

CERN openlab

Page 1 of 10

oTN-2011-01 openlab Summer Student Report

ZODB Benchmarking and Replication
Jurand Nogiec

Supervisor: Jose Benito Gonzalez Lopez
12 August 2011

Version 3
Distribution: Public

Abstract ... 1
Introduction ... 1
1 System Properties ... 2

1.1 ZRS .. 2
1.2 Neoppod ... 2

2 Results ... 3
2.1 SSD versus HDD .. 3

2.1.1 System Configurations .. 3
2.1.2 Performance ... 3
2.1.3 Summary .. 4

2.2 ZODB, ZRS and Neoppod ... 5
2.2.1 Performance Testing Results ... 5
2.2.2 Resiliency to Error .. 7
2.2.3 Other Analysis .. 7
2.2.4 Summary .. 8

3 Documentation .. 8
3.1 Tools ... 8

3.1.1 Benchmarking .. 8
3.1.2 Utilities .. 9

3.2 Installation Guides .. 9
3.2.1 ZRS with Indico ... 9
3.2.2 Neoppod with Indico .. 9
3.2.3 Summary .. 9

4 Summary .. 10
5 Bibliography .. 10

Abstract
The Indico web-based conference management system needs a mechanism to address replication and
performance issues. The aim of this project is to evaluate ZODB replication systems to choose the
superior option and enable its use within Indico.

Introduction
Integrated Digital Conference (Indico) is a web-based conference management system and agenda. This
software is in use as a production system at CERN and at nearly 100 institutions worldwide. At CERN,
it handles on the order of 150,000 total events with 10,000 visitors per day. The back-end for the Indico
system is written in Python and uses Zope Object Database (ZODB), a native object database, to store
persistent objects. ZODB does not provide a stock method for replication or fail-overs to backup servers
and can cause network traffic congestion caused by many simultaneous web requests. The main goal of
the work presented in this report is to evaluate two ZODB replication systems: Zope Replication
Services (ZRS) and NEOPPOD Distributed Transactional NoSQL Object Database (NEO) versus the
current non-replicated ZODB system, select one for use in production, and make its usage within Indico

ZODB Benchmarking and Replication

 Page 2 of 10

Figure 2

Figure 3

possible, in order to address the aforementioned issues of replication and traffic bottlenecks. We will
start with the configuration supported by the systems, followed by experimental results, and finally
documentation of tools and guides for this report.

1 System Properties

1.1 ZRS

There must be exactly one Primary server to which

the client connects (a “Single Master” configuration). The
Primary ZRS storage server may replicate to one or more
Secondary storage servers.
Each Secondary server
may replicate to one or
more Tertiary servers. In
this way the ZRS supports
hierarchical configuration.
This general setup is
illustrated in Figure 1.

A Secondary (or
Tertiary, or Quaternary) server may be in one of two modes: a “forwarding”
read-write mode where the server accepts updates from another server and
passes it on to another, and a “receiving” mode where the server receives
read-only updates.

In Figure 2, we see a “direct” connection setup: the Primary server
handles update requests on a listening port and a number of Secondary servers can connect on this port and
send requests. In contrast, in Figure 3 we see one Secondary making requests to the Primary server and then
relaying any information in an update to the next Secondary node. The former situation is more desirable, as
will be seen later in the report, as it has less overhead and performs faster than the latter situation. The other
concern is that with the first setup, if one of the Secondary servers fail, the other Secondary is still there to
receive replications, which is not the case with the latter setup, as if the Secondary server connected to the
Master and the other Secondary fails, the other Secondary must be reconfigured to connect directly to Master
server.

1.2 Neoppod

In Figure 4, a sample configuration of NEO is shown. This configuration has two Storage nodes, secondary
and primary Master nodes, and one Administration node. The Administration node dynamically updates and
balances load through adding and removing Storage nodes as needed. The secondary Master nodes can

Figure 4: NEO

Client (Indico)

Secondary (1)

Secondary (2)

Secondary (n)

Tertiary (1)

Tertiary (n)
Primary

Figure 1

ZODB Benchmarking and Replication

 Page 3 of 10

replace the Master node if it is in a fault state, which is known as a multi-master configuration. Multiple
Storage nodes are needed so that when one Storage crashes, there is another one to automatically continue
storage backup operations. Object write and store operations go directly between the Client (Indico) and
Storage nodes while the control data (such as transaction committing) goes directly between the Master
Primary node and the Storage nodes.

2 Results

2.1 SSD versus HDD
 According to the manufacturer of the SSD, Intel, solid state disks have “extremely high performance
[…] as compared to standard 10,000 and 15,000 RPM SATA hard drives.” [1] This section’s aim is to see
how accurate this statement is in practical benchmarks.

2.1.1 System Configurations
The test-bed for this experiment included two system configurations. One machine housed a solid

state disk (SSD) and another had a standard hard disk drive (HDD).
The SSD machine had 12 gigabytes of RAM, an Intel Xeon L5640 processor running at 2.26

gigahertz with a total of 6 cores available. The SSD installed on that machine was an Intel X25-E Extreme
SATA Solid-State Drive with storage space of 64 gigabytes. The standard machine had 16 gigabytes of
RAM, two Intel Xeon E5410 processors running at 2.33 gigahertz with a total of 8 cores available. The hard
disk drive installed on that machine was a Fujitsu Enterprise SCSI interface hard drive running at 10,000
RPM (model number MBB2147RC) with storage space of 147 gigabytes. Both systems were running the
Scientific Linux CERN SLC (release 5.6) operating system.

2.1.2 Performance

2.1.2.1 Results for Raw ZODB

To understand the above graphs, the following label explanations are necessary:
- Add – Start transaction, add a number of persistent objects, then commit transaction.
- Update – Change each object added then commit the transaction. Perform no clearing of
caches. Transactions are started from same process.

Figure 5

ZODB Benchmarking and Replication

 Page 4 of 10

- Warm – Read all objects just added. Perform no clearing of caches. Transactions are started
from separate processes.
- Cold (Partial Caching) – Perform clearing of all caches, then read objects written by Update.
- Hot – Clear only the pickle-cache, then read all objects written by Update.
- Steamin (Full Caching) – In the same process as Hot, but also use the pickle-cache

These results were obtained using the zodbshootout tool [2]. As a summary for these results, use
of pickle and other caches minimizes gains from the use of the SSD, as is seen in the Hot and
Steamin results, showing nearly the same results for the use of the SSD versus the use of the
HDD. The raw data speeds without taking into account caching (the results labeled Add, Warm,
and Cold) should be higher, as is the case with synthetic SSD versus Standard HDD testing and
it truly tests the performance of the actual drives. The effects of caching do not apply to
inputting data into the database (see the results for Update); a cached copy does not help since to
write and commit the data, you must still truly write into the database. By changing the amount
of concurrent processes to forty, which in previous analysis was determined to be the appropriate
amount [3] , we see that the gains from using the SSD drive to house the database file become
less extreme, but still significant, in the Add, Update, Warm, and Cold results.

2.1.2.2 Results for Indico-based test

Using the configuration with the SSD has an average of 2.13 times faster performance than using a
standard SCSI 10K RPM hard disk drive and a difference of 10498 more transactions within the 480
second result. This trend of double the performance is true at each of the 60, 120, 240, and 480
second throughput results. This is in terms of writing a set of conference objects into the database
and measuring the throughput over specified time intervals.

2.1.3 Summary
Using an SSD to host the database files most notably aids in write to database performance and

less of an effect in read operations where caching partially cancels the gains of the SSD use.

Figure 6

ZODB Benchmarking and Replication

 Page 5 of 10

2.2 ZODB, ZRS and Neoppod

2.2.1 Performance Testing Results
This section is devoted to benchmark testing of the current ZODB system (“Vanilla”) versus the ZRS
and NEO systems. The methodology and results below are followed by explanations. It is important to
note that the Neoppod results in the charts come with a special evaluation ** listed in 2.2.1.4.

2.2.1.1 Methodology
 The results were obtained using the following methodology, using a current 15 gigabyte
copy of a flat Data.fs Indico database file used in production. Each Category has a list of
Conference objects, each Conference has a number of contributions and a meeting room. The
read and write tests focused on iterating over these large lists of objects and either reading the
value or adding to a value, respectively. A number of trials is used to test the average latency. It
measures the time it takes for the object saving in the database to finish. The throughput is
calculated by seeing how many read or write transactions can happen per amount of time
divided by the amount of time.

In the below graphs, ZRS (two-direct) refers to the situation in Figure 3, where the Master
server replicates directly to two secondary servers. ZRS (two-serial) refers to the configuration
in Figure 2, where the Master server replicates transactions to a Secondary server, which then in
turn replicates to the next Secondary server. ZRS (one) refers to a situation with exactly one
secondary node being replicated from the Master. NEO** refers to a configuration of NEO with
a single storage, administration, and Master nodes. Finally, Vanilla refers to the ZODB system
with no replication, used as the control variable.

2.2.1.2 Read from database operations

The plain ZODB installation outperformed both the ZRS single and double secondary setups for
database read throughput. The throughput for the double secondary scenario was slightly worse
than for the single due to the overhead time of replications. The first result is given by reading
through all conference records and retrieving the conference room assigned to it. This ensures
that the Conference object is truly read under testing. The second result, reading all the

Figure 7

Figure 8

ZODB Benchmarking and Replication

 Page 6 of 10

Contributions related to a Conference references a list of other objects. This is used to include
the performance of traversing the object tree in the tests.

The throughputs are nearly the same between a single server scenario and double server
direct scenario – this makes sense since the master is broadcasting on a port that the secondary
servers are communicating with, which should hold no additional overhead.

2.2.1.3 Write to database operations

Results of the plain ZODB versus the ZRS solution show that using a double setup slightly
increases the latency performance. The range over all values (R=0.014 sec) is quite small. The
ZRS secondary servers are not synchronous with updates caused by writes. The updates to
secondary servers do not happen immediately, but rather they are handled in the style of
optimistic (or lazy) replication, which “propagates changes in the background, discovers
conflicts after they happen, and reaches agreement on the final contents incrementally.” [4] This
means the ZRS master does not wait for writes to propagate to the secondary servers before
being able to handle the next request, a fact that the results confirm.

There was no significant difference in the throughput performance of the plain and ZRS
solutions for write access within the same total time.

2.2.1.4 Neoppod
While using neoppod as the system under test, there is a significant issue with data consistency
errors even under small scale testing **. During testing while trying to insert Conference and
Meeting objects into the database, there were numerous database conflict errors that would
leave the system in an unstable and unusable state until a full system reset. The exact error
involved with this was called a Resolvable conflict in the database. This status message
reports that a data corruption error had occurred. These errors were verified with the developers.
According to a Neoppod developer from Nexedi, “an object change is missing on a storage,

Figure 9

Figure 10

ZODB Benchmarking and Replication

 Page 7 of 10

which is a kind of data corruption” that is reproducible under their own test procedures. He also
states that Neoppod is currently being stabilized for possible usage in production systems.

2.2.1.5 Summary
The results of the Nexedi team, along with this report’s test results to verify, point to the
remaining immaturity of the Neoppod system. It is not yet ready to be used in a production
environment. The writes and reads to database results show that the use of the ZRS system
generally will provide negligible performance degradation and that the directly connected
secondary scenario is the better option versus two serially connected secondary nodes.

2.2.2 Resiliency to Error

2.2.2.1 Steps to Recovery
The ZRS and Neoppod systems have differing steps to recovery, e.g., the master server crashed:
what are the steps towards recovering from the system error? Using ZRS, the procedure is to fail
over to a secondary backup server manually. A secondary node must be set to be the new
primary node in the server configurations, which is a situation similar to recovering a copy of a
flat database file by replacing the corrupted database file with a backup, except that this backup
will be up-to-date right until the moment of failure. In NEO, the handling of the error is more
graceful: another master node takes over for the failing master node automatically when NEO is
set-up using a multiple-master node configuration. Without the multi-master configuration, the
procedure degrades to that of ZRS's manual fail-over.

2.2.2.2 Expected Downtime
In terms of expected downtime, ZRS and NEO also differ. For ZRS, the downtime is the
duration of time in which the Master node is not operational and a secondary node is being
selected to do a recovery. There is no inbuilt system to automatically monitor when such storage
nodes have failed. Using Neoppod, the downtime is potentially negligible, as the primary master
node elects an auxiliary master node. While Storage nodes still need a mechanism to recover
after a failure as with ZRS, the Administrator node (through the neoctl utility) gives better
feedback as to where failures have occurred.

2.2.2.3 Summary
NEO’s multiple master configuration gives it the more streamlined and stable option for
recovery, as well as lower expected downtime than the ZRS system.

2.2.3 Other Analysis

2.2.3.1 ZRS
Zope Corporation is a large organization with notable clients including Bank of America and the
United States Navy. Theirs is the commercial offering for Zope Replication Services, a ZODB
database replication system. In terms of support, the only organization to offer official support
for ZRS is Zope Corp itself. ZRS customers are reported to be long term users who have
renewed their support licenses numerous times and that there is a number of organizations at
one time subjecting the system to evaluation and testing. Their site-wide license costs 40,000
USD and 12,495 USD for the single CPU license. The support is included over the first year,
which offers a possibility to evaluate the level of support offered. It costs 25% of total license
costs per year thereafter.

2.2.3.2 Neoppod
Neoppod is an open-source system developed by a number of organizations, including Nexedi
SA and PilotSystems. Neoppod is the Free Software alternative, licensed under GNU General
Public License v2.0. Support is given primarily through answers from the team via mailing list.
It is not actively discussed software, as the last listed messages to the mailing list were due to
the research directly related to this report. However, representatives from Nexedi were quick
to respond to the messages. There does not exist at this time any company offering professional
support or consulting for the Neoppod system. Therefore, the costs for support of maintaining

ZODB Benchmarking and Replication

 Page 8 of 10

the code and fixing errors in the Neoppod system would be the responsibility of a group that
decides to use it, and may realistically cost more in man hours than it does for the ZRS option.
This choice may be more in the current open-source spirit of the Indico system, but as it stands
ZRS is the better choice for a reliable production system.

2.2.3.3 Summary
Zope’s ZRS offering gives a more professionally supported and reliable product than the NEO
open-source alternative, but does so at a price premium. However, it is possible that fixing the
still immature NEO system and any bugs it introduces may end up costing more Indico team
man-hours than ZRS.

2.2.4 Summary
In summary of the results in this section, the use of SSD to store database files primarily improves write
performance, NEO is not ready to be used in a production environment and would theoretically provide
better recovery options due to its multi-master property, and ZRS provides a more reliable and better
supported product and thus should be selected instead of NEO.

3 Documentation

3.1 Tools
The tools listed here can be found in the Indico git repository.

3.1.1 Benchmarking

3.1.1.1 zodbtestindico-runner.sh
This is a test runner bash script for Indico ZODB throughput/latency tests . Such a runner is
necessary so that each test run separately to ensure the independence of database transactions.
The results are dumped to a timestamped directory. It runs the following Python files:
zodbtestindico-testReadCategoryThroughput.py
zodbtestindico-testReadConferenceRoomsThroughput.py
zodbtestindico-testReadContributionsThroughput.py
zodbtestindico-testWriteConferencesLatency.py
zodbtestindico-testWriteConferencesThroughput.py

3.1.1.2 zodbtest.py
This file is a replication testing base-class for ZODB databases. It performs tests that generate
throughput and latency results for raw ZODB transactions not involving the Indico system itself.

3.1.1.3 zodbtestindico.py
This file contains a class for ZODB benchmarks using requests sent to bare Indico instance. It
makes available the following testing methods:

testReadCategoryThroughput
Tests the amount of category names that can be read over a time interval

testReadConferenceRoomsThroughput
Returns the amount of Conference Rooms that can be read in specified amount of seconds.

testReadContributionsThroughput
Returns the amount of Contributions per Conference that can be read in specified amount of
seconds.

testWriteConferencesLatency
Returns the average latency of a Conference modification averaged over amount of repetitions.

testWriteConferencesThroughput
Returns the amount of Conferences that can be modified (written to) in specified amount of
seconds.

ZODB Benchmarking and Replication

 Page 9 of 10

3.1.2 Utilities

3.1.2.1 neo_start.sh
This tool starts a basic configuration (one storage, one administration, one master node). Near
the end of the runner script, it keeps re-checking the status of the system (whether it is in
recovering or running state) until it changes, which indicates either the ultimate success or
failure of the configuration. It is also included in the NEO Installation Guide. It is a bash script
that starts the neomaster, neostorage, neoadmin, and finally neoctl programs. They each
represent instances of Master, Storage, Administration, and Control nodes, respectively.

3.1.2.2 indicobulkloader.py
This bulk loader is used to generate enough data to simulate an active Indico instance. It inserts a
number of Conferences, and for each Conference, adds a number of blank Contributions. To
create, for example, a 5 GiB FileStorage Data.fs file, one would need to specify the tool to
generate 85,000 empty conferences.

3.1.2.3 zodb.{master, relay, secondary}.conf
These configuration files are used to set up Master, Secondary, and Relay (that both replicate to
and from servers) servers, respectively, using the runzeo tool.

3.2 Installation Guides

3.2.1 ZRS with Indico
As part of the work done, there now exist two installation guides to show exactly what steps are needed to
install ZRS and NEO for use with the Indico system. These guides were used to install a functioning
replication environment using a current Indico development server with properties approximate to the
production service.
As a summary for the more detailed guide present in AVC’s Sharepoint (zrs_install_guide.html), the
main steps for installation of ZRS for use with Indico are the following:

1. Install ZODB (important to use v3.8.6 due to python2.4 compatibility)
2. Add ZRS python egg to path
3. Modify Indico configuration to point to the Master server
4. Modify ZODB configuration files as in the example files referenced in 3.1.2.3.

3.2.2 Neoppod with Indico
As a summary for the complete guide in Sharepoint (neo_install_guide.html), the main steps for
installation of Neoppod for use with Indico are the following:

1. Install programs including ZODB
2. Install and configure MySQL as in the standard NEO installation guide
3. Run the custom configuration script
4. Apply patch to Indico code as listed in the complete guide.

3.2.3 Summary
The installation procedures for ZRS and Neoppod are quite similar. The main notes for the procedures are
that ZRS has a more straightforward installation than NEO. It also has in its favor the support of zc.buildout
automatic configuration tool which is better suited for standardized installation procedures. Neoppod does
not support zc.buildout configurations and requires a code change. It also does not have an inbuilt
monitoring system as ZRS does. The procedures appear to be functionally rather similar, and one does not
have a better procedure than the other.

ZODB Benchmarking and Replication

 Page 10 of 10

4 Summary
Considering the use of ZRS versus NEO as the database replication system for Indico, ZRS is the only

viable option at this time.
ZRS and NEO have differing configurations and approaches to the replication problem. However,

NEO is still too unstable to use in a production system and should not at this time be used for critical
applications. The use of ZRS will help to provide a proper way to do replication while minimizing downtime
upon system failure versus a non-replicated environment. As an additional result for performance concerns
in the system, the use of an SSD for hosting the database files aid primarily write to database performance of
the Indico system rather and less of an effect in read operations where caching may cancel the gains of the
SSD use. Using the tools and configuration guides, a successful replication environment was established on
an Indico development server, and use of the developed test-bed led to the evaluation results given in this
report.

5 Bibliography
[1] Galimberti, Davide. "Experimental Performance Analysis in ZODB." Thesis. Ecole Polytechnique

Federale De Lausanne, 2010. Print.

[2] Hathaway, Shane. Zodbshootout: A ZODB Performance Test. Python Package Index. N.p., 01 Feb. 2011.

Web. 15 July 2011. <http://pypi.python.org/pypi/zodbshootout>.

[3] "Intel® X25-E Extreme SATA Solid-State Drive." Laptop, Desktop, Server and Embedded Processor

Technology - Intel. Intel, May 2009. Web. 08 Aug. 2011.
<http://www.intel.com/design/flash/nand/extreme/technicaldocuments.htm>.

[4] Saito, Yasushi, and Marc Shapiro. "Optimistic Replication." ACM Computing Surveys 37.1 (2005): 42-

81. Print.

	Abstract
	Introduction
	1 System Properties
	1.1 ZRS
	1.2 Neoppod

	2 Results
	2.1 SSD versus HDD
	2.1.1 System Configurations
	2.1.2 Performance
	2.1.2.1 Results for Raw ZODB
	2.1.2.2 Results for Indico-based test

	2.1.3 Summary

	2.2 ZODB, ZRS and Neoppod
	2.2.1 Performance Testing Results
	2.2.1.1 Methodology
	2.2.1.2 Read from database operations
	2.2.1.3 Write to database operations
	2.2.1.4 Neoppod
	2.2.1.5 Summary

	2.2.2 Resiliency to Error
	2.2.2.1 Steps to Recovery
	2.2.2.2 Expected Downtime
	2.2.2.3 Summary

	2.2.3 Other Analysis
	2.2.3.1 ZRS
	2.2.3.2 Neoppod
	2.2.3.3 Summary

	2.2.4 Summary

	3 Documentation
	3.1 Tools
	3.1.1 Benchmarking
	3.1.1.1 zodbtestindico-runner.sh
	3.1.1.2 zodbtest.py
	3.1.1.3 zodbtestindico.py

	3.1.2 Utilities
	3.1.2.1 neo_start.sh
	3.1.2.2 indicobulkloader.py
	3.1.2.3 zodb.{master, relay, secondary}.conf

	3.2 Installation Guides
	3.2.1 ZRS with Indico
	3.2.2 Neoppod with Indico
	3.2.3 Summary

	4 Summary
	5 Bibliography

