
perf file format

Student:
Urs Fässler
Supervisor:
Andrzej Nowak

CERN openlab
September 2, 2011

Abstract

Performance measurement of software under Linux is done with the perf system. Perf
consists of kernel code and an userspace tool. The tool records the data to an file which
can be analyzed later. Understanding this data format is necessary for individual
software performance analysis.

This report provides information about the data structures used to read the data
file. An application was written to demonstrate how the data file can be read. For a
given data file, the application shows the frequency with which source code functions
are used.

Contents

1 Introduction 4
1.1 Performance counters . 4
1.2 About this document . 4

2 The perf application 6
2.1 perf record . 6
2.2 perf report . 6

3 The perf file format 8
3.1 Header . 8
3.2 Data . 12

4 Reading perf files 16
4.1 Using readperf . 16
4.2 Source code . 16
4.3 Workflow . 17

5 Conclusion 21

6 Further work 22

3

1 Introduction

In recent years, the speed of processors has not increased and the industry has moved
towards parallel systems. The only way to increase calculation power is by adding more
cores, but this creates higher demand for power and produces more heat. Another way
is to take a closer look how our software works. This is exactly the point where we
need performance measurement. Without having a clue where the bottleneck is, one
does not know how to improve speed. [3]

For Linux, performance can be measured with the perf [4] system. It consists of
some functionality inside the kernel and a userspace tool called perf. The tool is used
to start the measurement in the kernel as also storing and displaying the data. This
report will give a detailed description how the data file can be read and the information
processed.

1.1 Performance counters

Performance counters are often realized as hardware counters. This has the advantages
that it has a low overhead and also low perturbation since it does not use registers or
the ALU. It is also widespread among different CPUs where it is often called a PMU
(Performance Measurement Unit). The PMU can be programmed / configured by
the user to count different kind of events. Examples for such events include executed
cycles, branch misses and cache misses [1]. The basic structure of perf is shown on
figure 1.

More information can be found on the level of the hardware [7], focusing on the
Linux implementation [2], for an overview of perf [5] and a workshop which provide
an deeper understanding of the PMU [6].

1.2 About this document

The information in this document was gathered with Linux version 2.6.39.3 (9.7.2011,
git commit 75f7f9542a718896e1fbe0b5b6e8644c8710d16e). There is no guarantee that
the information is valid for different versions. The focus is on x86 Systems. All the
work was done on a computer with an Intel Core 2 Duo T7200 processor and Debian
GNU/Linux operating system.

Different text styles are used to emphasis some content in the document, namely
code snippets, console commands and files.

The following terms are used in the described meaning:

event a signal produced by the measurement unit, e.g. instruction counter

sample an measured occurrence of an event

record an entry in the data file, e.g. information about samples or meta information

4

CPU with PMU

Intel AMD ARM, MIPS, ...

Linux 2.6+

perf events

perf user tool

Figure 1: Overview of perf. It is based on the Linux kernel interface perf events. The
Linux kernel needs a CPU with an PMU to measure the hardware. It is also
possible to write another performance measurement tool on top of the kernel
interface.

5

2 The perf application

The perf application is part of the Linux kernel tools. The source code is found in
the kernel sources in the directory <linux source>/tools/perf/. perf is comprised of
several sub-tools for different tasks. These are for example the recording or reporting
of events. Each of these sub-tools acts like an stand alone application, but uses a
common infrastructure. The tools are executed with a command line argument for
perf, e.g. perf recording -h or perf report -h .

2.1 perf record

The perf record tool is used to capture events and write them into a data file. By
default, the data file has the name perf.data and is in the current working directory.
It was used to capture all applications on all CPU’s with timestamps. The command
line to achieve this is perf record -a -T 1. To capture on all CPU’s, the pseudo

file /proc/sys/kernel/perf event paranoid has to have the content 0 or -1. This allows
the kernel to use non-maskable interrupts which could cause an reboot of a running
VirtualBox virtual machine.

During recording, several occurrences of an event are reported together. There exist
two different modes. In the default case, the Kernel tries to measure 1000 samples per
second. Therefore, it adjusts the sampling period dynamically [4]. With the switch -c

<n>, a sample is generated for n events.
Figure 2 gives an overview how the recording works. First perf record initializes

the recording via the perf events interface of Linux. The records are then written into
mmap pages2 and a Linux signal is sent to perf record if a page is full. perf record
then stores the records into the data file.

2.2 perf report

The perf report tool is for the analysis of the data file. By default it uses a text
user interface where the usage of functions is shown. As an alternative, the informa-
tion can be printed to stdout. With flags the focus can be changed. For example,
perf report -n -Caddr2line -i test.data reads the file test.data and displays

only samples for the application addr2line, but with the number of samples. Other
filters are -d for dynamic shared objects and -S for symbols.

1But it seems that the -T flag has no influence on the recording
2not to confuse with the mmap record, they both have the same name

6

Kernelspace Userspace

m
m

ap

Linux perf record

signal

sample sample lost comm sample

file

Figure 2: Operation of perf record. The kernel fills mmap pages with the records and
send a signal if a page is full. perf record stores the records in the data file.

7

3 The perf file format

This section will give a detailed description of the perf file format. The file format is
designed in such a way that it is upwards and downwards compatible. This is very con-
venient for the users, but makes the file format more complicated and therefore more
difficult to understand. Nevertheless, the following description should give enough
information to work with the perf data file.

In the tables describing the structures the convention for the data types is as follow-
ing. u<n> is an unsigned integer with n bits. char[<n>] is a zero terminated string
in a field with n bytes of memory. Another name in the type field refers to another
structure.

3.1 Header

The perf data file header as shown in table 1 is at the beginning of the file. The
perf file section structure is described in table 2. Figure 3 gives an overview of
the connection between the structures and fields.

type name description

u64 magic Magic number, has to be “PERFFILE”.
u64 size Size of this header.
u64 attr size Size of one attribute section, if it does not

match, the entries may need to be swapped.
We assume that it matches.

perf file section attrs List of perf file attr entries, see table 4.
perf file section data See section 3.2.
perf file section event types List of perf trace event type entries, see ta-

ble 3.
u256 features Unknown bitfield.

Table 1: perf file header from <perf source>/util/header.h

type name description

u64 offset File offset of the section.
u64 size Size of the section. If size is greater than the struct

in the section, mostly this means that there are more
than one structure of this type in that section.

Table 2: perf file section from <perf source>/util/header.h

8

type name description

u64 event id This entry belongs to the perf event attr entry
where .config has the same value as this id. See
table 5.

char[64] name Name of the event source.

Table 3: perf trace event type from <perf source>/util/event.h

type name description

perf event attr attr see table 5
perf file section ids list of u64 identifier for matching with .id of the perf

sample, see table 10 and 11

Table 4: perf file attr from <perf source>/util/header.c

9

perf file header

ev
en

t
ty

p
es

a
tt

rs

d
a
ta

perf trace
event type

n
a
m

e

ev
en

t
id ..

.

perf file attr

perf event attr

co
n

fi
g

sa
m

p
le

ty
p

e

sa
m

p
le

id
al

l

id
s

..
.

record ..
.

id ..
.

Figure 3: Perf file header. Not all fields of the structures are shown. Links through file
offsets are drawn as arrows. Dots in the fields means that the structure can
occur more than once. The number can be calculated with the size field and
the structure size. Dotted lines means a logical connection between elements.

10

type name description

u32 type “Major type: hardware/software/tracepoint/etc.”
u32 size size of this structure
u64 config Link to .event id of perf trace event type. See

table 3.
u64 sample period number of events when a sample is generated if .freq

is not set
sample freq frequency for sampling if .freq is set

u64 sample type gives information about what is stored in the sam-
pling record (table 10)

u64 read format
u1 disabled “off by default”
u1 inherit “children inherit it”
u1 pinned “must always be on PMU”
u1 exclusive “only group on PMU”
u1 exclude user “don’t count user”
u1 exclude kernel “ditto kernel”
u1 exclude hv “ditto hypervisor”
u1 exclude idle “don’t count when idle”
u1 mmap “MMAP” records are included in the file
u1 comm “COMM” records are included in the file
u1 freq if set sample freq is valid otherwise sample period

u1 inherit stat “per task counts”
u1 enable on exec “next exec enables”
u1 task “trace fork/exit”
u1 watermark “wakeup watermark”
u2 precise ip “0 - SAMPLE IP can have arbitrary skid”

“1 - SAMPLE IP must have constant skid”
“2 - SAMPLE IP can have arbitrary skid”
“3 - SAMPLE IP must have 0 skid”
“See also PERF RECORD MISC EXACT IP”

u1 mmap data “non-exec mmap data”
u1 sample id all If set, the records as described in section 3.2 have

additional information. We assume the bit is set.
u45 reserved 1
u32 wakeup events “wakeup every n events”

wakeup watermark “bytes before wakeup”
u32 bp type
u64 bp addr

config1 “extension of config”
u64 bp len

config2 “extension of config1”

Table 5: perf event attr from <system include directory>/linux/perf event.h. The
quoted text for descriptions is taken from the source code.

11

3.2 Data

The data section consists of a stream of records, figure 4 gives an overview of the
involved data structures.

The data section of the sampling file contains the stream of records coming from
the perf events interface (see also [2]). This happens in the function mmap read of
the file util/evlist.c. Every record has the header as described in table 6. With the
size attribute in this structure, one knows the position of the next record.

type name description

u32 type value from enumerator perf event type:
PERF RECORD MMAP

PERF RECORD COMM

PERF RECORD EXIT

PERF RECORD FORK

PERF RECORD SAMPLE

u8 misc:0-7 one of the values:
PERF RECORD MISC CPUMODE MASK

PERF RECORD MISC CPUMODE UNKNOWN

PERF RECORD MISC KERNEL

PERF RECORD MISC USER

PERF RECORD MISC HYPERVISOR

PERF RECORD MISC GUEST KERNEL

PERF RECORD MISC GUEST USER

u6 misc:8-13 unused
u1 misc:14 PERF RECORD MISC EXACT IP, “Indicates that the

content of PERF SAMPLE IP points to the actual
instruction that triggered the event.”

u1 misc:15 PERF RECORD MISC EXT RESERVED, “Reserve the last
bit to indicate some extended misc field”

u16 size size of this record (inclusive header)

Table 6: perf event header from <system include directory>/linux/perf event.h.

For PERF RECORD COMM in .type of the record header, the structure comm event as
in table 7 is used. It contains the application name of a process. There should be one
or zero comm records for one execution of an application.

type name description

u32 pid process id
u32 tid thread id

char[16] comm name of the application

Table 7: comm event from <perf source>/util/event.h.

12

For PERF RECORD MMAP in .type of the record header, the structure mmap event as
in table 8 is used. It contains a used binary (application or library) of a process. With
the .start and .len field one knows the memory location of the binary referenced
in the field .filename. Together with the instruction pointer from the sample record
(table 10) the sample can be assigned to a binary.

type name description

u32 pid process id
u32 tid thread id
u64 start start of memory range
u64 len size of memory range
u64 pgoff probably page offset, it is used to

relocate the memory range
char[PATH MAX] filename binary file using this range

Table 8: mmap event from <perf source>/util/event.h.

For PERF RECORD FORK or PERF RECORD EXIT in .type of the record header, the
structure fork event as in table 9 is used. A fork record shows that a new process or
thread is created, a exit record shows that a process or thread was terminated.

type name description

u32 pid process id
u32 ppid parent process id
u32 tid thread id
u32 ptid parent thread id
u64 time timestamp

Table 9: fork event from <perf source>/util/event.h.

For PERF RECORD SAMPLE in .type of the record header, the structure perf sample

as in table 10 is used. As it can be seen in the table, not all fields of the struc-
ture are stored in the file. The function perf event parse sample from <perf
source>/util/evsel.c is used to decode the structure from the file stream. The type
is taken from perf event attr .sample type. One can see that we need the type
to decode the structure to get the id which is used to assign the sample to an
perf event attr entry. But we don’t have the type a priori because we don’t know
to which perf event attr entry the sample belongs. To overcome this problem, we
assume that all perf event attr entries have the same value for .sample type.

The sample record contains information about event counters. In the .period field,
the number of events during the sampling time is stored. With the instruction pointer
and process id the sample can be assigned to an binary file.

The id sample is not a real structure. It is used to add information to the mmap,
comm and fork records. Since it is a subset of perf sample, the same structure is

13

type name valid if flag in .sample type description

u64 ip PERF SAMPLE IP instruction pointer
u32 pid PERF SAMPLE TID process id
u32 tid thread id
u64 time PERF SAMPLE TIME timestamp
u64 addr PERF SAMPLE ADDR
u64 id PERF SAMPLE ID identification
u64 stream id PERF SAMPLE STREAM ID
u32 cpu PERF SAMPLE CPU used CPU
u32 res
u64 period PERF SAMPLE PERIOD nr. of events

read format values PERF SAMPLE READ
u64 nr PERF SAMPLE CALLCHAIN
u64 ips[nr]
u32 size PERF SAMPLE RAW

char data[size]

Table 10: perf sample from <perf source>/util/event.h. If a flag is set, then the fields
are in the file stream. If not, one has to proceed with the next field.

used. The valid fields are shown in table 11. The decoding is done by the function
perf event parse id sample from <perf source>/util/evsel.c. The function is au-
tomatically called for the function perf event parse sample when the record is not
from the type PERF RECORD SAMPLE.

It is not entirely clear what the .timestamp field in an sample contains. Experiments
have shown that it may be the running time in nanoseconds of the computer (not
uptime as the counter did not run during hibernation). Information suggest that the
timestamp is calculated with the Kernel function sched clock(). Nevertheless the
source of the timestamp is not clear, it was measured as a strictly increasing series of
numbers which is used in perf to sort the records.

type name valid if flag in .sample type description

u32 pid PERF SAMPLE TID process id
u32 tid thread id
u64 time PERF SAMPLE TIME timestamp
u64 addr
u64 id PERF SAMPLE ID identification
u64 stream id PERF SAMPLE STREAM ID
u32 cpu PERF SAMPLE CPU used CPU
u32 res

Table 11: id sample

14

perf file attr

perf event attr

co
n

fi
g

sa
m

p
le

ty
p

e

sa
m

p
le

id
al

l

id
s

..
.

record

perf event
header

ty
p

e

si
ze

data

id sample

ti
m

e

id

..
.

perf sample

ip p
id

ti
m

e

id

id ..
.

mmap
event

p
id

st
ar

t
/

le
n

comm
event

p
id

fork
event

p
id

ti
m

e

Figure 4: Perf file data. Not all fields of the structures are shown. Links through file
offsets are drawn as straight arrows. Dotted lines mean a logical connection
between elements. The logical connection between the pid fields and also
between the time fields are not shown. The dashed lines mean, that for
every record the data is one of the depicted structures.

15

4 Reading perf files

In this section, a description is given of how the perf data file can be read. For this,
an application named readperf is presented. The goal of readperf is not to be used
as a tool to analyze the data file, as perf report can be used for this. It is meant to
show how the data file can be processed. In addition, it is proof that the data format
is understood.

4.1 Using readperf

The command line application to read the perf file is called readperf. It takes exactly
one argument, the file name of the perf data file. If no error occurs, an overview
of the functions and the percentage of the period is written to the console. After
processing the data file, four comma separated files, as described in the following list,
are produced.

stat.csv Lists how many records of the different types were found.

overview.csv Content of the data file as a table, sorted by the timestamp. The “nr”
column contains the index of the record in the perf data file. The content of
“type”, “pid”, “tid” and “time” is clear from the name. Depending of the type,
info has a different meaning. For “MMAP”, it contains the filename, address,
size and offset (see table 8). “COMM” has the application name as info (see
table 7). “FORK” contains the parent pid (see table 9) and “EXIT” has no
information. Finally “SAMPLE” has the instruction pointer and period of the
sample (see table 10).

processes.csv Every line contains a process. It provides the name of the process, the
number of “MMAP” entries, the fork and exit time, the number of samples and
the accumulated period.

results.csv This is the file with the most processed data. It contains the accumulated
period and number of samples for all used functions as also the source file name
of this function.

4.2 Source code

It is written in C and has a Makefile for compiling it. In addition, there are some
Doxygen comments in the files. It consists of several source files, the responsibilities
is described in the following list:

readperf.c main file, handling of input and output, starting the process

util/tree.h implementation of an AVL tree, used for several structures

util/types.h definition of several used data types

util/errhandler.c routines and data types for error handling

16

util/origperf.c definition of data types and functions from the original perf source

perffile/session.c initializing and reading of content of the perf file

perffile/overviewPrinter.c functions to log records to an file

perffile/records.c data types and functions to store and iterate the records sorted by
the timestamp

perffile/perffile.c reads the content of the file and adds the records to its internal data
structure

decode/processes.c handles a data structure of processes sorted by pid, also contains
related information like memory maps

decode/processPrinter.c functions to print content of perffile/processes.c

decode/addr2line.c function to translate an address of an binary file to the corre-
sponding source file name and source function name

decode/funcstat.c stores source file name and function as well as the corresponding
number of samples and period assigned to this function

decode/buildstat.c iterate through the record data structure and build process data
structure, update period and sample count of source functions

4.3 Workflow

An broad overview of the workflow can be found in figure 5. The following descriptions
are executed in chronological order. It is a short description of the readperf source
code.

4.3.1 start session (session.c)

First of all, the perf file header (table 1) has to be read. This is done with the function
start session of the file session.c. Testing .magic for the content “PERFFILE”
ensures that we are really reading a perf file. Comparing the .attr size with the
size of the structure perf file attr gives information whether the values have to be
swapped. For readperf, we assume this is not the case.

4.3.2 readAttr (session.c)

To read the attributes into memory we first have to get the number of attribute
instances of the structure perf file attr (table 4). To achieve this, .attrs.size
is divided by the size of the containing structure perf file attr. Then we can read
the array of instances from the file offset .attrs.offset. For every instance we have
to read the corresponding IDs. As for the whole structure, there can be several ID’s.
.ids.size is used to determine the number of IDs. If only one event source was used,
there is no ID entry since all records belong to the single one perf file attr instance.

17

main

readperf.c

read perf file

perffile.c

buildstat

buildstat.c

func print detailed

funcstat.c

session.c

records.c

process.c

funcstat.c

functions

write data

read data

data structures
functions

write data

read data

Figure 5: Workflow of readperf. main calls the functions read perf file, buildstat
and func print detailed. Those functions use data structures and func-
tionality of further files, depict as dashed lines.

We check that .attr.sample id all is set for all instances. This ensures that all
records have an timestamp and an identification entry. All instances are checked that
they have the same value for .attr.sample type.

4.3.3 readTypes (session.c)

There can also be several instances of the perf trace event type (table 3) in the
file. As before, the .event types.size is used to determine the number of in-
stances. By comparing .config of the perf file attr instances with .event id

of the perf trace event type instances the corresponding pairs are searched. .name
from the latter is assigned to the perf file attr instance.

4.3.4 readEvents (perffile.c)

After the file header is read, the records can be read. We iterate through all records
in the file. The ID, timestamp and more are decoded for every record by the function
perf event parse sample. Specific information for the different types of the record
are also decoded and written to a new record. This new record is then stored, sorted
by the timestamp.

18

4.3.5 buildstat (buildstat.c)

Since all records are now sorted in the memory, we can process them. For every
record, the corresponding callback function is called. Two new data structures are
kept in memory: one to keep track of the actual processes together with memory maps
of it and used libraries, and the other to gather the period and sample number for
each source function.

4.3.6 decodeFork (buildstat.c)

A new process or thread is created. We check if we already have a process with this
pid stored. If yes and the fork created a new process we throw an error because we
cannot have two running processes with the same pid. If no process is found and the
fork created a thread we also throw an error, since a thread cannot be created without
a corresponding process. If a new process is created by the fork, we also create a new
process in memory and assign the corresponding pid and timestamp.

4.3.7 decodeExit (buildstat.c)

A process or thread is terminated. If it was a process, it is removed from the internal
list of processed and the information is written to a file.

4.3.8 decodeComm (buildstat.c)

Provides the application name for an process. If the corresponding process is not found
we assume that it was not yet created. This is the case for processes running at the
time perf record was started. If so, we expect the timestamp to be zero and create the
process. The name, provided by the record, is assigned to the process.

4.3.9 decodeMmap (buildstat.c)

A library module was loaded. As for “COMM” records, it is possible that a process
does not yet exist. For that case we create one as in the function decodeComm. The
information of the record is added to the process. If the .filename is [vdso] we
assume that this record contains the begin of the address space of the libraries. In this
case, the .pgoff information is stored as .vdso for the process.

4.3.10 decodeSample (buildstat.c)

A new sample has been produced. The corresponding process is searched for, if not
found, we assume it belongs to a common process with the pid ffffffff. The number of
samples of this process is increased by one and the period of the record is added to
the period of the process.

In addition, the application or library where the .ip of the sample points to is
searched within the mmap entries of the process. If it is a library we subtract the
start address of the library from the instruction pointer to get the address. For an
application, we just use the instruction pointer. This address together with the binary

19

name is used to search for or create the source function name where this event occurred.
As for the process, the sample count and period of the function is updated.

4.3.11 force entry (funcstat.c)

Returns an entry which identifies a source function together with the source file and
additional information like the sample count and period. First, it searches for an entry
with this binary name and instruction pointer. If not found, it retrieves the source file
name and source function name and searches for an entry with that. If this also does
not leads to an valid entry, a new one is created.

4.3.12 get func (addr2line.c)

Returns an source file name and function name to an instruction pointer / binary
name pair. At the moment, it uses the GNU Binutils tool addr2line.

4.3.13 func print detailed (funcstat.c)

This function prints a list of function names together with the source file name, sample
count and period.

20

5 Conclusion

For Linux, perf is the default way to measure performance. Although a tool for
reporting is provided, it may not cover all possible use cases. For this reason, one has
to understand how the system works.

In this report, an overview of performance monitoring and the Linux tool perf was
given. The data file produced by this tool was inspected. All required data structures
were analyzed and described.

A tool called readperf was written to show how one can read the data file. It
produces several output files. All of them are comma separated tables. One of them
is a complete list of all records, sorted by the timestamp. The tool can also resolve
the instruction pointer of the samples and through that assign the samples to a source
code function. This is then the final, most processed output of readperf.

21

6 Further work

The execution speed of readperf compared with perf report is quite slow. This mainly
comes from the fact that readperf starts the external tool addr2line to translate an
instruction pointer to the source file function name. Since perf report is much faster,
there exists a better solution to do that.

As mentioned before, readperf can only handle one event source. It should be an
easy task add support for multiple events. To do that, the event source has to be found
with the function get entry of the file <readperf source>/perffile/session.c. This can
be done in the function readEvents of the file <readperf source>/perffile/perffile.c
or handleRecord in <readperf source>/decode/buildstat.c. The file writing functions
have to be changed too.

At the moment, the whole data file is loaded into memory and the processed. This is
not the best solution for two reasons. Firstly, a data file can be quite big. Second, a tool
would maybe process data online, just during capturing (and not storing the whole file).
The problem is that the records are not sorted by timestamp. But it seems that there
exists a way to know when it is safe to process a bunch of records. To do that, one has
to know which timestamp is a lower bound for all future timestamps. Figure 6 supports
the idea of a lower bound timestamp. The function perf session queue event in the
file <perf source>/util/session.c may be a starting point.

0 10000 20000 30000 40000 50000 60000 70000

record nr

0.00

20.00

40.00

60.00

80.00

100.00

ti
m

e
st

a
m

p

Figure 6: Timestamp depending on the entry in the data file. It was recorded on a
two core system. Only every 100th entry is shown. Timestamp is divided
by 109 and the start offset is subtracted. It can be seen that there exists a
clear lower and upper bound for timestamps.

22

If one is only interested in processing the data from the data file, the callback
functions can be used. After installed the callback functions, they are called with an
occurrence of an record in the data file. As an example, <perf source>/builtin-report.c
can be used.

23

List of Figures

1 Overview of perf . 5
2 Operation of perf record . 7
3 perf file header . 10
4 perf file data . 15
5 Workflow of readperf . 18
6 Timestamp depending on the entry in the data file 22

List of Tables

1 perf file header . 8
2 perf file section . 8
3 perf trace event type . 9
4 perf file attr . 9
5 perf event attr . 11
6 perf event header . 12
7 comm event . 12
8 mmap event . 13
9 fork event . 13
10 perf sample . 14
11 id sample . 14

References

[1] Reza Azimi. Hardware Performance Monitoring. 2009. url: www.cse.shirazu.a
c.ir/~azimi/perf88/lectures/Lect5-HardwarePerfMon.pdf.

[2] Stephane Eranian. perf events status update. Aug. 2010. url: http://cscads.r
ice.edu/workshops/summer-2010/slides/performance-tools/perf_events_

status_update.pdf/view.

[3] Sverre Jarp. Computer Architecture and Performance Tuning. Sept. 2010. url:
http://indico.cern.ch/getFile.py/access?resId=1&materialId=slides&c

onfId=36801.

[4] kernel.org. Linux kernel profiling with perf. June 2011. url: https://perf.wik
i.kernel.org/index.php/Tutorial.

[5] Arnaldo Carvalho de Melo. The New Linux ’perf ’ Tools. Tech. rep. 2010. url:
http://vger.kernel.org/~acme/perf/lk2010-perf-paper.pdf.

[6] Andrzej Nowak. CERN openlab Computer Architecture and Performance Tuning
Workshop. 2011.

[7] Vince Weaver. The Unofficial Linux Perf Events Web-Page. 2011. url: http:
//web.eecs.utk.edu/~vweaver1/projects/perf-events/.

24

www.cse.shirazu.ac.ir/~azimi/perf88/lectures/Lect5-HardwarePerfMon.pdf
www.cse.shirazu.ac.ir/~azimi/perf88/lectures/Lect5-HardwarePerfMon.pdf
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/perf_events_status_update.pdf/view
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/perf_events_status_update.pdf/view
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/perf_events_status_update.pdf/view
http://indico.cern.ch/getFile.py/access?resId=1&materialId=slides&confId=36801
http://indico.cern.ch/getFile.py/access?resId=1&materialId=slides&confId=36801
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://vger.kernel.org/~acme/perf/lk2010-perf-paper.pdf
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/

	Introduction
	Performance counters
	About this document

	The perf application
	perf record
	perf report

	The perf file format
	Header
	Data

	Reading perf files
	Using readperf
	Source code
	Workflow

	Conclusion
	Further work

