating future DPM developments.

4

2 IMPLEMENTATION

2 Implementation

This
hapter
overs the des
ription of the implementation of the tools ne
essary for the performan
e

measurements taken during the proje
t. It is separated in two parts: the �rst introdu
es Perfsuite, a

performan
e measurement suite used for the development, the se
ond the implementation of tests and

other tools. The next setion then des
ribes the setup of the testing environment and a des
ription of

how the tests were
ondu
ted.

2.1 Perfsuite

The DPM performan
e testing suite has been developed at the IT-GT-DMS group at CERN by

Alexandre Be
he and the author has
ontributed to its
urrent version 0.2.0. It is available online [1℄

with support.

Perfsuite is a framework to run test
ases, whi
h
an be written in any language and have arbitrary

fun
tionality, but have to provide their output in a spe
i�
 format. The tests are then invoked through

a
entral
on�guration �le, whi
h allows tests to be repeated and run with di�erent
ommand line

arguments.

Current tests written for �le transfer measurements in
lude one part for `putting' �les to the DPM

storage and one for `getting'. Most of them
reate random �les for the tests, but the developed tests

here alternatively use �les spe
i�ed in the Perfsuite
on�guration �le.

2.2 Extensions to Perfsuite

Perfsuite as it is shows to be a very good tool to run multithreaded �le transfer tests with throughput

results from a single
lient. The plugin stru
ture for tests and espe
ially the
ommon template makes

it very easy to develop and deploy your tests. For distributed testing and a detailed analysis of the

tests,
hanges to Perfsuite had to be made and a surrounding exe
ution environment implemented. In

the following, the author's tests and extensions made to Perfsuite are des
ribed in more detail.

2.2.1 Test for RFCP

This test uses the
ommand line programme rf
p to
opy �les to DPM and ba
k to the lo
al disk.

It exists in two �avours: one takes a lo
al �le and
opies it, the other, using the
ommon template,

generates �les of the desired size for
opying. It runs multithreaded and reads from one lo
al �le, but

5

2 IMPLEMENTATION

test name fun
tion

rf
p put and get autogenerated �les

rfget get one �le

rfgetmany get di�erent �les

Table 1: The three rf
p test �avours

hanges the designated �le name on the server a

ordingly so that n �les get
reated. For the reading

part, also two version exist: either all
lient threads read di�erent �les, the �le names
oming from the

�les put on DPM in the �rst pla
e, or they all read the same �le. The latter reprodu
es the e�e
t of

a �le being used by many analyses at the same time. Table 1 shows the test types.

To ex
lude the
lient's disk as a limiting fa
tor here, all output is written to /dev/null. The disk

speed
an of
ourse be a fa
tor for the `put' test and has to be
onsidered.

Using the
ommand line
lient RFCP instead of a self-written program gives the advantage of having

the same
ir
umstan
es as in a produ
tion environment. Experiments use the same tool to
opy �les

to the
omputing nodes when working with RFIO. This way the test pro�ts from the same speed ups

in newer version of rf
p as real jobs do, e.g. the ability to open multiple streams when sending a �le

to saturate the network in RFIO version 3.

All these tests forward the throughput reports from rf
p to Perfsuite and
omparative measurements

an be done using the timestamps that Perfsuite itself re
ords.

2.2.2 Test for Pretend RFCP

This test uses the fun
tionality of the DPM API to simulate
reating/writing or reading �les with the

RFIO proto
ol. The test requests a �le on DPM either with the dpm_get or dpm_put
ommand, polls

for it with dpm_getstatus, opens the �le with rfio_open, but
loses it immediately and signals a

su

essful �le transfer with dpm_putdone.

This behaviour allows us to test the DPM performan
e with many
on
urrent
lients simulating real-

world �le a

ess patterns, while putting almost no load on the
lients or the DPM disk nodes. Also,

as no data is transferred, the network throughput from the
lient to the server remains limited.

The test has been fully instrumented with respe
t to the
lient - DPM intera
tion: A pre
ise timestamp

is taken before and after exe
uting ea
h of the three DPM API
alls and the durations of ea
h
all

6

2 IMPLEMENTATION

are reported as well as the timestamps themselves. Together with similar information taken from the

DPM log �les, this gives a detailed view on the internal behaviour.

2.2.3 Test for Root over RFIO

This test represents partial read of a Root �le on DPM. It uses the C program IOPerformerGrid

provided to me by Wahid Bhimji whi
h I developed further to a

ommodate di�erent test situations.

The program is used in a python wrapper allowing a multithreaded test just like the others.

In a test, either all events in the �le are read or only a fra
tion of them. For spe
ifying the read ratio,

the tester gives a fra
tion and the stdlib.h random fun
tion is used to de
ide whi
h events should be

read. The resulting event reads are distributed uniformly over the �le length. Additionally, one
an

hoose between reading all bran
hes of the events or only a subset of them.

The root version used is 5.26.00 with two di�erent �les. Both are taken from the ATLAS experiment

and
ontain the same data but one, as indi
ated by the �lename `ByEntry' is ordered, the other �le

is not. The ordering in�uen
es the �le a

ess patterns, espe
ially the possibility of sequential reads,

whi
h is important for the �le read speed.

The output is given through the TTreePerfStats module of Root, whi
h presents detailed information

about the overall the read duration, disk usage and the impa
t of the �le
ompression among others.

2.2.4 Test for NFS

The test designated for NFS is the simplest one developed, using /bin/
p to
opy �les. It
an be run

in Perfsuite to measure the throughput for a lo
ally mounted �le system like NFS.

The report values
ome from the timestamps re
orded before and after the test. A short dis
ussion

about the a

ura
y of these timestamps is given in the following se
tion about
hanges to Perfsuite.

2.3 DPM Logging

During the test, the DPM log �les are examined to give detailed information about the internals when

issuing a �le request. I fo
ussed on extra
ting information from the DPM daemon running on the head

node and left the log �les of the DPNS.

Parsing the DPNS log �les is an easy task be
ause the DPNS serves requests only syn
hronously.

Tools parsing these logs exist at CERN to generate information used by the system monitoring tool

7

2 IMPLEMENTATION

NAGIOS [6℄. These NAGIOS plugins examine the logs immediate past and report the average request

duration whi
h triggers an alarm to the system administrator if it is above a threshold. While su
h

tools help the administration, the DPNS log �le was of little use for these detailed system analyses.

In my tests, the DPNS was only a

essed indire
tly through the DPM daemon. These intera
tions are

do
umented in the DPM log, but only by mentioning the DPNS fun
tion used without a possibility

to link this spe
i�
 API
all to the entry of a
all in the DPNS log �le. While this is a drawba
k in

understanding the
omplete intera
tion between the DPM and the DPNS in one request, I found out

that the DPM log itself holds a su�
ient amount of detailed information for the analysis of the system.

Therefore parsing the DPM log �le is an important part of the proje
t.

2.3.1 DPM Log Parsing

Due to the asyn
hronous requests the DPM uses, log �le parsing is not a trivial task. I developed a

s
ript to do that with fo
us on ease of use, �exibility and re-use. The s
ript
ontains one parsing loop,

in whi
h the
ontents of the log �le are grouped by request so that every entry
orresponds to one �le

intera
tion. I will explain the
ase for a `put' request to DPM, the `get'
ase is similar.

Every request
onsists of a dpm_put issued by a
lient and at least one dpm_putstatus
ommand, with

whi
h the
lient polls for the physi
al lo
ation of the �le on DPM. As one dpm_putstatus
ommand is

su

essful, the
lient engages in dire
t intera
tion with the
orresponding disk server and only returns

to the head node after all modi�
ations have �nished and transmits a dpm_putdone. After the dpm_put,

whi
h returns a 128-bit UUID to the
lient, the server starts a dpm_pro
_put
ommand to
he
k if the

�le exists and for su�
ient rights and retrieves the �le's physi
al lo
ation (TURL, transfer URL). This

fun
tion
alls the DPNS several times to do this, sin
e all these information are stored in the name

server database. The �le's UUID is used in the dpm_putstatus
all as referen
e to retrieve the right

�le lo
ation. In the DPM log, all status requests are stored and they �nish with return of QUEUED

if the pro
essing method has not started yet, ACTIVE if it is running or SUCCESS if the TURL is

ready.

The
hallenging part for parsing is that multiple threads are involved in one request as the
lient

opens several
onne
tions to DPM whi
h are ea
h pro
essed just by the next free thread. For sure, the

dpm_pro
_put method is run in a separate thread taken from the slow threads pool. To
hain them

all together, the parser has to �nd the �le's UUID in the �rst
onne
tion and then group a

ording to

these. Additionally, it has to be taken
are that no intermediate results get deleted if a thread takes

on another request, before the �rst �le intera
tion has been
ompleted.

8

2 IMPLEMENTATION

The parser also has to be sensible to the fa
t that requests
an overlap: a dpm_putstatus
an o

ur

during the internal pro
essing of this request in a dpm_pro
_put. The resulting s
ript serializes those

requests in a way that log messages belonging to one method are always next to ea
h other, independent

of the timestamp. This de
ision has the advantage that getting the duration information for one method

all is easy, but estimating the time between fun
tion
alls is more di�
ult be
ause the entries have

to be reordered. Fortunately, the overlapping only o

urs for the dpm_putstatus
all where the time

relative to other fun
tions was of lesser interest � the time between fun
tions
alls
an be measured

on the
lient more easily and the other fun
tions reappear in the parsed log in the same order as they

have been exe
uted on the server.

It is notable that the s
ript stores all log messages for one intera
tion through the assumption that

all output
oming one spe
i�
 DPM thread must belong to the same fun
tion if the fun
tion has not

ended with a return signal. This is possible, be
ause all DPM methods log their return value in a log

line
ontaining the string �returns�. Also, fun
tions whi
h are not used for later analysis are kept.

This is made ne
essary by a
hange to DPM to issue a log message as soon as an in
oming
lient request

is allo
ated to a thread. The message gives us information about the duration of the authenti
ation

pro
ess, as a thread a

epts a request, then runs the authenti
ation and then starts the desired fun
tion.

By
omparing the timestamp of the a

eptan
e to the �rst timestamp of the fun
tion exe
uted, an

estimate of the time spent for authenti
ation
an be made.

2.3.2 The Parsing S
ript Usage

The s
ript is written in Python, reads the DPM log �le from standard input and prints its results to

standard output as shown below.

at dpm-log-file.txt | ./a_dpm_parse_log.py -r put > dpm_out.
sv

It uses, as mentioned before, one loop in the main method to aggregate results in a di
tionary.

These results are then given to an analysis fun
tion, whi
h
al
ulates the durations of the dpm_put,

dpm_putdone, dpm_putdone and putstatus fun
tions as well as the durations between the exe
utions

of the �rst three. The s
ript is able to handle multiple status requests, as it might be ne
essary if the

pro
essing takes too long. The output �le
onsists of
omma-separated values with the header �les

stored in the last row.

In future versions of DPM, the log �le format might
hange. Even now in the to-be-released version

1.8.2 it is possible to
hoose between the internal DPM logging me
hanism logit and using the syslog

9

2 IMPLEMENTATION

daemon. Di�erent substitutes for the syslogd like rsyslogd or syslog-ng bring more format with it.

During my tests, for example, I used rsyslogd to bene�t from higher resolution timestamps than

provided by DPM's logit. The parsing s
ript is adaptable to
hanging formats as it relies on regular

expressions to parse the lines. As long as the information needed, e.g. the DPM pro
ess and thread

number, the �le UUIDs, et
., is still in the logs,
hanging these regular expression is su�
ient to adapt

the s
ript to a new format.

With multiple purposes in mind the s
ript has been written so that the analysis method
an be easily

ex
hanged or rewritten with another fo
us. By
hanging the behaviour of the parsing algorithm so

that
omplete server-
lient intera
tions are not stored, but immediately printed out, the s
ript
ould

be used for streaming parsing of DPM logs, with the analysis part moved to another stage of the

pipeline. It has, however, to be shown that the amount of data from the logs is not too heavy for a

streaming appli
ation.

2.3.3 DPM Logging Con
lusion

As mentioned before, the DPM log �le provides an investigator with all information needed for a

detailed pro�ling of the head node itself. It re
ords the beginning and the end of ea
h fun
tion, as with

a
hange to DPM, whi
h might be in
orporated in future versions, the start of the authenti
ation as

well. Therefore, the log �le parsing has been the only development ne
essary to re
eive this information.

The s
ript itself
an be used on an analysis
omputer with a partial log �le, but, as mentioned,
an

also be
hanged for use on the DPM head node to provide real-time information. The dire
tion, whi
h

is likely to be pursued at CERN is the
onversion into a NAGIOS monitoring probe. A future
hange

in DPM might in
lude using unique identi�ers for the fun
tion
alls from DPM to the name server to

reate a full overview over the methods and their durations or failures during one
lient a

ess.

10

3 DPM TESTING AND ANALYSIS SETUP

3 DPM Testing and Analysis Setup

After the last
hapter introdu
ed the software developed for DPM testing, this part reports the test

setup with hard- and software used, the test exe
ution and then dis
usses their results. The test

dis
ussion fo
uses on one DPM parameter whi
h has been investigated thoroughly and whose test

results in�uen
e the future development of DPM. For the other tests I provide data whi
h shows their

orre
t behaviour and the su

ess to run Perfsuite in a distributed testing environment.

3.1 DPM Setup

The DPM head node runs the DPM and the DPNS daemon in version 1.8.2 from the development

repository of DPM. The disk nodes still run the 1.8.0 versions of the �le transfer proto
ol plugins,

whi
h are
ompatible with the new head node. The DPNS runs, as not to be the bottlene
k of the

tests, with the maximum of 99 threads, while DPM runs with the 20/20
on�guration for fast and

slow threads.

Both daemons are pla
ed on the same ma
hine and one disk server is atta
hed to the setup using a

single �le system for DPM. Another disk server is still atta
hed to the test bed, but is
on�gured as

read-only, so it does not a�e
t further tests. DPM then e�e
tively uses one pool with one �le system

on one disk node.

The
omputers for the head node and disk node are from the lxfsra test bed setup for DPM performan
e

tests, whi
h will be des
ribed shortly, as we also used these ma
hines as
lients.

3.2 Client Setup

For the test with multiple
lients we had di�erent possibilities where to take the
lient from with

advantages and drawba
ks. All
on�gurations were expe
ted to allow
ertain
on
lusions about the

DPM server and also about preferred
on�gurations for future tests. There were three di�erent
on-

�gurations available: the lxfsra test bed using the servers on whi
h DPM is installed, 20 dedi
ated

virtual ma
hines and CERN's lxplus ma
hines.

The lxplus environment
onsists of 75 ma
hines, of whi
h 28 systems have 8
ores and 47 systems have

16
ores. It enables us to run up to 976 instan
es of every test, if we follow the guideline that only one

instan
e per
ore is allowed. This is espe
ially sensitive to do as the lxplus ma
hines are not dedi
ated

and a high CPU load is expe
ted on these servers during the tests, whi
h is also why we
annot use

this test
on�guration for
lient side measurements.

11

3 DPM TESTING AND ANALYSIS SETUP

Instead, we use this test bed to put pressure on the DPM, as the advantage is to have a large networking

infrastru
ture at our disposal. So this test bed is useful to run a
tual
opy tests to see whether the

dedi
ated disk node su�ers from too many
onne
tions or
an keep up the throughput.

Be
ause the lxplus ma
hines are shared resour
es, there are problems a

essing them. Some ma
hines

did not run the tests at all, others failed during the tests due to other users taking up the resour
es.

Tests run on these ma
hines are probably not reprodu
ible in detail, but give an indi
ation whether

the load indu
ed by physi
al ma
hines with dedi
ated network
onne
tions is di�erent from the other

test beds.

The dmstestvm, in
ontrast,
onsists of 20 dedi
ated virtual ma
hines with one
ore ea
h, running on

two hypervisors. The vm hypervisors are kept private to assure that no other vm
ould be deployed on

them during the time of testing. Ea
h hypervisor has a

ess to a 10 GBps network link, whi
h allows

us to
ompare the results with other test setups with 1 GBps ea
h.

The third
on�guration runs on the same ma
hines as the DPM head and disk node: three former disk

nodes are dis
onne
ted from the pool and used as
lient ma
hines. This has the advantage that the

lient is as powerful as the server and that they are lo
ated in the same
omputing
abinet, therefore

having a dire
t network
onne
tion with little unrelated tra�
.

All test bed
omputers are running S
ienti�
 Linux 5.5 [7℄ and tools are taken out of the standard

repository. The programs installed, besides the DPM
lient libraries, are Python 2.6, t
pdump and

iperf for initial network speed measurements. A more detailed des
ription of the
lient hardware
an

be found in the Appendix 2.

3.3 Distributed Exe
ution

Perfsuite is built to be invoked dire
tly on the
ommand line. When using it on multiple ma
hines at

the same time, invoking tests manually is not feasible, so I used wassh, an ssh
lient for simultaneous

ommand exe
ution on multiple
lients and the UNIX tool at to time the start of a test run.

Also, Perfsuite's features of laun
hing several tests one after another
annot be used as it
an not be

guaranteed that the se
ond and third test start at the same times on all Perfsuite
lients. Now, every

test is started separately.

For the tests, the Perfsuite installation resides on my AFS home dire
tory, whi
h is a

essible from

every
lient used. This dire
tory is
opied to the working dire
tory in /tmp, where the results are also

written. So in the s
ript managing a test run, I �rst make sure that all required dire
tories exist,
opy

12

3 DPM TESTING AND ANALYSIS SETUP

Perfsuite, run it with the desired parameters and then
olle
t the results from all
lients with another

s
ript.

The program wassh is developed at CERN for internal use. It takes a list of host names or a �le

listing host names as an argument and exe
utes the
ommand given as se
ond argument on all of

them. With this, it fun
tions as a
ouple of ssh
ommands exe
uted in a for-loop with the advantage

of
on
urrent
onne
tions. An advantage of wassh is that it prints the standard output of the remote

ommand together with the host name, whi
h makes
olle
ting and parsing the Perfsuite results later

simple. It also gives meaningful information about unresponsive hosts and exe
utes
orre
tly for all

other ma
hines.

The exe
ution of Perfsuite on the
lient is managed through another s
ript residing in AFS whi
h

laun
hes Perfsuite with the desired
on�guration �le and redire
ts its status output to a �le in the

lient working dire
tory. The exe
ution of this s
ript, however, is managed by at. This UNIX program

laun
hes its argument at a given time and by spe
ifying a time in the near future I
an be sure that

all
lients start the test at almost the exa
t same time. The
lo
k di�eren
es on the ma
hines used

should be minimal as they all adjust their time to the same NTP server.

Using at introdu
es new problems to running Perfsuite: the
ommand is no longer exe
uted in a shell.

Firstly, it makes it impossible to a

ess my AFS home dire
tory, whi
h is the main reason to swit
h to

a working dire
tory in /tmp and se
ondly, shell variables and sour
ed �les set are not valid. Espe
ially

sour
ing �les is problemati
, as ea
h Perfsuite test is exe
uted in its own shell environment. Usually

the tests inherit the shell environment from the shell Perfsuite is running in, but sin
e Perfsuite is

exe
uted in a new environment through at, this is no longer possible.

The solution is found in wrapping every test in a shell s
ript that sets the environment variables and

then exe
utes its parameters. This keeps
hanges to Perfsuite to a minimum (
alling the s
ript instead

of the test dire
tly) and also provides the possibility to print timestamps before and after the test's

exe
ution whi
h is dis
ussed in the following se
tion.

Another di�
ulty in running Perfsuite on various ma
hines is that they mostly do not have the required

software installed. Python 2.6, a prerequisite for Perfsuite, is installed on all ma
hines, but the DPM

lient and Root libraries are not. Sin
e I do not have the rights to install software on these ma
hines,

the Root libraries are sour
ed from AFS.

Due to this, the tests allow to de�ne the exe
utable to run, making the deployment of these �les

together with Perfsuite easier. Also, the sour
e in
ludes paths that
an be
hanged in the single

wrapper s
ript.

13

3 DPM TESTING AND ANALYSIS SETUP

Retrieving the results from the Perfsuite instan
es is a straightforward pro
ess: wassh reads the result

�les from ea
h test and prints it to standard output. Be
ause it adds the host name to ea
h output,

the result �le on the
ontrolling host
an easily be parsed to obtain results grouped by host name.

The following se
tion deals with the way Perfsuite opens the tests and its impli
ations on timestamps

used for measurements. In Perfsuite, timestamps are
olle
ted in the main programme before and after

test exe
ution and give another way to, for example,
al
ulate the throughput. Here, a

ura
y is of

importan
e.

14

4 DPM PERFORMANCE ANALYSIS

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Start_Time

0

5

10

15

20

25

Du
ra
tio

n

lxfsra10a05
lxfsra12a06
lxfsra14a03

Figure 1: The duration of
reating a zero-length �le on DPM. The
olours di�erentiate the
lients.

4 DPM Performan
e Analysis

Using the lxfsra test bed and the test Pretend RFCP, an analysis of DPM behaviour when many

lients
reate �les on the DPM has been performed. The test setup is as follows: three lxfsra
lients

run Perfsuite with the test whi
h starts 25 threads on ea
h ma
hine to open 25
onne
tions to DPM

simultaneously.

Our expe
tation, given that 75 simultaneous requests are reasonable for a �le server and that the �le is

only opened and then immediately
losed, is that the requests �nish very fast. They will not
omplete

at the same time, be
ause the DPM daemon only uses 20 threads per type, but
reating an empty �le

should be qui
k.

We
an see, however, that from the
lient's point of view, the �le
reation pro
ess, from the beginning

of the dpm_put to the end of the dpm_putdone takes a notable long time, up to 20 se
onds, as
an be

seen in Figure 1.

The duration values are grouped by the
lient ma
hine and we
an see that none of them is penalised

against the others. The Figure shows the duration the intera
tion takes on the y-axis
orresponding

to the start time on the
lient. In this plot we see that the test does not start at the same time for

all threads, but within a reasonable time frame of 250 ms. We also see that the duration in
reases the

later the intera
tion starts, and it in
reases in dis
rete steps. The in
rease over time suggests a bu�er

�lling up, whi
h is investigated further.

15

4 DPM PERFORMANCE ANALYSIS

10-2 10-1 100 101 102

put start time

10-4

10-3

10-2

10-1

100

101

102

pu
t d

ur
at

io
n

client
server

Figure 2: Measurements for the dpm_put on the
lient and server side. The fun
tions start at the

same time on the
lient, but with a delay on the server. This delay
orresponds to the added duration

as measured on the
lient side. Be
ause of large di�eren
es in the duration as well as the starting time,

both axes use a logarithmi
 s
ale.

If we inspe
t the server logs, we
an see that the fun
tions do not take enough time to explain the

delay on the
lient. We see that there is a signi�
ant di�eren
e between the per
eived exe
ution time

of the dpm_put and that the server is
onta
ted with a delay after the
lient starts the request. This

is shown in Figure 2 with the start of the fun
tion on the server side in green and on the
lient side

in red. The Figure displays that all requests star on the
lient at approx. the same time, but start

later on the server. We
an also see the di�eren
es in the duration on the y-axis. To better distinguish

between the times measured on the server, the y-axis is shown on a logarithmi
 s
ale.

4.1 In
reasing the So
ket Queue Length

Re
ording all ex
hanged pa
kets between server and
lient shows the
onne
tion establishment where

we
an see that a
lient needs more than one SYN request to open a
onne
tion in about half the

ases. A SYN retry is ne
essary when the server does not respond to the
lient's request, i.e., the

server does not a

ept the
onne
tion, nor denies it. This is the
ase when the so
ket queue, whi
h

holds
onne
tion attempts until they are a

epted by the program listening on the server, is full:

further attempts to
onne
t to the so
ket are silently dis
arded. The results are retries from the
lients

whi
h follow the regulations given by the spe
i�
 operating system. Running S
ienti�
 Linux, the

16

4 DPM PERFORMANCE ANALYSIS

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Start_Time

0

5

10

15

20

25

Du
ra

tio
n

queue 5
queue 128

(a) Durations for the small so
ket queue in
rease over

time and remain steady for a large so
ket queue.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Start_Time

0

5

10

15

20

25

pu
t_

du
r

queue 5
queue 128

(b) The dpm_put method
an be a

ounted for taking

most of the pro
essing time, as per
eived by the
lient.

Figure 3: File a

ess durations with a so
ket queue length of 5 vs a queue length of 128. (a) shows that

the duration of a �le
reate request is mu
h shorter, largely
ontributed to a faster per
eived exe
uting

time of the dpm_put as shown in (b).

retries for SYN pa
kets are limited to 5 retries
orresponding to a waiting time of about 180 se
onds,

while the waiting time in
reases with ea
h retry. The value for the number of retries
an be seen and

adjusted in /pro
/sys/net/ipv4/t
p_syn_retries.

The DPM sour
e shows that the listening so
ket is initialised with a queue length of �ve, whi
h
ould

explain this behaviour. As the
onne
tions
annot be a

epted as fast as they appear, the queue �lls

up and further
onne
tion attempts are dis
arded. After a waiting period, the queue is free with a

high probability and the
onne
tion is a

epted.

In a test with a larger so
ket queue of 128 pla
es, the maximum possible value for systems running

S
ienti�
 Linux, we obtain the results as shown in Figure 3a. The duration of all intera
tions is lower

with the larger so
ket queue and in parti
ular, the duration of the dpm_put method as per
eived by

the
lient, has plummeted (see Figure 3b).

However, the DPM log �les show that in the
ase of the large so
ket queue, the pro
essing time, in the

dpm_pro
_put fun
tion has in
reased in average from 1.2 se
onds to about 1.8 se
onds, lessening the

speedup gained. This
an be a

ounted to the fa
t that now, as all requests
an be a

epted almost

immediately, the server makes more use of its resour
es. The log �les for the
ase with a short bu�er

queue show that although all threads are used, there are waiting periods on the server indu
ed by the

se
ond-long waits on the
lient side. An analysis reveals an idle time during the test with a so
ket

17

4 DPM PERFORMANCE ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Start_Time

0

10

20

30

40

50

Du
ra

tio
n

queue 5
queue 128

(a) Comparison between so
ket queue lengths with 150

on
urrent requests.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Start_Time

0

5

10

15

20

25

30

35

no
m

be
r r

ep
lie

s

queue 5
queue 128

(b) Comparison between so
ket queue lengths with 300

on
urrent requests.

Figure 4: These plots
ompare the large so
ket queue length to the old value for higher load, i.e., more

simultaneous requests. The number of
lients remains three, but the number of requests started per

lient in
reases to 50 in (a) and to 100 in (b).

queue of length �ve, while the larger so
ket queue redu
es the idle time per thread, thereby redu
ing

the overall time for all requests.

At this point we
an say that the short queue length seems to a
t as a gatekeeper to the DPM head

node. If requests
annot be handled immediately, there is almost no spa
e to queue on the server and

the
lient begins a minimal two se
onds waiting period. On the one hand, this eases the load on the

server as requests
oming in bulks are stret
hed out and the DPM daemon is not overloaded.

On the other hand, this load limiting me
hanism might be too stri
t on DPM. As we have seen with a

larger bu�er queue, DPM seems to handle many more simultaneous requests with only a slight in
rease

in the duration of the
omputations than allowed in the standard
on�guration.

The next step in the analysis is to see whether the new solution also works faster on a higher loaded

server. Figure 4 shows two plots with the test repeated with 150 and 300
on
urrent requests; these

are 50 and 100 requests per
lient respe
tively. Both graphs
ompare the durations between a queue

length of 5 and 128.

The long durations for the requests to su

eed indi
ates that the DPM server is under heavy load. While

Figure 4a gives a similar pi
ture as the test with 75 requests for the durations, Figure 4b is di�erent:

this might partly be due to the fa
t, that the requests are spread over several se
onds, or, whi
h we

do not see in the graph, that 50 requests fail with the error message Conne
tion reset by peer in

18

4 DPM PERFORMANCE ANALYSIS

put --- proc --- putdone stat1 stat2 stat3
DPM functions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

du
ra

tio
n

queue 5
queue 128

Figure 5: The durations of DPM fun
tion and the waiting times between them.

the test with the short bu�er queue.

Thus we
an say that the DPM
on�gured with the larger so
ket queue is performing better than with

a small one, either responding faster to requests or su

eeding to pro
ess more during the same time

frame. How bad a request failure is in a produ
tion environment is not straightforward, as appli
ation

software will have their own retry me
hanisms built-in, whi
h might resubmit requests we have seen

failing.

For our analysis, it is notable that the durations for a request rise as the DPM is exposed to a higher

load. A pro�ling of the fun
tions on DPM shows that the major hold-up for pro
essing is a waiting

period before the dpm_pro
_put method. As seen in Figure 5, the waiting time before a request is

assigned to a slow thread on DPM for pro
essing the request, is mu
h longer using a large so
ket

queue. This
an be explained given the information we extra
ted earlier that the DPM a

epts more

request in a time frame. As we only have 20 slow threads for 75 requests available, the requests have to

queue internally for up to two durations that it takes DPM to pro
ess a request in the dpm_pro
_put

method.

Through this, we see the importan
e of the partitioning of fast and slow threads in
ombination with

the short so
ket queue. Requests
an be a

epted very fast by the dpm_put fun
tion in a fast thread

whi
h
an immediately serve the next request and thus the so
ket queue is growing relatively slowly.

The DPM load is better represented by the number of requests queued in the DPM database waiting

for a slow thread than by the so
ket queue size.

19

4 DPM PERFORMANCE ANALYSIS

put --- proc --- putdone stat1 stat2 stat3
DPM functions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

du
ra

tio
n

20 threads
70 threads

(a) Duration for ea
h fun
tion on the DPM.

0.0 0.1 0.2 0.3 0.4 0.5
Start_Time

2

3

4

5

6

7

8

9

10

Du
ra

tio
n

20 threads
70 threads

(b) Overall duration as per
eived by the
lient.

Figure 6: DPM with 75
on
urrent requests in two
on�gurations: with 20 slow threads and 70. (a)

shows the DPM view and (b) the
lient view for the duration.

In Figure 5 we also see that the dpm_pro
_put takes longer in average for the large so
ket queue. This

might be due to the better utilisation of the server's resour
es, indu
ing a higher
omputational load

and more
on
urrent a

esses to the DPNS.

4.2 Adjusting the Number of Threads

These results suggest that DPM would perform better with a higher number of slow threads, as more

requests queued internally
ould be served at the same time. A
omparison between 20 slow threads

and a new
on�guration with 70 slow threads, almost rea
hing the maximum of 100 with 20+70

threads is shown in Figure 6. The Figures display the results for 75
on
urrent requests to DPM. In

Figure 6a we see that the waiting time for the dpm_pro
_put, an available slow thread, has de
reased.

This is expe
ted as 70 out of 75 requests are assigned a thread immediately. On the other hand, the

pro
essing time of the dpm_pro
_put has in
reased and the overall speedup is minimal, as
an be seen

in Figure 6b whi
h displays the
lient view.

The long duration for the dpm_pro
_put methods
an be explained by DPM's behaviour when
reating

�les. The dpm_pro
_put method
onta
ts the DPNS to
he
k whether the �le
an be
reated and to

reate the ne
essary entries in the database. For this, also the database entry of the parent dire
tory

must be updated as it
ontains a
ounter for the number of �les in it. With a new �le being
reated,

this
ounter is updated. Also, during these requests, it must be assured that the dire
tory is not

deleted, so a lo
k is set on the dire
tory entry.

20

4 DPM PERFORMANCE ANALYSIS

Many
on
urrent �le
reate requests in the same dire
tory lead to the e�e
t that the
reatx
all issued

in dpm_pro
_put to the DPNS
reating the �le takes several se
onds to
omplete due to the lo
k on

the dire
tory. Changing this behaviour would imply
hanges to the DPNS and to the name server

database, whi
h why we do not follow that path any further.

Instead, inspe
ting the speedup of our
hanges to DPM in a
ase where this limitation does not apply,

we
an see that te duration of the spm_pro
_put method is redu
ed from 3.5 se
onds to under 1

se
ond. A redu
tion in pro
essing time is measurable both for a DPM
on�guration with 20 as for one

with 70 slow threads. In this s
enario, the in
rease of slow threads has very little e�e
t on the overall

duration, as the fun
tion takes mu
h less time as if it had to wait for the dire
tory database entry.

21

5 CONCLUSION

5 Con
lusion

Overall, we
an look at three possible optimisations. The �rst is setting the queue of the listening

so
ket to a higher value and involves a
hange in the DPM sour
e
ode. The se
ond is adjusting the

number of threads to a suitable value and is already
ommon pra
tise. The third method involves the

lient behaviour: if we see the DPNS part as a bla
k box at the moment, the only way to avoid the

dire
tory lo
k when
reating many �les in one dire
tory is to use several dire
tories, if a large number

of �les is involved. We dis
uss all three methods shortly with some remarks about the performan
e

gain from these measures.

In our test situation with bursty requests, in
reasing the queue length has proven to be bene�
ial to

the overall duration of
lient-server intera
tion. We have seen that the short queue leads to
onne
tion

retries on the
lient side, whi
h render the intera
tions longer as ne
essary, given the resour
es of DPM.

Here, extending the DPM so
ket queue length leads to a better utilisation of the server.

Of
ourse it has to be noted that in
reasing the queue length does not help if DPM is under
ontinuous

heavy load. If that is the
ase, the fun
tions pro
essing the request itself must be faster, otherwise

even the largest queue �lls up at some time. Here a
tion is undertaken by the developers
reating a

syn
hronous method for `getting' and `putting' �les, whi
h needs less internal
ommuni
ation. However,

a larger queue length helps the server to
ope with short bursts of requests.

The
ase for the so
ket queue is espe
ially interesting in the
ontext of a syn
hronous put method

where DPM only uses one kind of threads whi
h handle the whole request. Then, the internal queue

would no longer exist and, in the
ase of all threads being in use, new requests would queue at the

so
ket. A short value there
ould lead to more
onne
tion failures on a highly loaded DPM.

When in
reasing the number of threads I
ould see that for �le put requests, the number of fast

threads seems to play a minor role, while the number of slow threads should be higher. Bearing in

mind the limitation of the total number of DPM threads it might make sense to use an asymmetri

on�guration of threads. Other workloads where the slow threads are not involved, should be tested

thoroughly to see if these su�er from su
h a
on�guration. Also, the asymmetri
al
on�guration only

gives a signi�
ant speedup if the fun
tion
omputed in the slow threads takes su�
iently long. This

is in the
ase for
reating �les in one dire
tory, but not for di�erent ones.

As for the third point, appli
ation developers working with DPM might wish to
he
k if their pro-

grammes do
reate �les this way and might be interested in testing them with multiple target dire
to-

ries. Relaxing the lo
k on the parent dire
tory while
reating a �le
an easily introdu
e in
onsisten
ies

and might involve
hanges to the DPNS database.

22

REFERENCES

Bibliography

Referen
es

[1℄ �Perfsuite.� https://svn.
ern.
h/reps/l
gdm/perfsuite . last visited on 19.8.2011.

[2℄ �CERN.� http://publi
.web.
ern.
h/publi
/ . last visited on 27.2.2011.

[3℄ �ATLAS.� http://publi
.web.
ern.
h/publi
/en/LHC/ATLAS-en.html . last visited on 27.2.2011.

[4℄ �WLCG Poster.� http://l
g.web.
ern.
h/LCG/dissemination/�yers/Grid_english_2009.pdf ,

2009. last visited on 27.2.2011.

[5℄ �DPM.� https://svnweb.
ern.
h/tra
/l
gdm/wiki/Dpm . last visited on 27.2.2011.

[6℄ �NAGIOS.� http://www.nagios.org/ . last visited on 27.2.2011.

[7℄ �S
ienti�
 Linux.� http://www.s
ienti�
linux.org/ . last visited on 19.8.2011.

23

REFERENCES

Appendix

Test Bed ma
hines Pro
essor Cores RAM / GByte Network Link / Mbps

lxfsra 3 L5520 2.27 GHz 4 12 1000

lxplus

15 E5410 2.33 GHz 8 16 1000

13 L5420 2.5 GHz 8 16 1000

47 L5520 2.27 GHz 16 48 1000

dmstestvm 2 2.27 GHz 8 24 10000

Table 2: Hardware Des
ription of the test beds used. Note that 10 virtual ma
hines run on one server

in the dmstestvm test bed and they have a 10 Gbps network link. The exa
t pro
essor type of these

ma
hines is not known to me. All pro
essors used are Intel Xeon x86.

24

