
Process accounting
collection

Student:
Goran Cetušić
Supervisor:
Ricardo da Silva

CERN openlab
December 8, 2011

Contents

1 Introduction 3

2 Collector 4

3 Authentication 7
3.1 Kerberos . 7
3.2 Apache . 8

4 Repository 10
4.1 Databases . 10
4.2 Views . 11
4.3 Indexing . 14

5 Conclusion 15

Abstract

The objective is the collection of data generated by the standard psacct
package as opposed to a modified version currently in use on most lxbatch and
lxplus machines, and the storage of the data to a central repository for easier
access. This enables automatic report generation and security audits as well as
some usage summaries per user/machine/process.

As one of the goals is to use standard tools, the architecture is based on the
transmission of documents over HTTP to a proxy authenticated by Kerberos
and stored in a central NoSQL database with predefined views.

2

1 Introduction

Most of the machines in lxbatch and lxplus clusters use sysacct, a modified
version of psacct available from standard Scientific Linux RPM repositories.
The modifications were made mostly because the accounting files generated by
psacct are stored to AFS repositories and their collection is required to work
properly with system log rotation mechanisms. This lacks report generation so a
better solution is required. The conclusion was that the process accounting soft-
ware should use the standard Scientific Linux psacct package with a repository
capable of generating reports.

Languges

Bash
Python
Javascript
C

Databases

MongoDB
CouchDB

Services

Apache
Kerberos

Protocols

JSON
XML
HTTP
GSSAPI

Figure 1: Technologies used and researched

Using some of the technologies in Figure 1, the software should collect all
data from accounting files, send them to a central repository and generate re-
ports by sending queries to the repository.
Basic questions the queries should answer are:

• Which commands did a user execute?

• On which machines was he/she active?

• What time was he/she active?

• Where was this command executed, by whom and at what time?

• What is the first and last time a user was active on a machine?

• What time did he/she execute a command on a machine?

An important thing to remember is that the queries will rarely be executed;
mostly when security incidents occur or daily to generate activity reports. On
the other hand, the write load on the repository will grow as more machines are
added.

3

2 Collector

A potential solution for collecting psacct data was Gratia, an open source
project for cluster monitoring from Open Science Grid. It consists of a collector
(central repository) writen in Java and several probes that send data from a ma-
chine to the collector. The available Gratia probes are mostly written in Python
and support several methods of data retrieval apart from psacct (dCache, Con-
dor and Hadoop).

Record data from Gratia’s psacct probe are sent to the central repository as
XML documents. However, the documents represent summaries for a particular
user; how much of the overall resources did a user consume, first and last time
the user executed a command etc. No information about particular commands
needed for successful security audits is stored with Gratia.

The Gratia probe-collector architecture uses a custom protocol for XML file
transfers. It was apparent that OSG Gratia did not conform to the project
specification because of the custom protocols. A decision was made to reuse
the Python code from Gratia’s psacct probe to collect record data and store it
inside a NoSQL database as opposed to the Gratia collector written in Java.

Collect data
with Python

Create one XML
file per user

Send files directly
to MongoDB

Figure 2: First draft

When the probe is started it checks for files in the default psacct folder. It
moves any accounting files inside the directory that were archived by logrotate
to its own directory folder specified inside the configuration file. The newest
pacct file is also moved unless it is empty and an empty file is created in its
place to prevent logrotate from creating additional archived files. Accounting
is then started on a file inside the probe directory also specified in the configu-
ration file. Record collection is started on all accounting files inside the probe
directory.

Several modifications were made to the Gratia psacct probe. The original
database chosen for record storage was MongoDB but the records were for-
matted as XML documents. Since MongoDB can only receive JSON files, the
Gratia probe was changed to store records as JSON files, not XML. In addition
to summaries, one JSON document per user with complete information about
commands is sent to the database every time the probe is executed. If an ac-

4

counting file was created less than an hour ago, the file will not be processed
and sent to the repository.

If there was a problem sending JSON files during last probe execution, the
files are stored and an attempt to send them during next probe execution will be
made until they are sent or a timeout has been reached. Accounting is restarted
on a new file and the old one is processed. The probe checks if the files can be
archived before sending them or aborts execution if there is an error.

Initialize

Are there
unsent
JSON

files from
last run?

Send

Send
succesful?

Timeout?

Save files and quit

Restarted
account-

ing?

Stop acct on old
file and start

acct on new file

Collect data
from old file

Can
backup

and send?
Send

yes

no

yes
no

no

yes

no

yes
no

yes

Figure 3: Code diagram

The main files for the probe are:

• PSACCTProbe.py - basically just calls PsAcct() in PSACCTProbeLib.py
or prints help

• PSACCTProbeLib.py - moves files, does backups, creates record objects
and calls Send() in GratiaCore.py

• Gratia.py - mostly wrapper functions for records

• GratiaCore.py - does the actual json creation and sending (by using Gra-
tiaAuth.py)

5

• GratiaAuth.py - Kerberos authentication, HTTP request creation and
server connections are handled here

• GetProbeConfigAttribute.py - configuration file parser

• collector.conf - configuration file containing database addresses, folder lo-
cations and other settings

• psacct probe.cron.sh - cronjob script

The recommended usage of the probe is to run the psacct probe.cron.sh script
every hour by using crontab. The script will then invoke PSACCTProbe.py. For
a large number of machines sending records to the database, the crontab entry
should be changed for every machine the probe is installed to so the records are
not sent at the same time which could potentially cause a denial of service from
the database.

Another problem that occured during development was that NoSQL databases
have no real network security. MongoDB only supports username and password
authentication without encryption. It is expected to run in a completely trusted
environment which was not an option for the lxbatch and lxplus clusters. One
of the other popular NoSQL databases, CouchDB, has SSL encryption but only
in most recent versions which are not available in SCL 5 repositories. But even
with SSL encryption, it still uses username/password authentication which could
not be integrated with the current CERN infrastructure. The implemented so-
lution is a reverse proxy (Apache) that supports Kerberos authentication and
forwards HTTP requests to the database. The problem with this setting was
that Apache would send JSON files over HTTP. MongoDB, the first database
chosen for record storage, used a custom protocol to send JSON files. Instead
of stripping HTML before forwarding the request to the database, MongoDB
was replaced by CouchDB with a RESTful API.

Collect data
with Python

Create one JSON
file per user

Get Kerberos
tokens and put

them inside HTTP

Send files to Apache
with Kerberos support

Redirect HTTP re-
quest to CouchDB

on localhost

Generate reports

Figure 4: Final architecture

6

3 Authentication

3.1 Kerberos

The probe uses a Python kerberos module to request the service ticket from
Kerberos. One thing to note is that the module used for CouchDB does not
exist in SCL 5 repositories. There is a custom module in nonstandard CERN
repositories but it is no longer maintained and after several tests it was con-
cluded that it does not work with the current setup. The client connecting to
Apache must already have a Kerberos TGT in its cache that is generated by
calling ”kinit -k” or some other command. This command is executed by one of
the scripts executed by cronjob. It uses the service ticket for the Apache server
instead of user/pass authentication so it integrates seamlessly into current lx-
batch and lxpluss authentication mechanisms.

Figure 5: Kerberos token exchange

SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) is a
GSSAPI ”pseudo mechanism” that is used to encapsulate Kerberos tickets.
SPNEGO’s most visible use is in Microsoft’s ”HTTP Negotiate” authentica-
tion extension that is used by Apache. Authentication is implemented inside
GratiaAuth.py.

7

(a) GSSAPI (b) SPNEGO

Figure 6: GSSAPI Authorization with SPNEGO

GratiaAuth.py retrieves the Kerberos token from the Kerberos server, en-
capsulates it inside a GSSAPI token which is the value field of the SPNEGO
scheme. The final result is a HTTP request with headers similar to the header
in Figure 7:

GET /private/index.html HTTP/1.1

Host: localhost

Authorization: Negotiate QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Figure 7: HTTP Authorization with SPNEGO

3.2 Apache

Once the records are collected on a particular machine and the GSSAPI
token is encapsulated inside the HTTP request which carries the actual record
data, they are forwarded to an Apache server acting as a reverse proxy. Apache
uses the mod auth kerb module for Kerberos support and forwards the request
to the repository (CouchDB) since CouchDB does not support authentication
mechanisms other than usernames and passwords.

8

<Proxy ∗>
Order deny , a l low
Deny from a l l
Allow from cern . ch

</Proxy>
<Locat ion />

#SSLRequireSSL
AuthType Kerberos
AuthName ”CERN Login”
KrbMethodNegotiate On
KrbMethodK5Passwd Off
KrbAuthRealms CERN.CH
Krb5KeyTab / etc /krb5 . keytab
KrbVerifyKDC Off
KrbServiceName host / l x f s rd0714 . cern .ch@CERN.CH
r e q u i r e va l id−user

</Location>
ProxyPass / http :// l o c a l h o s t :5984/ r e t r y=0 nocanon
ProxyPassReverse / http :// l o c a l h o s t :5984/
RequestHeader unset Author i zat ion

Figure 8: Apache configuration

As can be seen from the configuration file in Figure 8 above, Apache needs
read access to the keytab file to authenticate the request with the Kerberos
server. In this particular setup Apache only checks if the host requesting access
is really who it claims to be. Authorization per machine should be implemented
outside of Kerberos. The KrbMethodNegotiate parameter ensures that Apache
searches for the Negotiate token inside the HTTP request. Reminder: this
makes authentication without usernames and passwords (not suitable for a large
number of machines running jobs) possible. With KrbMethodK5Passwd turned
off, users cannot access the database with their username and password, meaning
they cannot access CouchDB’s web interface from a host that is not added to
Kerberos. Once the request has been validated, Apache removes the request’s
Authorization header containing Kerberos information so CouchDB can receive
a clean HTTP request CouchDB can process.

9

4 Repository

4.1 Databases

CouchDB provides a RESTful JSON API than can be accessed from any en-
vironment that allows HTTP requests. CouchDB’s built in Web administration
console (Futon) speaks directly to the database using HTTP requests issued
from the browser. Apache CouchDB is a document-oriented database that can
be queried and indexed using JavaScript in a MapReduce fashion. Every record
received by CouchDB is stored as a JSON document. Since the queries executed
represent complex questions, the records are sent as summaries (resource usage
per user from the time the records were last sent and now) and detailed records
(usage per command by the user).�� ��sysacct-records

�� ��sysacct-summaries'

&

$

%

{
”UserID ” : {

”LocalUserId ” : ”smmsp”\ capt ion{}
} ,
”ProbeName ” : ” l x f s rd0714 . cern . ch ” ,
”Grid ” : ”CERN” ,
”RecordData ” : [

{
”JobName” : ” sendmail ” ,
”StartTime ” : ”1314360061.0” ,
”Memory” : ”57696.0” ,
”WallDuration ” : ”0 .08” ,
”CpuDuration ” : ”0 .01” ,
”EndTime ” : ”1314360061.08”

}
]

}

{
”UserID ” : {

”LocalUserId ” : ” root ”
} ,
”ProbeName ” : ” l x f s rd0714 . cern . ch ” ,
”Grid ” : ”CERN” ,
”RecordData ” : [

{
”JobName” : ”Summary” ,
”StartTime ” : ”1314356165.0” ,
”Memory” : ”17841.5258437” ,
”WallDuration ” : ”14562.38” ,
”CpuDuration ” : ”1 .41” ,
”EndTime ” : ”1314361082.8”

}
]

}

c

Figure 9: Database layout

The setup in Figure 9 has two databases: sysacct-summaries and sysacct-
records. Every time the probe collects data it generates JSON files to be sent
as HTTP requests to CouchDB. For every user that was active on the machine
it sends two files. One is a summary that tells the overall resource usage and
the other is a list of every command the user executed when he was active, the
time at which the command was executed, the resource usage of the command
etc.
One document is sent to be written to sysacct-summaries and the other to
sysacct-records. This setup requires more storage space for JSON files but en-
ables faster response times for certain queries. Let’s look again at the questions
the queries are supposed to answer:

1. Which commands did a user execute?

2. On which machines was he/she active?

3. What time was he/she active?

4. Where was this command executed, by whom and at what time?

5. What is the first and last time a user was active on a machine?

6. What time did he/she execute a command on a machine?

10

The first question requires us to know the exact names of commands executed
so the queries have to be directed to the sysacct-records database since sysacct-
summaries contains only summaries, not the specific information about com-
mands.
Suppose a security breach has occured involving a certain user. A logical course
of action would be to find on which machines and when the user was active to
check if there has been tampering with those machines. One solution would
be to execute a query on sysacct-records to go through all the JSON files and
search for the machine names the user was active on. But the database has
to search through a much larger collection of data that are irrelevant for this
query (e.g. the commands the user executed). It is simpler to search through
the summaries which have only one record (the summary) so the response is
much faster.

4.2 Views

The CouchDB equivalent to SQL queries are views. Views are actually func-
tions written mostly in Javascript that get executed every time the user wants
to retrieve some information from the database. There are third party query
servers for other languages like Python but since Javascript is part of CouchDB
functions written in Javascript are still the fastest.

Query speed can be an issue with CouchDB, especially with large amounts
of data that do not comply to the map/reduce principle. An explanation will
be given in this document. CouchDB queries have two functions: a map and an
optional reduce function. As opposed to SQL databases, CouchDB will always
return an object representing a table with two attributes: a key and a value.

f unc t i on (doc) {
emit (doc . id , doc) ;

}

f unc t i on (doc) {
i f (doc . Type == ”customer ”) {

emit (doc . LastName , {FirstName : doc . FirstName }) ;
emit (doc . FirstName , {LastName : doc . LastName }) ;

}
}

Figure 10: Map functions

A view function should accept a single argument: the document object. To
produce results, it should call the implicitly available emit(key, value) function.
For every invocation of that function, a result row is added to the view (if nei-
ther the key nor the value are undefined). The rows in the computed table are
updated automatically with any changes that have been made (additions, edits,
or deletions) since the view was created.

Views are the primary tool used for querying and reporting on CouchDB
documents. There are two different kinds of views: permanent and temporary
views. Permanent views are stored inside special documents called design doc-
uments. Temporary views are not stored in the database, but rather executed

11

on demand.
NOTE: Temporary views are only good during development. Final code should
not rely on them as they are very expensive to compute each time they are
called and they get increasingly slower the more data you have in a database.

Every call to emit generates a row with a key and a value and the view is
executed for every document in the database (not the entire CouchDB database
but the JSON database the query is accessing). Suppose we have a database
of JSON documents with every document representing a user with their home
address and we want the number of users living in Geneva, Zurich etc. The
easiest way to get the desired data is to write a view with a map function that
generates a row with the name of the city as the key and a ”1” as the value. The
optional reduce function can then be used to group the keys and summarize all
the 1’s per key like in the graphical representation below.

key value

”Geneva” 1
”Lyon” 1

”Geneva” 1
”Chamonix” 1

=⇒

key value

”Geneva” 2
”Zurich” 1

”Chamonix” 1

Figure 11: Key grouping

Note that the keys and values can be more complex but the reduce func-
tion should only be used to lower the overall number of values. When choosing
between a larger number of keys and a large number of values per key one
should always choose the former. The performance issues detected when ex-
ecuting queries were mostly caused by attempts to retrieve neatly structured
data from CouchDB without any need to go through the data and format it
before presenting it as a report - NoSQL databases are ideally suited to perform
map/reduce calculations that reduce the number of values but do not fare so
well with complex data structures.

User was a c t i v e on machines X,Y,Z . . . (summaries)

def fun (doc) :
for record in doc [”RecordData”] :

y i e l d [doc [”UserID”] [” LocalUserId ”] , doc [”ProbeName”]] , None

def fun (keys , va lue s) :
return None

Figure 12: View functions with more complex results

This particular view (Figure 12) was written in Python by using a third party
view server and answers the question on which machines the user was active.
WARNING: The Python view server is much slower and is not maintained by
CouchDB so languages other than Javascript should be used only when speed is
not an issue. In this example the database returns a JSON object representing
a table with several rows and each one containing a list and the None Python

12

value. This generates a large amount of rows but is several times faster than
putting the names of the machines as the value and then reducing them to a
single value for one user before giving an output. The database will always
be occupied with writing the JSON documents because of the large number of
nodes available in clusters with each one frequently sending data. The external
program that executes the views should do most of the work of formatting the
data and the database should only take care of delivering all the necesarry data
to the program as fast as possible.

Command was executed by user X on machine Y at time Z (records)
def fun (doc) :

i f doc [”ProbeName”] and doc [”RecordData”] and doc [”UserID”] :
for command in doc [”RecordData”] :

y i e l d [command [”JobName”] , doc [”UserID”] [” LocalUserId ”] , doc [”ProbeName”]] ,
command [”StartTime”]

def fun (keys , va lue s) :
return va lues

Figure 13: Map and reduce functions written in Python

The values in Figure 13 represent timestamps of the commands that were
executed. This is slow and inefficient because it generates keys with an enor-
mous number of values grouped together. Although this is closer to the final
representation, a faster solution is to put all the data inside keys and format it
afterwards.

key value

[”sendmail”, ”ssmp”, ”spock.cern.ch”, ”1333333333”] null

[”sh”, ”root”, ”kirk.cern.ch”, ”1333333334”] null

[”sh”, ”root”, ”spock.cern.ch”, ”1333333335”] null

Figure 14: Return results with complex structures as keys

Another issue are ranges. As opposed to SQL queries, views are static and
cannot dynamically change the parameters inside their functions. An inefficient
but possible solution would be to create permanent views for the most frequently
requested ranges and use temporary views for the rest. Since the keys generated
by view functions are sorted, a more viable solution for the program executing
views would be to send key ranges as HTTP url parameters. An example with
Bash and curl is given in Figure 15.

$ c u r l −X GET ’ http :// l o c a l h o s t :5984/ s y s a c c t r e c o r d s / de s i gn /
commands/ view / exect imes ? s ta r tkey =\[” sendmail ”\]\&endkey=\[” sh” , \{\}] ’

Figure 15: View ranges

13

4.3 Indexing

CouchDB uses a data structure called a B-tree to index its documents and
views. Only documents created after the last time a certain view was executed
are indexed. This represents a problem when the views are executed infrequently
and large amounts of data are written to the database between view executions,
like in lxplus and lxbatch clusters, because CouchDB indexes documents before
returning the requested data. To alleviate this a few different possibilities have
been suggested. Most rely on registering with CouchDB’s update notifications
and triggering reads automatically.

. . .
class ViewUpdater (ob j e c t) :

The sma l l e s t amount of changed documents be fore the views are updated
MIN NUM OF CHANGED DOCS = 50

Set the minimum pause between c a l l s to the database
PAUSE = 5 # seconds

URL to the DB on the CouchDB server
URL = ” http :// l o c a l h o s t :5984 ”

One entry for each design document
in each database
VIEWS = {

’ s y s a c c t r e c o r d s ’ : {
’ commands ’ : [

’ exect imes ’ ,
. . .

]
}

}
. . .

Figure 16: Periodic view regeneration

Views are stored as design documents inside the database along with other
JSON documents. Because indexing is performed on every view in a document,
views should be stored inside different design documents to avoid a possible
slowdown.

14

5 Conclusion

During development and testing several conclusion have been made regard-
ing the data collection and report generation.

As the number of machines sending records grows so does the load on the
repository (CouchDB). Albeit this is rarely a problem in relatively small clus-
ters, CERN clusters are large and could potentially crash the database server.
The script started periodically by cronjob should not be executed on the hosts
at the same time.

The probe is written in Python and uses the kerberos module to authenticate
with Apache. The module and especially its usage with GSSAPI and HTTP
Negotiate is poorly documented and the projects using it should get involved
with writing the documentation. A good starting point are examples written
during development of the psacct probe.

Psacct data is collected from the output of the dump-acct command. The
probe expects that output to be of a specific format which is different on other
Linux platforms but it should be fairly easy to make the probe compatible with
other platforms.

Response time of database queries can slow down to a halt if the view func-
tions are poorly written and if languages other than the native Javascript are
used. These guidelines should be followed to get maximum response times from
the database:

1. Reduce functions should be used to reduce the number of values and when
choosing between adding more load to the repository or local desktop com-
puters retrieving data during audits, the latter should always be chosen
since most of the time those computers are idle

2. It is better to retrieve a large number of keys than a smaller number of
keys with large numbers of different values per key

3. Indexes should be regenerated as often as possible to avoid slowdowns
during queries, either by calling views with external scripts or with update
notifications

4. Views should be written in separate documents to avoid another slowdown
because of too many views being indexed at the same time which are not
really needed

In general, NoSQL databases require a very different approach from SQL databases
but are ideally suited for data that do not follow a specific format like SQL tables
do. This makes it easier to expand the probe to send additional data and not
just psacct records. The architecture described in this document can be used for
any kind of accounting collection as long as there is an external authentication
mechanism or until NoSQL databases are expanded with other authentications
like Kerberos. For a completely trusted environment this is not needed and data
can be sent directly to the repository.

15

References

[1] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Definitive
Guide, 1st edition. Sebastopol, Canada: O’Reilly Media Inc., 2010.

[2] Migeon, Jean-Yves. The MIT Kerberos Administrator’s How-to Guide, 1st
edition. Massachusetts, USA: MIT Kerberos Consortium, 2008.

[3] Open Science Grid. OSG Accounting Twiki. Fermilab (2011).
https://twiki.grid.iu.edu/bin/view/Accounting/WebHome

[4] Paltomaki, Atte. Setting up a Kerberos proxy with Apache. modauthkerb-
help@lists.sourceforge.net, (November 24th, 2011).
http://permalink.gmane.org/gmane.comp.apache.mod-auth-
kerb.general/2164

[5] Orton, Joe. Kerberos and Single Sign-On With HTTP. ApacheCon (2008).
http://eu.apachecon.com/eu2008/program/materials/kerb-sso-http.pdf

[6] Radez, Dan. python + kerberos + apache GSSAPI Example. JADDOG
(July 6th, 2009).
http://www.jaddog.org/2009/07/06/python-kerberos-kinit-apache-gssapi-
example

16

