
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG

ELEKTROTEKNIKK

MASTEROPPGÅVE

Kandidaten sitt namn: Glenn Hisdal

Fag: TDT4900 - Datateknikk og informasjonsvitenskap

Oppgåva sin tittel (norsk):

Oppgåva sin tittel (engelsk): Service Discovery Techniques for Distributed Systems
Using SmartFrog

Oppgåvetekst:

SmartFrog is a recent framework developed at HP Labs Bristol that enables easy
configuration, deployment and management of distributed software systems. At
times distributed software components may have to communicate with other
components. In order to do this, a way to discover the location of such com-
ponents is needed.

This Masters thesis should extend the SmartFrog environment to use a service
discovery protocol in order to provide this feature. One such protocol is the
Service Location Protocol (SLP) standardised by IETF.

Key features of this work should hence include:

• An SLP implementation according to the given standard.

• SmartFrog components that can use SLP for discovering other components
or services.

The work will be performed at CERN and may include other tasks related to the
SmartFrog framework.

Oppg̊ava gjeve: 14. januar 2004
Svar leveres innen: 27. juli 2004
Svar levert: 27. juli 2004
Utført ved: Det Europeiske Kjernefysikklaboratoriet CERN
Fagleg rettleiar: Anne C. Elster (IDI), Sverre Jarp (CERN)

Trondheim, 27. juli 2004

Anne C. Elster
Faglærar

Abstract

When a large number of computers are to co-operate as a distributed computer system,
it is essential that each node in the system is configured correctly. To simplify this
configuration a tool that allows one to configure the entire system in an easy way is
needed.

SmartFrog is a recent system developed at HP Labs in Bristol, for describing, ac-
tivating and managing distributed applications. With SmartFrog one can describe a
system as a set of software components running on the available nodes. One descrip-
tion file can hold the configuration for the entire system. All components in the system
can then be started with a single command. SmartFrog can also handle automatic re-
configuration of a running system, for example by inserting a backup node if one node
fails.

The Service Location Protocol is the IETF standard for how services can be adver-
tised and located over a network. This thesis demonstrates that by using this protocol
in combination with SmartFrog, one can automatically locate services needed by the
SmartFrog components through the SLP protocol as they become available or disap-
pears. SLP removes the need of having to know which host the service one wants to
use runs on. The required information to communicate with the service is obtained
by searching for the service using SLP. This is very useful in environments where the
service can be moved to a different host in time. By using SLP to advertise the service,
it can be found even if it is moved to a new host.

Our Java implementation of the SLP includes all the mandatory parts of the SLP
standard as well as a set of SmartFrog components which allow the discovery and ad-
vertising features of the protocol to be used within SmartFrog. A number of tests were
performed in order to test the correctness of the library. The tests included checking
that the library implemented for this thesis is able to communicate correctly with other
implementations of the Service Location Protocol.

In addition to the SLP library, this thesis shows how a set of components for con-
trolling the Portable Batch System (PBS) were made using the features of our Smart-
Frog SLP implementation. These components made use of the SLP library to have
a pool of execution nodes that could be dynamically added to the PBS system. The
nodes were advertised through SLP so that a component could search for available
execution nodes to add to the system.

Acknowledgements

First of all I would like to thank my Supervisor at NTNU, Anne C. Elster for picking
me as candidate for the CERN Openlab student programme, summer 2003. This was
the first step towards doing my thesis at CERN. I also thank her for her advice while
writing this thesis.

I also thank CERN for accepting me as a Technical Student this year, which allowed
me to do my thesis there. In particular, I thank Sverre Jarp for being my supervisor at
CERN and getting me interested in the SmartFrog framework. I also thank Andreas
Unterkircher for his interest in my work and his help and ideas with the SmartFrog
components used to control the PBS system. Everybody else at CERN Openlab also
deserves a big thank you. It was great working with you all.

This thesis would not have been what it is without all the help from the people at
Hewlett-Packard Laboratories. The help and suggestions while working on this are
very much appreciated. In particular, I thank Patrick Goldsack, Peter Toft, Julio Gui-
jarro and Guillaume Ḿecheneau. I also thank them for allowing me to put my code for
the SLP library in the SmartFrog CVS repository.

Finally, I would like to thank all my friends and family for their support.

III

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of Thesis . 3

2 Background and Related Work 5
2.1 SmartFrog . 6

2.1.1 Introduction . 6
2.1.2 SmartFrog Description Language 7
2.1.3 SmartFrog Component Model 9
2.1.4 Management Tools . 10
2.1.5 SmartFrog References . 11

2.2 Service Location Protocol . 15
2.2.1 Introduction . 15
2.2.2 Service URLs and Attributes 15
2.2.3 Scopes . 16
2.2.4 User Agent . 16
2.2.5 Service Agent . 16
2.2.6 Directory Agent . 18
2.2.7 SLP Messages . 18

2.3 Rendezvous . 21
2.3.1 Zeroconf . 21
2.3.2 Multicast DNS (mDNS) . 21
2.3.3 DNS-based Service Discovery (DNS-SD) 22
2.3.4 Rendezvous vs. SLP . 22

2.4 Mesh Enhanced SLP (mSLP) . 24

3 SLP Library Implementation 25
3.1 Introduction . 25
3.2 Package org.smartfrog.services.comm.slp 26
3.3 Package org.smartfrog.services.comm.slp.messages 28
3.4 Package org.smartfrog.services.comm.slp.network 29
3.5 Package org.smartfrog.services.comm.slp.util 31
3.6 Package org.smartfrog.services.comm.slp.agents 32

V

VI CONTENTS

3.7 Putting It All Together . 33
3.8 SmartFrog Components . 35

3.8.1 SFSlpLocator . 36
3.8.2 SFSlpAdvertiser . 36
3.8.3 SFSlpDA and SFSlpDeployerImpl 37

3.9 Non-Standard Implementation . 38

4 Testing the Library 39
4.1 Testing With OpenSLP . 39

4.1.1 Testing the Service Agent 40
4.1.2 Testing the User Agent . 40

4.2 Testing with mSLP . 40
4.2.1 Testing the Directory Agent 40

4.3 Special Test Programs . 41
4.3.1 Service Agent Test Program 41
4.3.2 User Agent Test Program . 41
4.3.3 Testing Concurrent Requests 42
4.3.4 Testing SmartFrog Components 42
4.3.5 Testing the SLP Deployer Class 43

5 PBS Components 45
5.1 Introduction . 45

5.1.1 PbsServer . 46
5.1.2 PbsMom . 46
5.1.3 PbsSched . 46
5.1.4 Tools . 46
5.1.5 Goal of SmartFrog Components 47

5.2 Implementation of SmartFrog Components 47
5.2.1 PBS Server . 48
5.2.2 PBS Node . 49
5.2.3 PBS Advertiser (SLP) . 49
5.2.4 PBS Locator (SLP) . 49

6 Results 51
6.1 Service Location Protocol Library 51
6.2 SmartFrog SLP Components . 52
6.3 PBS Components . 53

7 Conclusions and Future Work 55
7.1 Future Work . 56

Bibliography 57

A UML Use Case and Sequence Diagrams for SLP Library 59

CONTENTS VII

B Component Descriptions and Source Code 65
B.1 SLP Configuration . 65
B.2 SFSlpLocator . 65
B.3 SFSlpAdvertiser . 66
B.4 SFSlpDA . 67

C Test Programs 69
C.1 Advertising the Service . 69
C.2 Locating the Service . 69

D PBS System 71

E SLP User Guide 73
E.1 Introduction . 73
E.2 SLP API Classes . 74

E.2.1 ServiceLocationManager . 74
E.2.2 Advertiser . 74
E.2.3 Locator . 75
E.2.4 Configurable Properties . 76

E.3 SLP SmartFrog Components . 79
E.3.1 SFSlpAdvertiser . 79
E.3.2 SFSlpLocator . 80
E.3.3 SFSlpDeployerImpl . 81
E.3.4 SmartFrog SLP Configuration 83

List of Figures

2.1 Simple SmartFrog Description . 8
2.2 Life cycle of a Component . 10
2.3 Sending SLP Requests . 17

3.1 SLP Message Classes (Class Diagram) 29
3.2 UDP Network Classes in SLP Library (Class Diagram) 30
3.3 Class Diagram for ServiceAgent . 34

4.1 Test of SmartFrog Components . 43
4.2 Advertising the ProcessCompound 44

5.1 Example of a Running PBS System. 48

6.1 Test Set-up for the SmartFrog PBS Components 53

A.1 Use Case Diagram for SLP User Agent (UA) 59
A.2 Use Case Diagram for SLP Service Agent (SA) 60
A.3 Use Case Diagram for SLP Directory Agent (DA) 60
A.4 Sequence Diagram for the UA’s Find Services Use Case 61
A.5 Sequence Diagram for the SA’s Request Services Use Case 62
A.6 Sequence Diagram for the DA’s Request Services Use Case 62
A.7 Sequence Diagram for the SA’s Register Service Use Case 63
A.8 Sequence Diagram for the DA’s Register Service Use Case 63

E.1 Advertising a Component using SLP 80
E.2 Locating a Component using SLP 81
E.3 Advertising a SmartFrog Process . 82
E.4 Using the SFSlpDeployerImpl Class 82

IX

Chapter 1

Introduction

This thesis marks the end of my master studies at the Norwegian University of Science
and Technology, NTNU. It describes my work on a Java library that allows compo-
nents within the SmartFrog framework to find services in a network using the Service
Location Protocol. This chapter will give the motivation for such a library, and present
an outline of the rest of this thesis.

1.1 Motivation

In recent years, distributed computing has become increasingly common. A network
of ”off the shelf” computers provide very high computing power for a fraction of the
cost of a traditional super computer. Tasks are split into smaller parts that can be
executed on each computer, and the results are merged into the final answer. This
is particularly well suited for CPU intensive tasks that can be split into independent
parts requiring little or no communication during the computation. Until now, cluster
computing has been a common way to create such systems. A cluster is a number
of computers, usually placed in the same room, connected over a local area network.
Recently the focus has been on connecting clusters and individual computers over the
Internet to create a computational Grid. By combining the computing power found at
several sites in many parts of the world, a very powerful system will be available to
run large, CPU hungry jobs. A good resource for information on Grid technology is
the CERN GridCafe Web site[11].

For such a distributed system to work properly, a number of software components
has to be installed and running. It is essential that every part of the system is configured
correctly. If one has a cluster of one hundred machines, it is generally not a good idea
to set up every machine by hand. A configuration tool is needed to do this. A lot
of tools are available for doing the static configuration of the system, getting all the
required software installed. Usually the configuration software focus on setting up one
type of machine in a specific way and do not know anything about the system as a
whole.

1

2 CHAPTER 1. INTRODUCTION

SmartFrog is a framework for describing, activating and managing distributed ap-
plications. It is developed at HP Labs in Bristol, UK and is now released under the
GNU Lesser General Public License. A SmartFrog application is a collection of com-
ponents, Java objects, that run on a number of hosts. The life cycle (instantiation,
initialisation, startup, termination) of the components in an application is controlled
by SmartFrog through a set of interfaces. There are different components included
with SmartFrog that provides different life cycles. The Compound component, which
will be used in this thesis, provides an all-or-nothing life cycle.

What separates SmartFrog from other configuration systems, is that SmartFrog
does not focus on getting one specific node configured in a certain way. SmartFrog is
used to configure a system of distributed components running on any number of hosts.
It requires that some basic setup of the nodes is already in place. At least Java and
SmartFrog have to be installed on each node. For SmartFrog to be able to use a node,
the SmartFrog daemon must be running on that node. The entire configuration for a
SmartFrog application can be stored in one place. There is no need for separate files
depending on which node the software is to be installed on. Once a description of the
system is written, the SmartFrog application can be started with one single command.
This will bring up the required components on the hosts specified in the configuration.
SmartFrog makes it easy to do dynamic reconfiguration of a running system. Included
in the SmartFrog distribution, is an example of a dynamic web server. A number of
nodes in a cluster is configured to serve web pages. When the load of the system goes
over a given limit, new nodes are brought in to decrease the load. When the load drops
below a certain limit, one server is shut down. The dynamic web server example is
described in ”A Brief Description of the Dynamic Web Server Demonstrator”[6].

The Service Location Protocol[9] (SLP) is standardised by the Internet Engineering
Task Force, IETF. It specifies how services can be advertised and located on a network.
A service is advertised using a ServiceAgent component, and is identified by a Service
URL. Each service can also be assigned a number of attributes. Locating services is
done using a User Agent. The User Agent will send requests for the given service
type over the network. An LDAPv3 search predicate[17] can be used to say which
attributes must be present for the requested service.

The use of a service location protocol becomes interesting in dynamic environ-
ments where services may be added, removed or moved around. By using SLP, clients
can discover that a service has been added or removed and reconfigure themselves.
Instead of hard coding the location of the needed services, a client is configured with
the service type it needs. This allows the client to connect to any server providing the
needed services. One specific service can be provided by many servers, leaving the
client with a choice of which server to connect to. If the server goes down, another one
can be selected. Todd Poynor - ”Automating Infrastructure Composition for Internet
Services”[19] describes how SLP can be used to dynamically configure web services.

SmartFrog in combination with SLP offers a very good solution for deploying dis-
tributed applications in a dynamic environment. A SmartFrog component can repre-
sent a service or client in the system. The service is advertised using SLP. Clients use

1.2. OUTLINE OF THESIS 3

an SLP locator to discover the service they need. The SmartFrog application can then
be made to automatically reconfigure itself as services are removed or added.

The GridWeaver project used SmartFrog in combination with LCFG[1] to run a
grid enabled print service. Printers were advertised and located using SLP. A descrip-
tion of the work can be found in ”SmartFrog meets LCFG Autonomous Reconfigura-
tion with Central Policy Control”[2]. More information on the project is also available
on the GridWeaver homepage[12].

1.2 Outline of Thesis

The outline of the rest of this thesis is as follows: Chapter 2 will give some background
information on SmartFrog and the Service Location Protocol. It will also present Ren-
dezvous, which implements an alternative service discovery method. The last section
of the chapter will give some information on mSLP. mSLP is an open source imple-
mentation of the Service Location Protocol and has previously been used to provide
SLP support for SmartFrog.

Starting in Chapter 3, the work done on this thesis is presented. Chapter 3 will
show how the SLP library was implemented. It gives an overview of the classes and
interfaces developed, and shows how everything is put together to create a working
implementation of the different parts of the Service Location Protocol. Chapter 4
will show how the SLP implementation was tested in order to verify that it worked
correctly. A set of components for controlling the Portable Batch System (PBS) was
also developed during the work on this thesis. These are described in Chapter 5. The
PBS system used SLP to advertise available execution nodes. This allowed nodes to
be dynamically added to the PBS system.

Chapter 6 gives a summary of the results of this thesis. Finally, Chapter 7 concludes
the work, giving some ideas on future improvements that can be done on the SLP
library and PBS components.

Chapter 2

Background and Related Work

This chapter will give an introduction to SmartFrog and the Service Location Proto-
col. It will also give an overview of Rendezvous, which provides an alternative service
discovery method to that found in SLP. The last section will look at how a previ-
ous implementation of SLP for SmartFrog was done. That implementation was based
on mSLP which is an open source implementation of the Service Location Protocol.
mSLP is, however, not a fully standard implementation of the protocol.

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 SmartFrog

This section will give an introduction to SmartFrog. Not every aspect of the system
will be covered here. The section includes the things that are important to understand
the work described in this thesis. It starts with a quick overview and then look at the
different parts of the SmartFrog system. More detailed information on SmartFrog can
be found in the SmartFrog Reference Manual[7].

2.1.1 Introduction

The SmartFrog system has been in development over several years at HP Labs Bristol,
UK. SmartFrog is a framework for describing, activating and managing distributed
applications. The framework is as of 13 February 2004 an Open Source project hosted
on Sourceforge[16]. The software is released under the GNU Lesser General Public
License[21]. A copy of this license can be found under ”Licenses” on the CD-ROM.

A SmartFrog application is a set of components, Java objects, that run on a number
of hosts. The components within an application is contained in a component hier-
archy, with one component being the root of the hierarchy. Components can locate
other components by following the links through this hierarchy. The life cycle of an
application is controlled by the life cycle of its components. More on this in Section
2.1.3. A SmartFrog system may have several SmartFrog applications running. Each
application is independent of the other applications. There are no direct links between
components belonging to different applications.

The SmartFrog Reference Manual[7] splits the SmartFrog system into three parts:

• SmartFrog configuration description environment.
This part is the description notation and tools to enable the storage, validation
and manipulation of these descriptions.

• SmartFrog Component model.
The component model defines the interfaces to be implemented by components.
The purpose of the interfaces is to support the various life cycle operations (cre-
ation, initialisation, termination) and management actions like getting status in-
formation.

• SmartFrog configuration management system.
The management system uses the component descriptions to start components
and manage them throughout their entire life cycle in a secure way.

This thesis will give an introduction to the SmartFrog description language, the com-
ponent model and some of the tools used to manage a SmartFrog system. Section 2.1.5
will look more at how SmartFrog deals with references within an application descrip-
tion. This is important for understanding how the service location protocol is being
integrated into SmartFrog.

2.1. SMARTFROG 7

To allow a host to run SmartFrog components, it must have the SmartFrog daemon
running. A SmartFrog description is started on one host. If a particular component is
to be deployed on another host, the daemon will contact the daemon running on that
host and tell it to start the relevant parts of the description. Creating and running a
SmartFrog application typically involves the following steps:

1. Write SmartFrog components in the Java language.

2. Write a SmartFrog description of the system in the SmartFrog description lan-
guage.

3. Start the application using the provided tools.

The next section will give an introduction to the SmartFrog description language, and
show how a simple SmartFrog application can be described.

2.1.2 SmartFrog Description Language

The SmartFrog description language is the language used for describing the configu-
ration of a distributed system in SmartFrog. The link between the language and the
rest of the system is the parser. The description file is on startup run through a parser
that converts the information into internal structures representing the application. If
a parser for another language is written, one could use that language for writing the
descriptions. Currently only the SmartFrog description language is supported.

A SmartFrog description is created by a collection of key-value pairs, called at-
tributes. The value of an attribute can be a simple value (String, Integer, Boolean, ...)
or a SmartFrog component description. A component description is a collection of
attributes describing a component. This way components can be nested and one gets
a component hierarchy. A special attribute, sfConfig, gives the start of an applica-
tion. This can be seen a something similar to the main function found in C and Java.
sfConfig becomes the root of the component hierarchy.

The features of the SmartFrog description language includes:

• Prototypes
The attributes given in a description do not have any type. Any attribute that
is a component description (collection of attributes) can be used as a prototype
for another. This provides a form of inheritance within the language. Another
attribute can extend a prototype and modify this to create the value for itself.
The modification can be changing the values for some attributes defined in the
prototype, or add new attributes.

• References
Instead of providing a value to an attribute directly, the value can be a reference
to another attribute. The value given for that attribute is then copied when the

8 CHAPTER 2. BACKGROUND AND RELATED WORK

description is processed by the system. In some cases one may want the refer-
ence to be the value. For example when the referenced attribute is not available
before the component has been initialised. The LAZY keyword is used to delay
the resolution of the reference. In that case the link becomes the value of the
attribute.

• Comments
The SmartFrog description language supports single and multi line comments.
The syntax for comments are the same as one will find in the programming
languages C++ and Java.

• Include files
A description may #include other description files. These files are not copied
into the text as with C include files, but are parsed as a separate stream. This
means that the included files must be a syntactically correct collection of at-
tributes. Normally one will use this feature to include previously defined com-
ponent descriptions into an application.

• Functions and Operators
A number of functions and operators are defined for use within the descriptions.
These includes string concatenation, summation, appending elements to a vec-
tor, and more. It is also possible to use if-then-else statements when defining
attributes.

Detailed information on the SmartFrog description language is given in the Smart-
Frog Reference Manual[7]. A simple description showing some of the features of the
language is given in Figure 2.1.

Figure 2.1: Simple SmartFrog Description

2.1. SMARTFROG 9

2.1.3 SmartFrog Component Model

The SmartFrog component model defines how components are created and how they
interact. When a SmartFrog description is given to the system, this description is
parsed and a collection of components created based on the attributes found in the de-
scription. SmartFrog has a number of interfaces that defines the behaviour of different
types of components within the SmartFrog framework. Components implement these
in order to receive notification of life cycle changes and other events in the framework.

The main interface is the interface Prim. A typical SmartFrog component imple-
ments the life cycle methods found in this interface. One will also in most cases make
the component a subclass of the PrimImpl component. PrimImpl has default imple-
mentations for the various life cycle stages. Three methods are important for the life
cycle of the component. These are:

• void sfDeploy()
The sfDeploy method is called when the component goes from the instantiated
state to the initialised state. Component specific initialisation code is added
here. For proper functionality within the SmartFrog framework the super class’
sfDeploy method should be called within this method.

• void sfStart()
sfStart is called when the component goes from the initialised state to the running
state. Again, any component specific initialisation/startup code is added here. As
with sfDeploy, it is important to call the super class’ method.

• void sfTerminate(TerminationRecord)
Called when the component goes to the terminated state. Component specific
termination code is added here, and the super class’ method called.

For sfDeploy and sfStart the super class’ implementation is normally called first in the
method. For sfTerminate the call to the super class comes at the end.

The life cycle of a component is implemented as a simple state machine, as seen in
Figure 2.2.

The Prim interface also defines other methods that can be used to override the
default behaviour of the component. Interesting for this thesis is the sfResolve method.
More information on this method will be given in Section 2.1.5. This method is called
when resolving a reference to an attribute within the component. As shall be seen later,
this is used by the SLP locator component to trigger the service discovery.

Components within an application are bound to other components through parent-
child links. This is also true for the life cycle of the components. Some components can
take a collection of other components as their attributes. One such component is the
Compound. The compound provides an all or nothing life cycle. On startup it creates
all its children. Whenever one child terminates, all other children are terminated and
the compound itself terminates.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Life cycle of a Component
Diagram heavily inspired by the identical diagram found in the SmartFrog Reference
Manual[7], Section 6.4

The examples found in this thesis will only use Prim and Compound components.
Components providing a different life cycle from that given by the Compound are
also included with SmartFrog. Information on these can be found in the SmartFrog
Reference Manual[7].

2.1.4 Management Tools

The standard SmartFrog distribution contains a number of tools used to control a
SmartFrog system. This section will present the tools used to start the SmartFrog
daemon, start and stop applications, and to manage running applications.

• sfStartDaemon
The sfStartDaemon command is used to start the SmartFrog daemon on the local
machine. Once the daemon is running, SmartFrog components can be started
from a remote machine if required. The SmartFrog daemon must be running for
a machine to be a part of a SmartFrog system.

• sfStart
sfStart is used to start a SmartFrog application. The description may tell Smart-

2.1. SMARTFROG 11

Frog to start certain components on a remote computer, in which case the dae-
mon running on that machine is given the parts to start. The syntax for sfStart
is:

sfStart <hostname> <app> <description>

<Hostname> is the host on which the description is to be started. This does
not need to be the local computer. Any computer with a running SmartFrog
daemon can be told to start the application.<App> is the name of the SmartFrog
application. Each application must be given a unique name. The application will
be known by this name within the SmartFrog framework.<Description> is the
description file that describes the application to start. This must be written in the
SmartFrog description language, and contain the ”sfConfig” attribute which will
be the root of the application’s component hierarchy.

• sfTerminate.
Terminates a running application. The syntax is:

sfTerminate <hostname> <app>

Where<hostname> is the name of the host where the application was started,
and<app> is the name of the application. In other words, these are the same as
for the corresponding sfStart.

• sfManagementConsole
Starts the SmartFrog management console. The syntax is:

sfManagementConsole -h <hostname>

where<hostname> is the name of the host to manage. The management console
can be used to get information about the running applications. It shows the
components in each application, and can also be used to terminate a component,
or detach it from its parent. A detached component becomes a root component.
That is, it has no parent and is no longer part of the controlled life cycle of the
application it belonged to.

2.1.5 SmartFrog References

This section will give some more information on references, or links, used in the smart-
frog framework. As seen in Section 2.1.2, it is possible to have links from one attribute
to another within the description. A normal link. That is, a link of the form

attribute otherAttribute

12 CHAPTER 2. BACKGROUND AND RELATED WORK

is resolved when the description is parsed. The value given by otherAttribute is simply
copied, so if we have the following example

attribute1 4;
attribute2 attribute1;

this will become

attribute1 4;
attribute2 4;

A special type of link is the LAZY link. The LAZY keyword tells the system
that the reference is to be resolved on runtime, thus the link becomes the value of the
attribute. There may be a number of reasons for using a LAZY link instead of normal
link. A typical example is that the attribute is not available before the component
has been initialised. For example when we want a reference to a running component.
Given the following example:

comp1 extends SomeComponent;
comp2 extends SomeOtherComponent {

c LAZY comp1;
}

The attribute ”c” of ”comp2” is to be a reference to the running ”comp1”. Using the
LAZY keyword enables this. If the LAZY keyword is omitted, the value of ”comp1”
would be copied down to the attribute ”c”, giving this situation:

comp1 extends SomeComponent;
comp2 extends SomeOtherComponent {

c extends SomeComponent;
}

Obviously this does not give the desired result.
Within a SmartFrog application, links to other attributes can easily be created.

The parent-child relationships can be followed to resolve these links. If a LAZY link
is created as above, referencing another component, one will get the Java object for
that component back from a call to ”sfResolve”. sfResolve is used within the Java
implementation to get the value of an attribute. There will be more on this method
later when looking at how references are resolved. In some cases one may want to
bind to a component belonging to a different application. Since two applications are
completely independent, one needs to know a bit about the other application to be able
to do this.

2.1. SMARTFROG 13

Coupled Binding

Coupled binding is what we find within a single SmartFrog application. The compo-
nents all have their place in the hierarchy of components belonging to that application.
By following parent-child links, references to attributes in the application can be re-
solved. The default reference type is the ATTRIB reference. This looks for the given
attribute somewhere in the path from the root and down to the component in question.
The attribute closest to the component is chosen. So we may have something like:

sfConfig extends Compound {
comp1 extends Prim;
comp2 extends Prim {

attr LAZY comp1;
}

}

De-coupled Binding

When we want to use components from another SmartFrog application, things get a
bit harder. There is a special reference type; HOST, which can be used to allow this.
In order to use this, we must know which host the other application was started on,
the the name of the application and the location of the component in which we are
interested in the component hierarchy of the other application. An example is:

sfConfig extends Compound {
comp2 extends Prim {

attr LAZY HOST <hostname>:<appname>:comp1;
}

}

This is the same application as given in the previous section, except that the comp1
attribute now belongs to another application. The HOST reference is used to locate
the attribute.<Hostname> is the name of the host where the interesting application
was started.<Appname> is the name of the interesting application, and ”comp1” is
the interesting attribute within that application. The<hostname> and<appname> is
the same parameters as would be given to sfStart when that application was started.
If someone decides to restart the referenced application on another host or under a
different name, the HOST reference must be updated accordingly.

SLP provides an alternative method of doing de-coupled binding. With SLP one
does not need to know the details about the other applications, nor where it runs.
One needs to know only one thing: The service type used to advertise the interesting
component. The use of SLP within SmartFrog will be further explained in Chapter 3
and the SLP manual found in Appendix E.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Resolving References

When a SmartFrog component needs to get the value of an attribute, it does this by
creating a reference to the attribute and call the sfResolve method to resolve this ref-
erence. If the attribute is a normal value, that value is returned. When the attribute is
a reference, this reference is again resolved in order to get the value of the referenced
attribute. The usual way of getting the value of an attribute is:

Reference ref = new Reference("myAttribute");
Object attrValue = sfResolve(ref);

There are also many other variants of the sfResolve method. These can be found in the
Javadoc files for the SmartFrog framework. Of interest in this thesis, is the method

Object sfResolve(Reference ref, int index)

This method can be overridden by components in order to create the value of the at-
tribute on runtime. This is used in the SLP locator component to find when we want
to resolve the ”result” attribute. The Reference is a SmartFrog Reference consisting of
many reference parts. The index parameter gives the reference part we are interested
in. Reading that reference part, it is possible to check if it is for the attribute one is
interested in. Chapter 3 will show how this is used in the SLP locator component.

2.2. SERVICE LOCATION PROTOCOL 15

2.2 Service Location Protocol

This section will give an introduction to the Service Location Protocol, SLP. A more
detailed description can be found in the SLP specification, RFC-2608[9].

2.2.1 Introduction

The Service Location Protocol defines a way of advertising and discovering services
over a network. It works by sending a number of messages either using multicast to all
nodes or unicast to one specific node, depending on the configuration of the system.

An implementation of the Service Location Protocol is made up of three main parts:
User Agent, Service Agent and Directory Agent. Each of these will be explained in
the following sections. The parts on the agents will mostly focus on service requests,
which is the main idea of the SLP. Other requests, Service type request and attribute
request, are also part of the protocol. The main difference between the types of requests
is that different messages are sent depending on which request is being issued.

Each service is represented by a service URL and a set of attributes. The URL
specifies the type of service and the location of the service. Each service has a unique
service URL. The attributes are used to define certain properties of the services. When
searching for a service, one can specify that some attributes must be available for the
requested service. This limits the number of replies if there are multiple services of the
correct type. SLP use something called scopes to group services together. Each SLP
agent is configured with a set of scopes, and can only operate on services found in at
least one of the scopes it is configured with.

2.2.2 Service URLs and Attributes

The Service URL is what identifies a service in SLP. Each service has a unique URL
that gives the location of the service. The URL is made up of a service type and the
location of the service. A service type may be a special service: type of the form
”service:abstracttype:concretetype” or just ”type”. The latter gives a normal URL,
like ”http://hostname/path”, where http is the type of service. The concretetype part
of the service: type is optional. It is useful for example when a type of service can be
accessed in multiple ways. E.g.

service:printer:lpr
service:printer:ipp
service:printer:smb

These are all printer services, but different protocols are used to access the printers. In
order to find all printers one would do a search for the service ”service:printer”. If just
one type of printer is wanted, the entire service type is used for the search.

Attributes is a way of assigning a set of properties to a service. An attribute is given
with an id and a set of values, e.g.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

x=5,6,7

gives the attribute named x with the values 5, 6 and 7. Each service can be assigned
any number of attributes. It may also have no attributes defined. When searching for
a service, one can specify that certain attributes must be present in the service one is
looking for by using an LDAPv3 search predicate[17].

2.2.3 Scopes

An SLP scope is a character string giving the name of a scope. Scopes can be used
to group services. Since an SLP agent can only see services within the scopes it is
configured to use, scopes can be used to control access to services. The default scope
in SLP is ”default”. The Directory Agent and Service Agent must always be configured
with at least one scope. The User Agent may be configured with an empty scope list,
in which case it is able to discover services in any scope.

2.2.4 User Agent

The User Agent, or Locator, works on behalf of one or more clients needing to locate
a certain service. It will send a message requesting the service to Service- and/or
Directory Agents in the network. The UA waits for the other agents to reply to the
request, and then pass the results on to the client. A service discovery may result in
multiple services being found. The client must know how to select the service it wants.
The client must also be prepared for the fact that there may be no service of the given
type present.

When the User Agent needs to look for a service, it will first check if it knows any
DAs that supports the requested scopes. If this is the case, the request is sent directly
to that DA using unicast. If no known DA supports the given scope, the UA will
send the request using multicast. The request will then be received by all Service and
Directory Agents reachable by multicast. If any of these are configured with the correct
scope, and has the service in question registered, they will reply with the Service URL
identifying the service. It may also be the case that the Directory Agents known by
the DA supports some of the scopes in the request but not all. When this happens, the
UA will send a unicast message to the DA as well as a multicast message in order to
discover all services. This is illustrated in Figure 2.3.

2.2.5 Service Agent

The Service Agent works on behalf of one or more services. It advertises these services
so that user agents are able to find their location. When the SA gets a request from an
UA, it checks that it is advertising a service of the requested type. If it is, The location
of that service is returned to the client. The Service Agent may have several services

2.2. SERVICE LOCATION PROTOCOL 17

Figure 2.3: Sending SLP Requests
Messages in scope X, go directly to the DA. Messages in scope Y goes to the network
using multicast, and are eventually received by a SA. All replies are unicast to the UA.

that match the given type registered. All matching services will be returned in the
reply.

At times, the Service Agent will receive a request for a service it does not know. If
this request was received on the multicast address, the request is simply ignored and no
reply generated. If, on the other hand, the request was received on the unicast address,
a reply with no URLs will be returned. Similarly for errors. If an error is encountered
while handling the request, no reply is sent if the request was received on the multicast
address. If received on the unicast address, a reply indicating the cause for the failure
will be returned. In general, requests directed to Service Agents should be sent to the
multicast address.

The Service Agent is responsible for registering all its services with every Direc-
tory Agent that exists in the network, as long as scoping rules allow it. When a service
agent quits, or it receives a de-registration for a service, it must also deregister the ser-
vice from the DA. This is to decrease the chance of getting a reply for a non-existent
service.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.6 Directory Agent

The Directory Agent works as a cache for service advertisements. It receives service
registrations from each SA in the network, and is then able to advertise those services.
Adding one or more DAs in the network will reduce network traffic, improving the
scalability of the system. This because User Agents will then send their requests to the
DA instead of multicasting the request to the entire network.

The Directory Agent operates by the same rules as the Service Agent when it comes
to when a reply is returned. A User Agent can expect the same reply from a DA as it
would get by contacting a SA. The User Agent does not need to do anything special
when receiving a reply from a Directory Agent. In fact, it does not even need to know
that the reply was received from a Directory Agent and not a Service Agent.

When the DA starts up, it will send out a DA Advert message. This is to notify
other agents about its existence so that they know it is there. This message will also be
resent periodically.

2.2.7 SLP Messages

The Service Location Protocol works by sending and receiving special SLP messages.
This section will give an overview of each of the message types defined in the SLP. The
messages SrvReq, SrvRply, DAAdv, SAAdv, SrvReg and SrvAck are required to be
supported in any implementation of the service location protocol. All other messages
are optional. Below is a list of all the messages supported by SLP, and a brief overview
of what they do. When a message containing a request for a service, service type or
attribute is sent, a reply to that message is expected. For one request there is always
one special reply message that is returned, with the exception of the service request
message which may get one of the messages service reply, directory agent advert or
service agent advert in return.

• Service Request (SrvReq).The service request message is the message sent
by User Agents when they need to discover a service. The message contains
the type of service the UA is looking for, the scopes to look in and optionally a
search filter used to check for certain attributes. Any SA or DA who advertise the
requested service will reply with a service reply message. If the request contains
the special service types ”service:directory-agent” or ”service:service-agent”, a
directory agent advertisement or a service agent advertisement is returned in-
stead of the normal service reply. The ”service:directory-agent” request is used
when a User Agent or Service Agent is looking for a Directory Agent. The
”service:service-agent” can be used to get information about running Service
Agents.

• Service Reply (SrvRply).The service reply message is sent as a reply to service
requests. It contains a list of service URLs for services that matches the request.
If an error occurred while handling the request, the reply message will include an

2.2. SERVICE LOCATION PROTOCOL 19

error code indicating the kind of error that happened. If the number of matching
services is so large that they can not all fit inside the message, a flag is set to let
the client know that the message was truncated. The client can then decide what
to do. It may resend the request by TCP or use the Service URLs included in
the reply. It could also modify the request trying to limit the number of possible
services.

• Directory Agent Advertisement (DAAdvert). The DAAdvert message is sent
periodically by the DAs to let other agents know about their presence. It contains
the location of the DA as well as the scopes the DA is configured with. The DA
may also be configured with a set of attributes, in which case those are included
in the message. The DAAdvert is also sent as a reply to service requests when
the request is for the special service type ”service:directory-agent”.

• Service Agent Advertisement (SAAdvert).The SAAdvert is used to advertise
a service agent. The message is sent as a reply to a service request when the
request is for the special service type ”service:service-agent”. The message con-
tains the location of the service agent, the scopes supported by the agent and any
attributes the agent is configured with.

• Service Registration (SrvReg). The service registration message is sent by
a service agent when it needs to register a service with a DA. The message
includes the information required for the directory agent to advertise the service.
When the directory agent has received the registration it will reply with a SrvAck
message saying whether or not the registration was successful.

• Service Acknowledgement (SrvAck).The SrvAck is sent by the DA when a
service registration or deregistration has been received. The message includes
only an error code. If no error occurred, the code is set to zero. In case of an
error, the error code is set to indicate which type of error happened. Look in the
SLP specification[9] for a list of possible error codes.

• Service Type Request (SrvTypeReq)The SrvTypeReq is sent when one wants
to find which types of services are available. The reply to this request is a ser-
vice type reply with all available services. A service type may have a naming
authority set, typically this is the name of the organisation which came up with
the type. A service request can be limited to only look for service types by a
given naming authority.

• Service Type Reply (SrvTypeRply)The SrvTypeRply is sent as a reply to a
Service type request. It contains a list of all service types known by the Service
Agent or Directory Agent replying to the request. If a naming authority is given
in the request, only service types given by that naming authority are returned.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

• Attribute Request (AttrReq) The attribute request is used to get all the at-
tributes, with their values, of a service. One can search for the attributes of one
specific service by providing the service URL for that service. It is also possible
to get all attributes for a given service type. One then specifies a service type
instead of a full URL. All attributes of all services of the given type is returned
in an Attribute reply message. If only some particular attributes are of interest,
one can provide a list of the interesting attributes in the request. Only attributes
with their names listed will then be included in a reply.

• Attribute Reply (AttrRply) The attribute reply is sent as a reply to an attribute
request. The reply contains a list of all attributes for the given service or service
type.

All SLP messages contains an SLP message header. This header holds information on
which type of message we have, the version of the SLP protocol used, and an ID for
the message. Each SLP message has a unique ID that is randomly chosen. The full
details on the header and various SLP messages can be found in Chapter 8 and 10 of
RFC-2608[9].

2.3. RENDEZVOUS 21

2.3 Rendezvous

This section will give a presentation of a new technology developed by Apple Computers[10]
called Rendezvous[15]. One of the features provided by Rendezvous is service discov-
ery. Rendezvous is made by putting three technologies together: Zeroconf[3], mul-
ticast DNS[5] and DNS based service discovery[4]. The latter, DNS based service
discovery is of most interest for this thesis as it provides an alternative to the service
location protocol, SLP.

Each part of Rendezvous will be presented in the following sections. Section 2.3.4
will look at how Rendezvous, or more specifically, DNS based service discovery dif-
fers from the service location protocol.

2.3.1 Zeroconf

Zeroconf[3] allows computer to automatically configure themselves with a valid link-
local IP-address. This is useful in cases where the normal network infrastructure is
not in place. For example two or more computers with wireless network access can
be able to talk to each other without any configuration being necessary by the user
and no other networking devices in place. The link-local addresses is only valid for
communication on the local link. I.e. they can not be used for communication across
routers.

When many computers configure themselves with an address, one can of course
get a situation where there is a conflict. Two computers try to use the same IP-address.
In order to solve such problems the protocol specifies that a computer must check for
such conflicts, and select a new address if its address conflicts with another one.

2.3.2 Multicast DNS (mDNS)

Although Zeroconf enables automatic configuration of IP-addresses, it does not pro-
vide a way of associating a host name with that IP. When no name server (DNS) is
available this would mean that users have to know the IP-address of the computer they
want to connect to. This address may change each time the machine is switched on or
moved to a new location, so one would have to look this up every time.

Multicast DNS[5] is a way to let computers provide a simple DNS service using
multicast. The domain .local. is reserved for use on local networks, so a computer can
set up its hostname as myhost.local. When no DNS service is available in the network,
the computers can use multicast DNS to look-up the IP-address of a host instead of
normal DNS. The requests and replies used in the communication are the same as for
normal DNS. The main difference being that mDNS messages are sent to a multicast
address reserved for that. Thus users only need to remember their host name which
will stay the same even if the address changes.

In some cases, two users may have selected an identical hostname. In that case the
name has to change to avoid conflicts. This is however very rare.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.3 DNS-based Service Discovery (DNS-SD)

DNS based service discovery[4] is Rendezvous’ solution for advertising and locating
services. The protocol make use of the existing DNS technology to do the advertise-
ment and discovery. Only standard DNS requests are used for the service discovery.
The protocol defines a standard for how the DNS entries should be formatted for DNS
based service discovery. If no conventional DNS server is available, mDNS can be
used.

The protocol reserves the subdomains .tcp and .udp for service discovery. A
service is identified by a service instance name. This is given as

<Instance>.<Service>.<Domain>

The<Instance> part is a user friendly description of the service. e.g. ”My ftp server”.
The<Service> part gives the type of service, e.g. ”ftp. tcp”. Finally, the domain is a
normal domain name, like ”smartfrog.org”.

The registration of a service is handled by sending a registration message to the
DNS server. A DNS TXT record can hold additional information, like special at-
tributes of the service. These are given as name-value pairs of the form ”name=value”.

When a service is to be found, the client sends a DNS PTR request to the DNS
server. This will return the service instance names of all the advertised services of the
requested type. When an instance has been selected, a DNS SRV request is sent to get
the needed information about how to contact that service.

In Mac OS X, Rendezvous (DNS-SD) is used to advertise and locate shared file
systems, ftp servers, shared music libraries, printers and more. For example to config-
ure a printer, the user just starts the printer setup utility and selects a printer from a list
of available printers. This will of course only work when the printers advertise their
services using DNS-SD. As an alternative discovery method, Mac OS X can also use
SLP.

2.3.4 Rendezvous vs. SLP

As seen, Rendezvous is more than just service discovery. It also enables automatic
configuration of IP-addresses, and the use of multicast DNS. The DNS based service
discovery used in Rendezvous provides an alternative to the service discovery method
used in SLP. Rendezvous relies on the existing DNS technology so it needs no special
software for storing the advertisement. SLP on the other hand requires new software
for storing advertisements, the Directory Agent. This reuse of existing technology
makes Rendezvous interesting, as little work is required to get it running. Most net-
works will already have a DNS server running. It is possible to use a separate server
for the service discovery by assigning the subdomainstcp and udp to that server.

Rendezvous is a quite new technology and has until lately only been available in
Mac OS X. Versions for Windows and Linux/Unix are now also available. SLP has
been around for a few years now. The latest version of the protocol is from 1999.

2.3. RENDEZVOUS 23

A number of implementations, both free and commercial are available. In addition
SLP is supported by many hardware devices. Many network printers, for example, can
advertise themselves through SLP. A number of manufacturers have stated that future
products will support Rendezvous, so in time, Rendezvous may be as well supported
as SLP is now.

So, Rendezvous requires little extra software to work as it relies on the existing
DNS system. SLP requires special software to be deployed, but is currently more
supported than Rendezvous.

24 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Mesh Enhanced SLP (mSLP)

Mesh enhanced SLP is an open source implementation of the service location protocol.
It is developed at Columbia University, New York. mSLP is not a fully standard imple-
mentation of SLP. Instead, they focus on an extension to SLP. This extension enables
multiple directory agents to communicate in a mesh structure. mSLP does not have a
normal service agent that can answer multicast service requests. The implementation
requires that at least one DA is always running. A combined SA/UA application can
register services and send requests to this DA. When a SA registers a service with one
DA, this registration will be propagated through the mesh of DAs so that eventually all
the DAs know about the service. The SA thus only needs to register its services with
one DA. The UA will send its requests to one of the available DAs.

To make this work with SmartFrog, a wrapper library was written. This library
implemented the standard Java API for SLP[8], and could be used by SmartFrog com-
ponents to register and deregister services. While this worked, it would be better to
have a standard implementation of the protocol. For example if no DA was available
when a service was to be registered, the registration would fail. Having a real service
agent would remove this problem.

The implementation created for this thesis will follow the SLP standard very closely,
and allow user agents and service agents to work without any DA available. The imple-
mentation of the directory agent will also be standard and not use mesh enhancement
or other extensions. The API provided to SmartFrog components and other programs
using SLP will essentially be the same as in the mSLP wrapper library, as the imple-
mentation described in this thesis will also use the standard Java API for SLP.

Chapter 3

SLP Library Implementation

This chapter will explain the implementation of the Service Location Protocol library
that is the result of the work on this thesis. The chapter starts with a quick intro-
duction giving the implementation goals and some thoughts on how the library was
implemented. It then goes on to show how the implementation was done.

The library itself is divided into several Java packages grouping similar classes
together. To explain how the library is implemented, I will first explain the classes
in each package. Then I will show how everything is put together into a working
implementation of the Service Location Protocol. In this chapter I will only say what
each class does. I will not list and explain the methods in the classes. The methods that
are important for the use of the SLP library is explained in the SLP user guide given
in appendix E. The Javadoc files included on the CD-ROM will also provide a lot of
information.

3.1 Introduction

The Service Location Protocol version 2 is standardised by the Internet Engineering
Task Force, IETF. The specification of the protocol is given in RFC-2608[9]. Another
document, RFC-2614[8] defines a suggested Java API for the protocol.

The goal of this implementation is to follow the specified standard as closely as
possible. In order to maintain easy portability between this library and other imple-
mentations, the public API provided by this library follows the specification in [8].

Even though the SLP library is to be used within the SmartFrog framework, the
core library itself is in no way tied to SmartFrog. The binding to the SmartFrog frame-
work is done through special SmartFrog components capable of using the features
present in the core SLP library. This means that the library can be used directly from
standalone applications outside of the SmartFrog framework. Such applications will
use the SLP API directly in their program code instead of going through the SmartFrog
components.

Some parts of the library do not fully comply to the standard. The parts in question

25

26 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

are put forth in Section 3.9. The deviation from the standard should not introduce any
major incompatibilities with other SLP implementations. The library should be fully
capable of communicating with other SLP implementations.

3.2 Package org.smartfrog.services.comm.slp

This package contains the interfaces and classes defined in RFC-2614 - An API for
Service Location[8]. The package also contains the SmartFrog components for inte-
grating SLP into a SmartFrog application. People wanting to use the SLP library only
need to know the classes and interfaces found here. Everything else is in general only
for internal use by the library itself. The classes and interfaces found here are:

• Interface Advertiser
The Advertiser interface is defined in RFC-2614[8] and has all methods required
for registering and deregistering the services to be advertised by SLP. This in-
terface is implemented by the ServiceAgent. Users of the library will get an
advertiser object from the service location manager. The implementation of the
service agent is of no concern to the user, as they only have to worry about the
API defined by the Advertiser interface.

• Interface Locator
The Locator interface defined in RFC-2614[8] has all methods required for find-
ing services, service types and service attributes through SLP. The Locator inter-
face is implemented by the UserAgent. As with the Advertiser, the user will get
a Locator from the service location manager and does not have to worry about
the actual implementation of the User Agent.

• Interface SFSlpAdvertiser
The interface for the SmartFrog advertiser component. This is currently an
empty interface, but methods to register and deregister services through the com-
ponent may be added.

• Interface SFSlpDA
Interface for the SmartFrog Directory Agent component. This interface is cur-
rently empty, and will most likely stay that way. The DA receives registrations
and requests from Service Agents and User Agents over the network. It has no
methods that are meant do be accessed from the outside.

• Interface SFSlpLocator
Interface for the SmartFrog locator component. This is currently empty, but
methods to use the discovery methods of the SLP library through this component
may be added.

3.2. PACKAGE ORG.SMARTFROG.SERVICES.COMM.SLP 27

• Interface ServiceLocationEnumeration
Interface for the enumerations returned by service requests. The interface ex-
tends the Java enumeration interface, and defines one extra method: next() which
returns the next object in the enumeration. The specification say that this method
should block until results are available. In this implementation, the discovery
methods are synchronous so the enumeration will contain all possible results
when we get it. This method therefore returns immediately. If no more results
are available it returns null. Thus this method is identical to the nextElement()
method found in the Java Enumeration interface.

• Class SFSlpAdvertiserImpl
Implementation of the SmartFrog advertiser component. This component is
given a link to the thing to advertise. This may be another component, a String
or some other Object. One must also provide the service type to use for the ser-
vice, the attributes of the service (if any) and the life time of the advertisement.
The advertiser will create a service URL to advertise the given object. This URL
is then registered with SLP through an Advertiser.

• Class SFSlpDAImpl
Implementation of the SmartFrog DirectoryAgent component. This component
will create a DirectoryAgent object which will get requests and registrations
over the network. The component works by creating a DirectoryAgent object on
startup. When the component terminates, it also tells the DirectoryAgent object
to terminate, thus shutting down the DA.

• Class SFSlpLocatorImpl
Implementation of the SmartFrog locator component. The locator is given a
service type to search for and optionally a search filter to use in the search. The
actual search is performed in its own thread, and can be repeated periodically. A
component needing the result from the discovery will have a link to the ”result”
attribute of the locator component. Whenever sfResolve is called to resolve
that link, it triggers the SLP search in the locator. If the locator has completed
its search, the result of the search is returned immediately. If not, the method
blocks until results are available. For the component using the locator this is no
different than resolving any other SmartFrog link.

• Class ServiceLocationAttribute
A class that represents an attribute for a service advertised through SLP. An
attribute has an ID and a Vector of values. A vector of ServiceLocationAttribute
objects are given along with a ServiceURL when a service is registered.

• Class ServiceLocationException
Exception thrown whenever an error occurs in the SLP library. The exception
includes an error code indicating which kind of error occurred. The exception

28 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

may also include a text description of the problem. The possible error codes are
given in RFC-2614[8].

• Class ServiceLocationManager
Manages access to the SLP framework. The service location manager is used
to get Advertiser and Locator objects that can be used to register services and
find services through SLP. Any program wanting to use a Locator or Advertiser
object should get this through the ServiceLocationManager class. The methods
used for obtaining the advertiser or locator are given in the SLP user guide found
in Appendix E.

• Class ServiceType
Represents a service type in the SLP library. The class has methods to get the
different parts of the service type string.

• Class ServiceURL
Represents a ServiceURL in SLP. A service URL has a service type, a hostname
and a path to the service on that host. The URL is a standard URL of the form
servicetype://hostname/path. The different parts of the URL can be obtained by
using the appropriate methods provided by this class. As well as the URL itself,
the ServiceURL class holds the life time for the URL. This controls how long
the service is advertised. Advertisements that are not renewed will eventually be
deleted as their life time reaches zero.

More information on the usage of the library can be found in the SLP user guide in
Appendix E.

3.3 Package org.smartfrog.services.comm.slp.messages

The messages package contains classes representing all the different SLP message
types. All message classes are subclasses of the SLPMessageHeader class, also in-
cluded in this package. Figure 3.1 shows the header class along with two message
classes. These should give an impression on how the implementation relates to the
definition of the messages in the SLP specification[9].

The most important feature of the message classes are that they know how to read
and write their data in the wire format specified by the service location protocol. The
classes also have methods which can be used to get different parts of the SLP message.
Typically an empty message of a given type is created when a message is received. The
message object is then told to read its data from an SLPInputStream. When messages
are to be transmitted, a message object containing all the relevant data is created, and
the object told to write its content to an SLPOutputStream.

An overview of the different message types used in the Service Location Protocol
was given in Section 2.2. There are one class for each type of message implementing
what is required to represent that message type.

3.4. PACKAGE ORG.SMARTFROG.SERVICES.COMM.SLP.NETWORK 29

Figure 3.1: SLP Message Classes (Class Diagram)

3.4 Package org.smartfrog.services.comm.slp.network

The network package contains classes to handle network traffic. The service location
protocol must support both UDP and TCP communication. These classes simplify the
use of this within the library. The network classes will listen for incoming data on
the network, and call the appropriate callback functions when a message is received.
Classes that are to receive data from the network must implement these callback func-
tions. Figure 3.2 shows the classes handling UDP traffic.

Overview of network classes:

• Class SlpUdpClient
This is the base class for all UDP network classes. The UDP classes are SlpUni-
castClient, SlpSharedUnicastClient and SlpMulticastClient. The SlpUdpClient
class implements the basic functionality for receiving messages over the net-
work. It also has the default implementation of all accessible methods for the
UDP classes. In many cases this is simply throwing an exception saying that the
method is not implemented. For example, the SlpMulticastClient class can not
be used to send messages.

• Class SlpUnicastClient
Class for handling unicast traffic. That is, traffic that is sent to a valid local
address. Messages to multicast groups are not received by this class. This class

30 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

Figure 3.2: UDP Network Classes in SLP Library (Class Diagram)

is also able to send data to a remote address.

• Class SlpSharedUnicastClient
This class is a subclass of the SlpUnicastClient class. It can be used by multiple
threads simultaneously to send SLP messages. A special send method enables
senders to register the XID of their message with the class. The XID is a unique
identifier included with every SLP request. When a reply is received, the class
checks the XID of the reply and invokes the callback method of the correct object
based on this. A reply always has the same XID as the request causing it to be
sent.

• Class SLPTcpClient
The SLPTcpClient class is used when the library has to deal with messages that
can not fit inside a single Datagram packet. The UA use this to resend a request
if the reply overflows. This way it can get all the possible replies. The SA use it
to send registrations to the DA if the registration message is too big for a single
Datagram.

• Class SLPTcpServer
This class is used to listen for incoming TCP requests. When a request is re-
ceived, it accepts the connection and pass the request on to the DA or SA running

3.5. PACKAGE ORG.SMARTFROG.SERVICES.COMM.SLP.UTIL 31

the server. Replies are written back over the established connection.

SLP use UDP whenever possible. It will only fall back to using TCP if the messages
to transfer are too big for a single datagram. See also the note in Section 3.9 about the
use of TCP in this implementation.

3.5 Package org.smartfrog.services.comm.slp.util

The util package contains a collection of classes that are used by various parts of the
library. There are generally no real connection between these classes. Each of the
classes found here are presented below:

• Class ParseTree
Implements a parse tree for the search filter given in service requests. The class
builds a tree from the String given as search filter, and can then match this against
a set of attributes.

• Class SLPDefaults
This class contains a number of constants defining the default values for the
configurable properties of the SLP library. It also has a method to return a Java
Property object with all the default values.

• Class SLPInputStream
The SLPInputStream class is built around a DataInputStream. It contains the
methods required to read the datatypes found in the SLP messages from this
stream. The class is used by the message classes when they need to read their
data from a stream. I.e. When a message is received from the network.

• Class SLPOutputStream
The SLPOutputStream class is built around a DataOutputStream. It contains the
methods required to write the datatypes used by the SLP message classes to this
stream.

• Class SLPUtil
This class contains a number of static methods used by various parts of the li-
brary.

• Class ServiceAttributeEnumeration

• Class ServiceTypeEnumeration

• Class ServiceURLEnumeration
The Enumeration classes are implementations of the ServiceLocationEnumera-
tion interface found in the org.smartfrog.services.comm.slp package. The enu-
merations contains ServiceLocationAttributes, ServiceTypes and ServiceURLs

32 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

respectively. The URLs in the ServiceURLEnumeration are sorted by decreasing
lifetime so the one with the longest lifetime is always returned first.

3.6 Package org.smartfrog.services.comm.slp.agents

This package holds the implementation of the SLP User Agent, Service Agent and Di-
rectory Agent and a number of classes related to the implementation of these. Classes
found here are:

• Class DAInfo
Holds information about a DA. Used by the Service Agent and User Agent to
store information about the DAs they discover.

• Class DirectoryAgent
Implements an SLP Directory Agent. The Directory Agent is implemented ac-
cording to the specification of SLP version 2 in RFC-2608[9]. The agent listens
for requests from user agents, and receives registrations and deregistrations of
services from service agents. It will periodically send a DAAdvert message to
the SLP multicast address to let other agents know it’s there.

• Class SARegistrationThread
Implements a thread used by the SA for handling the registration and de-registration
of services with a DA. When a new service registration is received, it will tell this
thread to register the service with all known directory agents. As this is done in a
separate thread it will not interfere with the SA’s ability to receive registrations.
Deregistrations are handled in the same way. This thread is also responsible for
refreshing the registrations of permanent services with the directory agents.

• Class SLPAgent
Super class for the Service and User Agent classes. Implements the common
functionality for these two.

• Class SLPDatabase
Implements the Database used to store service registrations. This is used by the
SA and DA for storing the registrations they receive. The database implementa-
tion uses a linked list for storing advertisements.

• Interface SLPMessageCallbacks
Defines the methods used to handle incoming messages. This interface defines
two methods: handleNonReplyMessage and handleReplyMessage. These are
called upon receiving a request or a reply to a request.

• Class SLPMessageSender
Used by the UA to send requests, and the SA to send registrations to the DA.

3.7. PUTTING IT ALL TOGETHER 33

The sendSLPMessage method of the class will send a given message and wait
for replies. If required, it will open a TCP connection and resend the request
over TCP. Multiple SLPMessageSender objects can share a SharedUdpClient
object, thus transmitting the message over the same socket. This avoids opening
a lot of ports on the computer if multiple requests are sent simultaneously. The
SLPMessageSender can not be shared by multiple threads. Each thread must
create their own instance of this class.

• Class SLPRequestHandlers
A collection of static methods used by the SA and DA to handle incoming re-
quests. This is to reduce the amount of duplicate code in the SA and DA. I can
not create a super class for the DA and SA since the SA is already a subclass of
SLPAgent. Java does not allow multiple inheritance.

• ServiceAgent
Implementation of an SLP Service Agent. The service agent implements the Ad-
vertiser interface, and the methods defined there are used to register and dereg-
ister the services advertised by the service agent. The agent will automatically
discover directory agents on the network and register its services with them.

• UserAgent
Implementation of an SLP UserAgent. The user agent implements the locator in-
terface, and the methods defined there are used to perform searches for services,
service types and service attributes through SLP. The user agent will automat-
ically discover any directory agents in the network. When it sends a request,
it will automatically select directory agents that supports the scopes in which
to search and unicast the request to those directory agents. Depending on the
scopes used it may be necessary to send the request to more than one directory
agent to cover all scopes. If the known directory agents do not cover all the
scopes in the request, the request will be multicast to the SLP multicast address.

3.7 Putting It All Together

This section will show how the different parts of the library are used to create a working
implementation of the various SLP agents. I will use the Service Agent as an example
as that uses most of the library. The user agent and directory agent are using a similar
design, but may use different parts of the library to implement the things they need.
Figure 3.3 shows a class diagram for the ServiceAgent.

The diagram shown here does not include every class used by the ServiceAgent,
but shows the main architecture of the library. Figure A.2 in Appendix A shows a use
case diagram for the service agent. I will try to explain what happens internally in the
library for the different use cases. The sequence diagrams found in Appendix A will
also help showing this.

34 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

Figure 3.3: Class Diagram for ServiceAgent

The ServiceAgent is used by service providers to register and deregister services
advertised through SLP. When a provider has a service to advertise, it registers its
service by a call to the ”register” method implemented by the ServiceAgent. The im-
plementation of this method creates a new SLPDatabaseEntry containing information
about the new service. The item is then added to the SLPDatabase used by the Ser-
viceAgent. The item is also passed on to the SARegistrationThread to be registered
with any Directory Agents known by the ServiceAgent. The registration thread will
send a registration message to each known DA registering the service. When a ser-
vice is deregistered, the SLPDatabaseEntry containing that service is removed from
the SLPDatabase, and the SARegistrationThread is told to deregister the service. The
registration thread will then send a deregister message to each of the known Directory
Agents.

In order to help clients to find the service they are looking for, the ServiceAgent
knows how to answer service request, service type request and service attribute re-
quest messages. The ServiceAgent gets the requests by listening on the SLP multicast
address. This is handled my an SlpMulticastClient object (SlpMulticastClient is a sub-
class of SlpUdpClient). When a datagram is received by the SlpUdpClient, the method

3.8. SMARTFROG COMPONENTS 35

udpReceived is called on the ServiceAgent object. This method creates an SLPInput-
Stream that can be used to read the bytes included in the received datagram. It also
extracts information about the type of message received. After this it calls handleNon-
ReplyMessage providing the stream and type as parameters. Based on the type of
message, the appropriate method to handle the received request is called. The Ser-
viceAgent can also receive requests through TCP. The SlpTcpServer class is used for
this. When a TCP connection is established, it will create an SLPInputStream to read
data from, and call the handleNonReplyMessage method. Thus the request is handled
in the same way whether it is UDP or TCP. Handling a request includes searching for
an appropriate entry in the database and create a reply if possible. The SLPDatabase
class have methods that can be called for finding services of a given type, the different
types of services, and the attributes of services. If matching services, service types or
attributes (depending on type of request) are found in the database, a reply containing
the result is created. If no match is found, or an error occurs, a reply is only created if
the request was received on the unicast address.

The ServiceAgent also needs to discover Directory Agents running on the network.
To do this it sends service requests looking for the service:directory-agent service.
When a message that should trigger a reply is sent, the SLPMessageSender class is
used. This takes a message to send and waits for replies. Whenever a reply is received,
it will call the handleReplyMessage method in the ServiceAgent or UserAgent that
used it for sending the request.

Appendix A has use case and sequence diagrams for the main functionality of
the User Agent, Service Agent and Directory Agent implementations. These should
give an idea on how the library works. The handling of received messages is pretty
much identical for all the agents. All messages that are expected to generate a reply
are sent using the SLPMessageSender class. This is true for both the UserAgent and
ServiceAgent. The DirectoryAgent never sends messages that expects a reply, so it
can send the messages directly using the SlpUdpClient bound to the unicast address.

Appendix E contains the user guide for the SLP library. This will show how to use
both the core SLP library and the SmartFrog components written for the library. In
the next section I will give a description of how the components are implemented and
attached to the rest of the SLP library.

3.8 SmartFrog Components

Three SmartFrog components have been written to allow SLP to be used easily within
the SmartFrog framework. These three components are SFSlpAdvertiser, SFSlpLo-
cator and SFSlpDA. The advertiser and locator components use the standard methods
provided by the Advertiser and Locator interfaces to access the core SLP library. This
is done in the same way as any other program would use the library. The SLP user
guide in Appendix E has information on how this is done. In addition to the compo-
nents, a special class for deploying SmartFrog components, SFSlpDeployerImpl, has

36 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

been written. The implementation of the components and deployer class will be de-
scribed in the next sections, with most detail on the SFSlpLocator and SFSlpAdvertiser
components.

3.8.1 SFSlpLocator

The SFSlpLocator component is used to locate things advertised through SLP. Other
components use this to find a SmartFrog component or some other object like a String,
Integer or SmartFrog Reference. To get the result of a service discovery a component
use a link to the ”result” attribute of the locator component. i.e.

someObject LAZY locator:result;

The SFSlpLocator component has a special implementation of the sfResolve method
described in Section 2.1. Whenever the ”result” attribute is to be resolved, this triggers
the service discovery. The actual discovery is done in a separate thread, and can be
repeated periodically. If a result is available when sfResolve is called, that result will
be returned. If the service discovery is not completed, the method will wait until the
results are ready and then return the discovered object. Pseudo code for the sfResolve
code is given below.

public Object sfResolve(Reference r, int index) {
if(r.elementAt(index).toString().equals("HERE result")) {

wait for service discovery to complete;
select a discovered object to return;

}
else {

return super.sfResolve(r, index);
}

}

The if-statement checks that the ReferencePart at the current index is a reference to
the ”result” attribute. This means that the result of the service discovery is requested.
The ”returnEnumeration” attribute of the SFSlpLocator can be set to ”true” to indicate
that the ServiceLocationEnumeration object returned from the service discovery is to
be returned as is. The default operation is to select the first service in the result, and
create the Object to return from this. Depending on the format of the service URL,
different objects are returned. The URLs in the enumeration are sorted by decreasing
life time, thus always having the one with the longest life time as the first element.

If the attribute to resolve is not the ”result” attribute, the standard implementation
of sfResolve is used to find the correct Object to return. The full SmartFrog description
file for the SFSlpLocator is given in Appendix B.

3.8.2 SFSlpAdvertiser

The SFSlpAdvertiser component is used to advertise things through SLP. It has at-
tributes to define the service type, lifetime and service attributes for the thing it ad-
vertises. The attribute ”toAdvertise” has the value to advertise. This may be a simple

3.8. SMARTFROG COMPONENTS 37

value like a String or Integer, or a link to some other attribute. If toAdvertise is a link,
one has the choice of advertising the resolution of the link or the link itself. When the
component starts, it builds a service URL to advertise the given object. The format of
this URL depends on the type of object to advertise. The basic format is

serviceType://hostname/path

When objects other than String or InetAddress are advertised the hostname part of the
URL is usually empty, giving the URL

serviceType:///someObject

The someObject part is given in plain text for objects that are easily represented as
a String. This includes Numbers, Boolean and String. Other objects are serialised
to a byte array and the BASE64 encoded String created from that array is added to
the URL. The object can then be recreated by the SFSlpLocator when it receives the
URL. The full SmartFrog description of the SFSlpAdvertiser component is given in
Appendix B.

3.8.3 SFSlpDA and SFSlpDeployerImpl

The SFSlpDA component is a component for running a Directory Agent on a host. The
component does nothing more than creating an instance of the DirectoryAgent class
on startup, and makes sure the DirectoryAgent is terminated when the component
terminates. The full source code and SmartFrog description for this class is given in
Appendix B.

The SFSlpDeployerImpl class is used in place of the default deployer class if one
wants to deploy components in a ProcessCompound advertised using SLP. The class
use an SLP Locator to look for the advertised ProcessCompound. When the results are
collected, the first result is used (if multiple results are available). When the process
compound is found, the sfProcessName and sfProcessHost attributes are added to the
description of the component to deploy, and the standard SmartFrog deployer class
is told to deploy the component. The standard class will use the sfProcessName and
sfProcessHost to locate the correct ProcessCompound. A typical usage is:

sfConfig extends Compound {
sfDeployerClass "org.smartfrog.services.comm.slp.SFSlpDeployerImpl";
slpConfig extends SFSlpConfiguration {

serviceType "service:pc"; // serivce type of the advertised PC.
// any other SLP configuration

}
// normal components

}

The ”slpConfig” component description must be included, and have the attribute
”serviceType”. If not, SLP will not know the type of service to look for. Other possible
configuration options for SLP is given in the SLP manual in Appendix E.

38 CHAPTER 3. SLP LIBRARY IMPLEMENTATION

3.9 Non-Standard Implementation

Some parts of the library differ slightly from the behaviour defined in the standard.
This was necessary in order to implement the library the way it is done. I will explain
the reason for my choice for each point.

• Service Agent does not accept unicast datagrams
In order to allow multiple service agents to coexist on the same host, they do
not listen for unicast messages on the default SLP port. The service agent can
only receive requests that are multicast. User agents should use multicast when
communicating with service agents, so this should not be a problem. If a user
agent tries to be clever and unicast its requests to one specific service agent, that
will fail.

• TCP connections
The service agents do not listen for TCP on the default SLP port. Instead they
listen on their own special port. This is again to allow multiple service agents
to coexist on the same host. If a user agent expects the SA to listen on the
default SLP port, it will not be able to connect to it. TCP is used if a reply
overflows. That is, all possible replies could not fit inside a single datagram.
The user agent can then connect using TCP to get all the replies. The user agent
in this implementation tries to make the TCP connection to the port from which
it received the reply, which will work. As long as the user agent does this, it will
work. In any case, the user agent should be able to handle the failure to connect
and return the services included in the original reply.

A way to solve the problem of having multiple SAs running on the same host is to
create a SA Server daemon that SAs can register their services with over the loopback
interface. This will then represent all the SAs on the host. This means that the SA
Server must be running for the SAs to work. I did not want the SAs to depend on any
other components being present. The changes described above allowed this.

The Directory Agent will accept unicast datagrams and TCP connections on the
default SLP port, so these issues are only related to the Service Agent.

Chapter 4

Testing the Library

During the work on the SLP library, a number of tests were run in order to check that
the library worked correctly. Some of these tests were simple tests where I just checked
that a message was received an understood by my library. To make sure that my
messages had the correct format, I tried to send requests to other SLP implementations.
Two open source implementations of SLP were used in these tests, OpenSLP[14] and
mSLP[18]. OpenSLP is a C implementation of the Service Location Protocol. mSLP
is implemented in Java, and is not a fully standard implementation, although the format
of the messages sent using it should be correct.

mSLP has a graphical user interface where one can write the service URL, service
type and attributes of the service to register or discover. This was very useful during
testing, as it also enabled me to write invalid requests and check that my implementa-
tion were able to handle those. For example some errors related to my URL handling
were found this way. A malformed URL could in some cases cause my SLP agents to
crash, which is not a good thing.

In addition to using the existing SLP implementation to check that my library was
able to work together with those, I wrote some simple test programs which I used to
test other parts of the library. The various tests will be further explained in the next
sections.

4.1 Testing With OpenSLP

OpenSLP consists of a shared library and a daemon process, slpd. The shared library
has the required methods for registering/deregistering services and perform service
discovery. In other words, the functionality of a SA and UA. The daemon can be used
as an SA Server or Directory Agent. The shared library connects to the SA server
over the loopback device when services are to be registered or deregistered. On my
system I ran slpd as a Directory Agent. This way I could test that my SA registered
and deregistered services correctly and that the UA sent requests and handled replies
correctly.

39

40 CHAPTER 4. TESTING THE LIBRARY

4.1.1 Testing the Service Agent

The Service Agent is used to advertise services. In order to test that my agent was able
to register services with the Directory Agent, I created a small program that allowed me
to enter service URLs to register by hand. I could then see in the log file of OpenSLP
that the registrations were correctly received by the DA. When I started testing the
User Agent, I used this program without a DA running to check that the replies sent
by the SA was the same as the UA got from the DA when that was running. Some
problems were discovered on the first tries, but those were mostly related to minor
errors in the message classes resulting in slightly wrong format of the sent data. The
program I used to test the SA is described in Section 4.3.1.

4.1.2 Testing the User Agent

The User Agent is used to request services on behalf of a client. In order to test this,
I wrote a simple program that allowed me to write the service type to search for and a
search filter. After completing the discovery, all results were printed on screen. When
sending a request to the OpenSLP DA, I could again see in the log file of OpenSLP
that the message was received and parsed correctly. Services were registered with the
DA either using mSLP or using my test program for the SA. When using my SA test
program, I also made some requests without the DA running. These were then sent on
the multicast address, and replied to by the SA if any matching service were available.

4.2 Testing with mSLP

mSLP is, as written in Section 2.4, an open source implementation of the service lo-
cation protocol written in Java. The implementation is not fully standard. They have
instead focused on making an extension to the protocol. mSLP has two parts. The Di-
rectory Agent and a combined Service and User agent. The directory agent will work
as a standard DA if configured to. In my tests, I mainly used the SA/UA part. This
way I could check that my own DA implementation returned the expected replies to
requests.

4.2.1 Testing the Directory Agent

The directory agent must be able to accept requests for services and registration/de-
registration of services. For testing that my DA worked as expected, I used the UA/SA
provided with mSLP to send registrations of services and service requests to my DA.
My DA was running with all debug options enabled, so it would say what was going
on. Using this combination of mSLP and my own DA, I could check that registrations
were received and stored correctly, and that it responded correctly to requests. I also
tried sending invalid URLs when registering services to make sure that my DA handled

4.3. SPECIAL TEST PROGRAMS 41

those correctly. That is, discarded the registration and set an error code indicating a
parse error in the reply to the SA.

4.3 Special Test Programs

As mentioned in the previous sections, some special test programs were written to
test my implementation of the service agent and user agent. These are very simple
programs. I will describe these programs in the next two sections. I also had a simple
test application for the SmartFrog components I created. This will also be described
below.

In addition to these simple test programs, I created a test to check how well my
library handled multiple concurrent requests. This test had a simple SA program that
advertised one service. Another program was then started that did multiple requests
for that service in parallel through one UA.

Chapter 5 will show how the SLP library was used for some components control-
ling the Portable Batch System, PBS. That also proved to be a good test of the library.
PBS is a system for running batch jobs. The created components was able to start
the different daemons required by PBS, and dynamically add execution nodes to the
system.

4.3.1 Service Agent Test Program

The source code to this program can be found on the CD in the directory tests/ServerTest.
The program is very simple, and basically allowed me to enter a URL to register with
the service agent. The program uses the standard methods for creating and using the
service agent. These methods are explained in the SLP manual found in appendix E.

When started, the program presents a graphical user interface where one can enter
a service URL and the attributes for that service. Before one can register services, a
ServiceAgent object has to be created. This is done by selecting ”Create SA” from the
File menu. Pressing the ”Register” button will register the given service with the SA.
A user agent can then be used to search for that service. If the SA know of one or more
directory agents, it will automatically register the service with the known DAs. The
GUI also display a list of the registered service URLs. Selecting a URL from the list
and pressing ”Deregister” will deregister the service represented by that URL.

4.3.2 User Agent Test Program

The source code to this program can be found on the CD in the directory tests/ClientTest.
The program is basically a copy of the ServerTest program with some minor modifi-
cations. Instead of using a service agent to register services, this will use a user agent
and try to locate a service.

42 CHAPTER 4. TESTING THE LIBRARY

When the program starts, the GUI allows one to enter a service type and a search
filter for the service to look for. Pressing the ”Search” button will search for that
service. The results of the discovery are printed inside the window when discovery is
completed. Before starting to search for services, one has to create the user agent by
selecting ”Create UA” from the menu.

4.3.3 Testing Concurrent Requests

An instance of my UserAgent class can be shared by multiple threads. All threads
can use the UA for sending requests in parallel. To test that this feature worked, and
nothing unexpected happened when doing this, I wrote a simple test program that
would create a number of threads that all sent a request for a single service. The result
of the request were written to a file for each thread. I could then compare the contents
of these files to verify that all threads found the same service, as they should.

To advertise the service, a simple program was written that would create a Ser-
viceAgent object, and register one service with this. This would then be the service
discovered by the user agent.

The initial tests revealed a minor problem with how multiple threads were handled
when sending a request. This was, however, easily fixed. Each request has an ID,
which should be unique. When a reply is received, this ID is used to find the correct
object to notify. In my implementation I did not check that this randomly selected
ID was in fact unique. If a large number requests were sent in parallel, two requests
could have the same ID, causing replies to get lost. This was fixed by checking that
the ID was unique when creating a request. After this was fixed, the library worked as
expected.

The source code for these programs can be found in Appendix C. It is also included
on the CD in the tests/threads directory.

4.3.4 Testing SmartFrog Components

One of the goals of the SmartFrog components for SLP was that components should
be able to use it without the Java code having to be modified. The first test of the com-
ponents where simply trying a slightly modified Hello World example. The example
that comes with SmartFrog has one application where a Printer component is used by a
Generator component to output text on screen. The Generator has a LAZY link to the
printer in its description. In my test, I created two applications. One started the Printer
component and advertised that using the SFSlpAdvertiser component. The other appli-
cation started the Generator component, and used the SFSlpLocator component to find
the Printer. This test were successful, so I was very happy with that. The SmartFrog
descriptions for the two applications are given in Figure 4.1.

Other attributes were also tested. This was done by adding some debug output
to the advertiser component to check that it advertised the attribute the way it was
intended to do. Similarly some debug output were added to the Locator component to

4.3. SPECIAL TEST PROGRAMS 43

Printer

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/services/comm/slp/components.sf"
sfConfig extends Compound {

printer extends Printer;
adv extends SFSlpAdvertiser {

serviceType "service:sf-prim:printer";
toAdvertise LAZY printer;

}
}

Generator

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/helloworld/generator.sf"
#include "org/smartfrog/services/comm/slp/components.sf"
sfConfig extends Compound {

loc extends SFSlpLocator {
serviceType "service:sf-prim:printer";

}
generator extends Generator {

printer LAZY loc:result;
}

}

Figure 4.1: Test of SmartFrog Components

check that it returned the correct type of object. I did not write any special components
for this, but simply used the Hello World example only changing the value of the
toAdvertise attribute. This would of course generate an exception when the Generator
didn’t get a Printer back after calling sfResolve, but I could see from the debug output
that the SLP components worked as expected.

4.3.5 Testing the SLP Deployer Class

The SLP deployer class, SFSlpDeployerImpl, was tested in a similar way to the Smart-
Frog components. I created a simple application which just contained an SFSlpAdver-
tiser advertising the ProcessCompound in which it was started. I then deployed the
Printer application using the SLP deployer class. When the Generator was started, I
could then see that the Printer was in the correct ProcessCompound, as it started to
write text in the window of that compound. The application advertising the process
compound is given in Figure 4.2.

44 CHAPTER 4. TESTING THE LIBRARY

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/comm/slp/components.sf"
sfConfig extends Compound {

sfProcessName "myProcess";
adv extends SFSlpAdvertiser {

serviceType "service:process-compound";
toAdvertise LAZY sfProcess;

}
}

Figure 4.2: Advertising the ProcessCompound

The description of the Printer application is the same as shown in Figure 4.1, but
has some extra attributes added to the sfConfig description. these attributes tells it to
use the SLP deployer class instead of the standard one, and provides the SLP configu-
ration:

sfDeployerClass "org.smartfrog.services.comm.slp.SFSlpDeployerImpl";
slpConfig extends SFSlpConfiguration {

serviceType "service:process-compound";
}

Chapter 5

PBS Components

This chapter will show how a set of components to control the Portable Batch System
(PBS) was made. The first section will give a quick introduction to PBS, and present
the goals of the work with the SmartFrog components. I will then show how the
implementation was done. The work done on the PBS components was done in co-
operation with Andreas Unterkircher at CERN.

5.1 Introduction

The Portable Batch System is a system for running batch jobs. A number of execu-
tion nodes are available for running the jobs. The jobs to run are sent to the PBS
server which will start the jobs on the appropriate node(s). PBS is made up of a set
of daemons and tools to manage these daemons. The PBS daemons are: pbsserver,
pbsmom and pbssched. More on these in the next sections. Tools to manage the
daemons and get information about the running system includes qmgr and pbsnodes.
There are other utilities available for getting the status of jobs and so on, but these were
not used in this implementation.

PBS is available in two versions. The PBS professional version and OpenPBS.
OpenPBS is an open source version of PBS. On our test system, we were running
OpenPBS version 2.3.16. PBS was installed on a number of nodes in a Linux/IA64
cluster. We wanted to use SmartFrog to start and stop the required daemons on these
nodes. More information on PBS can be found on the OpenPBS homepage[13] and in
the PBS Administrator Guide[20]

The next sections will give a brief overview of the PBS daemons and tools used by
the SmartFrog components created. The information given is based on how it works
on our systems.

45

46 CHAPTER 5. PBS COMPONENTS

5.1.1 PbsServer

The PBS server is the centre of a running PBS system. All other daemons and tools
communicate with the server in some way over the network. Among the tasks of the
server is to create or receive batch jobs. The server is also responsible for sending the
jobs to the pbsmom daemons for execution.

The server is started by running the startup script in /etc/init.d/pbsserver. The
running daemon can be configured by using the qmgr command. By using this one
can for example add or delete an execution host from the server’s list of such hosts.
The server will only send jobs to hosts that are in this list.

5.1.2 PbsMom

The pbsmom daemon, also referred to as just mom, is responsible for executing jobs.
It must be running on each host that should be able to run batch jobs. The jobs are sent
to the pbsmom daemon by the server. From time to time, the server will also send a
status query to which the mom has to reply. If the mom fails to reply, the server will
assume it is down, and don’t send any jobs to it.

For the mom to accept jobs and queries from the server, it needs to know on which
host the server runs. By default only localhost may connect to the mom. When the
server is running on a different host, the hostname must be given in the configuration
file for the mom daemon. Similarly, to allows the PBS scheduler to contact the mom,
the hostname of the host running the scheduler must be given in the mom configuration
file. On our systems, this file is located in /var/spool/pbs/mompriv/config. The mom
daemon is started by running the startup script /etc/init.d/pbsmom.

5.1.3 PbsSched

The scheduler controls the order in which jobs are executed and on which host they
are executed. The scheduler communicate with the mom daemons to get informa-
tion about which resources are available and other status information. The scheduler
also communicate with the server to get information about the jobs that are ready for
execution. The scheduler is started by running /etc/init.d/pbssched.

5.1.4 Tools

A selection of tools, or commands, is provided with OpenPBS. These can be used to
configure the system, and to get information about things like jobs, job queues and the
status of the PBS daemons. The tools used for the SmartFrog components are qmgr
and pbsnodes.

• qmgr
qmgr can be used for updating the configuration of the server and get status

5.2. IMPLEMENTATION OF SMARTFROG COMPONENTS 47

information from the server. In our SmartFrog components, we used this com-
mand to add hosts to the the list of available execution hosts (hosts running the
pbsmom daemon). The command was also used to delete nodes from this list
when they were no longer available.

• pbsnodes
pbsnodes can be used to get information about the execution hosts known by the
server. When run with the ”-a” option, the command will list all execution hosts
known by the server. We used this to make sure the host we wanted to add was
not already known by the server when a new node was to be added by using SLP
discovery.

5.1.5 Goal of SmartFrog Components

The SmartFrog components controlling PBS should be able to start and stop the dif-
ferent PBS daemons on a node. By using SLP, we should be able to have a number
of nodes running that are not originally part of the PBS system. That is, they are not
known by the server and will not receive jobs. If an extra node needs to be inserted
into the system, one should be able to use SLP to find one of these spare nodes and add
it. A special SmartFrog component could be used for this. The idea is that one does
not need a specific node to be added to the system. One just need one of the available
nodes. Its location is not important.

It should also be possible to start a node and have it registered with the server
immediately. We therefore have these two options:

• A node sends a message to the server when it starts telling the server to add it to
the system. The node will then be able to receive jobs.

• A node starts up and is advertised through SLP. When a new node is to be added
to the system, a special SmartFrog component is started which does a search
for spare nodes using SLP. After the search, one of the discovered nodes are
registered with the server.

Figure 5.1 shows how a running PBS system could look. An arrow from the server to
the execution node indicates that the server knows about the node and can send jobs to
it. The other nodes are advertised using SLP and can be added later.

5.2 Implementation of SmartFrog Components

The original SmartFrog components for controlling PBS were written by Andreas Un-
terkircher. These did not use SLP, thus only the first method was supported. I then
took the job of adding SLP support to this. The original components did not change
in order to support SLP. A special SLP component for advertising the PBS node was
written. This component knows how to correctly advertise the execution node.

48 CHAPTER 5. PBS COMPONENTS

Figure 5.1: Example of a Running PBS System.

In order to discover nodes and register them with the server, a component was
written that searched for these advertised nodes and registered one of the found nodes
with the server. Registering the node was done by sending an event message to the
server. This is the same event that a node would send to register itself.

Next follows a description on each of the components written to create the full PBS
system supporting both of the options given above.

5.2.1 PBS Server

The PBS server component, PbsServer, is used to start and stop the pbsserver daemon
on a host. The component is able to receive events using the built-in event mechanisms
of SmartFrog. An event is a single String indicating that something has happened. Two
events are understood by the PbsServer component:

• pbs node up
When received, the node given in the event is registered with the running pbsserver
daemon. The required information on the node is encoded into the event string.

• pbs node down
When received, the node given in the event is no longer able to accept jobs, and
is deleted from the list of nodes available to the pbsserver daemon.

Upon receiving any of these events, the component uses the ”qmgr” tool to modify the
configuration of the running server daemon by adding or removing a node as requested

5.2. IMPLEMENTATION OF SMARTFROG COMPONENTS 49

by the event. Any other events are ignored.

5.2.2 PBS Node

A PBS node is a host capable of executing jobs. The PbsNode component is used to
start and stop the pbsmom daemon that must be running on such hosts. The com-
ponent is able to tell the PBS server component when the mom daemon is running.
It does this by sending an event. For the server to receive this event, the ”sendTo”
attribute in the description of the PbsNode component must point to the server. In the
case where the node is only to be advertised through SLP, the ”sendTo” attribute is not
set, and the event is simply lost. When the component terminates, an event telling the
server that the daemon is not running is sent. The events sent are ”pbs node up” on
startup, and ”pbs node down” on termination. The format of these events are given
below.

• <hostname>:pbs node up:ntype=<ntype>:np=<nprocs>

• <hostname>:pbs node down

In the events,<hostname> is the hostname for the node running the mom daemon.
<ntype> is the node type, and<nprocs> is the number of processors in the node. Fur-
ther explanation of the node type and nprocs attributes can be found in the OpenPBS
Administrator Guide[20].

5.2.3 PBS Advertiser (SLP)
The PbsAdvertiser component is a component that can advertise nodes ready to be
inserted into the PBS system through SLP. The component is a subclass of the SF-
SlpAdvertiser component. It overrides the createServiceURL method in order to build
the service URL used for advertising the PBS node. The format of the URL used to
advertise the node is:

service:pbs_node://<hostname>/pbs_node?ntype=<type>&np=<nprocs>

<hostname> is the name of the host running the pbsmom daemon.<np> is the
number of CPUs in the node, and<type> is the node type. More information on
the ”nprocs” and ”type” attributes of a node can be found in the PBS Administrator
Guide[20].

5.2.4 PBS Locator (SLP)

A special component was written to discover advertised nodes and register a discov-
ered node with the server. This component, PbsNodeLocator, is deployed whenever
a new node is to be inserted into the system. The component uses SLP to search for
advertised nodes and adds one of them to the server. The component checks that the

50 CHAPTER 5. PBS COMPONENTS

server does not already know about the discovered node before adding it. If no new
nodes are discovered, the component will print a message saying so. The standard
SFSlpLocator component is used by the PbsNodeLocator to do the service discovery.
The way the component adds a node to the server is to send an ”pbs node up” event to
the server with the attributes given in the service URL for the node.

Chapter 6

Results

This chapter presents the final results of my work. The chapter is divided into three
parts: The SLP library, the SmartFrog components and classes for SLP and the PBS
components.

6.1 Service Location Protocol Library

The main result of my work is the Java implementation of the service location protocol
and the SmartFrog components using that. This section will look at the core SLP
library without the SmartFrog components. Next section will look at the components
created.

My implementation of SLP closely follows the standard specified in RFC-2608[9]
and RFC-2614[8]. Exceptions are described in Section 3.9. I have implemented all
the mandatory features of the service location protocol for the User Agent, Service
Agent and Directory Agent. In addition to the mandatory features, which only includes
the ability to do service discovery, I have also implemented support for service type
and service attribute discovery. This means that my library supports all the types of
requests defined in the SLP specification.

The API presented to external programs that want to use the library is a subset
of the API defined in RFC-2614. I have not implemented all classes defined in that
specification because some are only for accessing optional features that are not present
in my implementation. I have implemented all parts that are relevant to the function-
ality present in the current version of my library. Additional parts of the API can be
supported as new features are added to the library.

The library has been tested in various ways as described in Chapter 4. The current
version of my library is fully capable of interacting with other implementations of the
protocol. This makes me confident that the library is in fact implemented according to
the given standard.

The library has been made available as open source under the GNU Lesser General
Public License (LGPL)[21], and the code can be found in the SmartFrog CVS reposi-

51

52 CHAPTER 6. RESULTS

tory on http://www.sourceforge.net/projects/smartfrog. The directory core/components/slp
in CVS contains the source code for my SLP library, including the SmartFrog com-
ponents. The source code is also included on the CD attached to this thesis in the
slplib/src directory.

The SLP Manual included on the CD and in Appendix E shows how to use the
library to advertise and locate services on a network.

6.2 SmartFrog SLP Components

The SmartFrog components for SLP enables the use of the SLP library within the
SmartFrog framework. SmartFrog components and attributes can be advertised through
SLP by adding the SFSlpAdvertiser component to the description. The advertiser com-
ponent is configured with service type, attributes, lifetime and the thing to advertise.
The ”toAdvertise” attribute decides what is to be advertised. The value of this may
be a simple value or a reference to some other component or attribute in the Smart-
Frog description. If the value of the ”toAdvertise” attribute is a reference, one can set
the ”advertiseReference” attribute to ”true” to advertise the Reference object. If that
attribute is ”false”, the object pointed to is advertised.

The SFSlpLocator component is used to search for advertised services. It is con-
figured with a service type to look for and an optional search filter. Components that
want to use the result of the discovery must have a reference to the ”result” attribute of
the locator. When this reference is resolved, the discovered object is returned.

Chapter 4 showed some tests that were done in order to test these components. The
result of the tests were very positive. Advertising and locating objects in the SmartFrog
framework works well. By using the functionality provided here, SmartFrog applica-
tions can find advertised components belonging to other applications without the writer
having to know which host the other application runs on. One only has to know the
service type of the advertised service. The service type for a given service will stay
the same even if the application is moved to a different host. If the components of the
application were referenced by using a HOST reference, that reference would have to
be updated if the application were started on a different host. Additionally, there may
be several identical services running. In many cases it is not important which of these
to use. SLP will select one from anywhere in the network.

When SmartFrog applications are deployed, they need to be deployed in a Pro-
cessCompound. This is a special SmartFrog component that can start applications. A
process compound can be advertised through SLP by using the standard SFSlpAdver-
tiser component. To advertise a process compound, one sets the ”toAdvertise” attribute
to be a LAZY reference to the ”sfProcess” attribute. E.g.

toAdvertise LAZY sfProcess;

As with all advertisements, a number of attributes can be registered for the service. If
one wants to deploy an application in a ProcessCompound with some special attributes,

6.3. PBS COMPONENTS 53

one can use the special SLP deployer class. This does a search for advertised Process-
Compound components, and returns one of the discovered ProcessCompounds. If no
match is found, the standard deployer class is used instead.

The use of the components and deployer class is documented in the SLP manual.
The examples shown in Chapter 4 will also give an idea on how these components are
used.

6.3 PBS Components

The components for controlling a PBS system that was made during the work on this
thesis have been tested successfully on a system with 6 computers. Figure 6.1 shows
the setup used for testing this. The 5 computers running the PBS daemons are IA64
systems running Linux. The system description was started from a normal IA32 PC
also running Linux. Only the PbsServer and PbsNode components were tested, as
those were the only ones implemented at that time. Later, a component for starting
the PBS scheduler has been created. This has not been tested in a full system, but the
component is able to start and stop the scheduler.

Figure 6.1: Test Set-up for the SmartFrog PBS Components

The components are quite straight forward implementations, only having the ability
to start and stop the PBS daemons by using the normal startup scripts for PBS. The
PbsNode components can be advertised through SLP for later inclusion into a running

54 CHAPTER 6. RESULTS

PBS system, or they can be registered with the PBS server on startup. The system
shown above has two advertised nodes, and two that are registered with the server on
startup. The SmartFrog description file for the system is given in Appendix D. The
descriptions and Java implementations for the PBS components are included on the
CD in the ”pbs” directory.

Chapter 7

Conclusions and Future Work

SLP provides an alternative way for SmartFrog components of finding other com-
ponents and services in a SmartFrog system. By using SLP, components from one
SmartFrog application can easily obtain references to running components belonging
to other applications. A component can also use SLP to locate any other advertised
service.

The possibility to use SLP offers a great advantage over the HOST reference, which
could also be used to get a reference to components belonging to a different applica-
tion. The HOST reference requires that you know a lot about the application within
which the interesting component is running. If the structure of the application changes
or it is moved to a different host, the reference needs to be updated, or the wanted
component will not be found. With SLP, the component can be moved around within
the application and the application can be moved to another host without any changes
being required in other applications. As long as the component is advertised, it will be
found. Thus SLP offers more flexibility for the designer of a SmartFrog system.

The implementation of the Service Location Protocol described in this thesis has
been successfully tested in a number of ways as described in Chapter 4. The library in
its current form is working, and fully useable through SmartFrog components and API
calls.

The implementation of the PBS showed one use of SLP, where a number of PBS
execution nodes were originally not able to receive jobs as they were not known by the
server. SLP made it easy to dynamically add spare nodes to the PBS system. In our
implementation we manually started a component that did a search for spare nodes and
added one to the system. It would also be possible to have the system automatically
add or remove nodes as they become available or is shut down. By periodically using
SLP to search for execution nodes, the list of discovered nodes could be compared to
the nodes known by the PBS server. Any new nodes could then be added to the system.
A node known by the system but not discovered using SLP could be removed.

55

56 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Future Work

The implemented SLP library supports all required parts of the Service Location Pro-
tocol. However, there are still some optional features that are not currently supported.
Future work will include implementing these missing features.

The need of additional SmartFrog components using SLP should be investigated.
One thing that might be useful in some cases is a service browser. This would be
a component with a graphical user interface displaying all the services it is able to
discover. This way an administrator can check which services are available before
deploying a SmartFrog application that needs a specific service. Other possibilities in-
cludes a component that can send a SmartFrog event message whenever a given service
is found. Components can then wait for this event, and then perform the appropriate
actions when the service becomes available.

The PBS components implemented for this thesis were very simple, and did not
have a lot of error handling. This should be improved in future versions of the compo-
nents. The current implementation does not check that the node discovered using SLP
does actually exist. A way of verifying this should be added to avoid adding nodes that
do not exist to the PBS system.

Bibliography

[1] Paul Anderson. ”The Complete Guide to LCFG”.
http://www.lcfg.org/doc/guide.pdf.

[2] Paul Anderson, Patrick Goldsack, and Jim Paterson. ”SmartFrog meets LCFG -
Autonomous Reconfiguration with Central Policy Control”.In the Proceedings
of the LISA 2002 System Administration Conference, 2003.
http://www.lcfg.org/doc/lisa03.pdf.

[3] Stuart Chesire, Bernard Aboba, and Erik Guttman. ”Dynamic Configuration of
IPv4 Link-local Addresses”.
http://files.zeroconf.org/draft-ietf-zeroconf-ipv4-linklocal.txt, 2004.

[4] Stuart Chesire and Marc Krochmal. ”DNS-Based Service Discovery”.
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt, 2004.

[5] Stuart Chesire and Marc Krochmal. ”Multicast DNS”.
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt, 2004.

[6] Hewlett-Packard Development Company. ”A Brief Description of the Dynamic
Web Server Demonstrator”.
http://www.hpl.hp.com/research/smartfrog/papers/sfDynamicWebServerExample.pdf,
2004.

[7] Hewlett-Packard Development Company. ”The SmartFrog Reference Manual
v3.02”.
http://www.hpl.hp.com/research/smartfrog/papers/sfReference.pdf, 2004.

[8] E. Guttman and J. Kempf. ”RFC-2614 An API for Service Location”.
http://www.ietf.org/rfc/rfc2614.txt, 1999.

[9] E. Guttman, C. Perkins, J. Veizades, and M. Day. ”RFC-2608 Service Location
Protocol v2”.
http://www.ietf.org/rfc/rfc2608.txt, 1999.

[10] Apple Computers Homepage.
http://www.apple.com.

57

58 BIBLIOGRAPHY

[11] CERN GridCafe Homepage.
http://www.gridcafe.org.

[12] GridWeaver Project Homepage.
http://www.gridweaver.org.

[13] OpenPBS Homepage.
http://www.openpbs.org.

[14] OpenSLP Homepage.
http://www.openslp.org.

[15] Rendezvous Homepage.
http://developer.apple.com/rendezvous/.

[16] SourceForge Homepage.
http://www.sourceforge.net.

[17] T. Howes. ”RFC 2254 - The String Representation of LDAP Search Filters”.
http://www.faqs.org/rfcs/rfc2254.html, 1234.

[18] mSLP Homepage.
http://mslp.sourceforge.net.

[19] Todd Poynor. ”Automating Infrastructure Composition for Internet Services”.In
the Proceedings of the LISA 2001 15th System Administration Conference, 2002.
http://www.usenix.org/events/lisa2001/tech/fullpapers/poynor/poynorhtml.

[20] Veridian Systems.”Portable Batch System v2.3 Administrator Guide”, 2000.

[21] GNU Lesser General Public License v2.1.
http://www.gnu.org/licenses/lgpl.html.

Appendix A

UML Use Case and Sequence
Diagrams for SLP Library

This appendix has UML use case diagrams and sequence diagrams for different parts
of the system.

Figure A.1: Use Case Diagram for SLP User Agent (UA)

59

60APPENDIX A. UML USE CASE AND SEQUENCE DIAGRAMS FOR SLP LIBRARY

Figure A.2: Use Case Diagram for SLP Service Agent (SA)

Figure A.3: Use Case Diagram for SLP Directory Agent (DA)

61

Figure A.4: Sequence Diagram for the UA’s Find Services Use Case
Two threads are involved in this operation. Thread1 (marked T1) is used for sending
the request over the network. Thread2 (marked T2) is the thread listening for incoming
messages on the network. After a message has been sent, this will notify the SLPMes-
sageSender when replies are received

62APPENDIX A. UML USE CASE AND SEQUENCE DIAGRAMS FOR SLP LIBRARY

Figure A.5: Sequence Diagram for the SA’s Request Services Use Case
The request service usecase for the Service Agent. The thread listening on the multi-
cast address receives a message. This is the message sent by a UA during the findSer-
vices use case.

Figure A.6: Sequence Diagram for the DA’s Request Services Use Case
The DA receives request on the unicast listener. Apart from that, it works in the same
way as the SA.

63

Figure A.7: Sequence Diagram for the SA’s Register Service Use Case
Shows a simplified sequence diagram for the register service use case for the Service
Agent. After the SARegistrationThread has been notified of the new registration it will
send the registration to any DA known by the SA. This is not shown in the diagram.

Figure A.8: Sequence Diagram for the DA’s Register Service Use Case
When the DA receives a SLP SrvReg message, it will add the given service to its
service database. A reply is sent to tell if the registration went well.

Appendix B

Component Descriptions and Source
Code

This appendix has the SmartFrog description files for all the SmartFrog components
implemented for the SLP library. For the Directory Agent component, the full source
code is included as well.

B.1 SLP Configuration
SFSlpConfiguration extends {

slp_config_mc_max 15000; // 15 seconds maximum wait for multicast req.
slp_config_rnd_wait 1000; // 1 second
slp_config_retry 2000; // 2 seconds
slp_config_retry_max 15000; // 15 seconds. maximum wait for unicast req.
slp_config_da_beat 10800000; // 3 hours
slp_config_da_find 900000; // 900 seconds
slp_config_daAddresses ""; // comma-separated list of ip-addresses/hostnames of DAs
slp_config_scope_list "default"; // comma-separated list of scope names.
slp_config_mtu 1400; // mtu for slp messages
slp_config_port 427; // default slp port (used for requests)
slp_config_locale "en"; // locale to use for the agent
slp_config_mc_addr "239.255.255.253"; // multicast address to use for slp.
slp_config_interface ""; // IP-address of the network interface to use with SLP.
slp_config_debug "false"; // turn debug output on/off
slp_config_log_errors "false"; // turn on/off logging of errors
slp_config_log_msg "false"; // turn on/off logging of sent/received messages
slp_config_logfile ""; // name of log file ("" -> stdout)

}

B.2 SFSlpLocator
#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/comm/slp/sf/SFSlpConfiguration.sf"

SFSlpLocator extends Prim {
// implementation
sfClass "org.smartfrog.services.comm.slp.SFSlpLocatorImpl";

65

66 APPENDIX B. COMPONENT DESCRIPTIONS AND SOURCE CODE

// slp configuration
slp_config_mc_max ATTRIB SFSlpConfiguration:slp_config_mc_max;
slp_config_rnd_wait ATTRIB SFSlpConfiguration:slp_config_rnd_wait;
slp_config_retry ATTRIB SFSlpConfiguration:slp_config_retry;
slp_config_retry_max ATTRIB SFSlpConfiguration:slp_config_retry_max;
slp_config_da_find ATTRIB SFSlpConfiguration:slp_config_da_find;
slp_config_daAddresses ATTRIB SFSlpConfiguration:slp_config_daAddresses;
slp_config_scope_list ATTRIB SFSlpConfiguration:slp_config_scope_list;
slp_config_mtu ATTRIB SFSlpConfiguration:slp_config_mtu;
slp_config_port ATTRIB SFSlpConfiguration:slp_config_port;
slp_config_locale ATTRIB SFSlpConfiguration:slp_config_locale;
slp_config_mc_addr ATTRIB SFSlpConfiguration:slp_config_mc_addr;
slp_config_interface ATTRIB SFSlpConfiguration:slp_config_interface;
slp_config_debug ATTRIB SFSlpConfiguration:slp_config_debug;
slp_config_log_errors ATTRIB SFSlpConfiguration:slp_config_log_errors;
slp_config_log_msg ATTRIB SFSlpConfiguration:slp_config_log_msg;
slp_config_logfile ATTRIB SFSlpConfiguration:slp_config_logfile;

// locator component configuration
locator_discovery_delay 0; // The number of millisceonds to wait before

// the first service discovery attempt.
locator_discovery_interval 0; // retry discovery at regular intervals.

// 0 = do not retry.

// service type to look for
serviceType ""; //e.g. service:http
searchFilter ""; // Search filter to limit the number of results
searchScopes []; // scopes to search in. If empty, the scopes returned

// from ServiceLocationManager.findScopes() are used.

// The result of the service discovery
//result

// control what is being returned by the locator. The default is to return the
// first element that is discovered.
returnEnumeration false; // set to true to return the unmodified ServiceLocationEnumeration

// returned by the service discovery.

}

B.3 SFSlpAdvertiser
#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/comm/slp/sf/SFSlpConfiguration.sf"

SFSlpAdvertiser extends Prim {
// implementation
sfClass "org.smartfrog.services.comm.slp.SFSlpAdvertiserImpl";

// slp configuration
slp_config_mc_max ATTRIB SFSlpConfiguration:slp_config_mc_max;
slp_config_rnd_wait ATTRIB SFSlpConfiguration:slp_config_rnd_wait;
slp_config_retry ATTRIB SFSlpConfiguration:slp_config_retry;
slp_config_retry_max ATTRIB SFSlpConfiguration:slp_config_retry_max;
slp_config_da_find ATTRIB SFSlpConfiguration:slp_config_da_find;
slp_config_daAddresses ATTRIB SFSlpConfiguration:slp_config_daAddresses;
slp_config_scope_list ATTRIB SFSlpConfiguration:slp_config_scope_list;
slp_config_mtu ATTRIB SFSlpConfiguration:slp_config_mtu;
slp_config_port ATTRIB SFSlpConfiguration:slp_config_port;
slp_config_locale ATTRIB SFSlpConfiguration:slp_config_locale;

B.4. SFSLPDA 67

slp_config_mc_addr ATTRIB SFSlpConfiguration:slp_config_mc_addr;
slp_config_interface ATTRIB SFSlpConfiguration:slp_config_interface;
slp_config_debug ATTRIB SFSlpConfiguration:slp_config_debug;
slp_config_log_errors ATTRIB SFSlpConfiguration:slp_config_log_errors;
slp_config_log_msg ATTRIB SFSlpConfiguration:slp_config_log_msg;
slp_config_logfile ATTRIB SFSlpConfiguration:slp_config_logfile;

// service to advertise
serviceType ""; // e.g. service:http
toAdvertise ""; // the thing to advertise
serviceLifetime -1; // a positive integer, or -1 to indicate a permanent lifetime
serviceAttributes []; // Vector of service attributes

// example: [["s1a1", "s1a1v1", "s1a1v2"], ["s1a2", "s1a2v1"]];

advertiseReference false;
}

B.4 SFSlpDA
SmartFrog Description

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/comm/slp/sf/SFSlpConfiguration.sf"

SFSlpDA extends Prim {
// implementation
sfClass "org.smartfrog.services.comm.slp.SFSlpDAImpl";

// slp configuration
slp_config_scope_list ATTRIB SFSlpConfiguration:slp_config_scope_list;
slp_config_mtu ATTRIB SFSlpConfiguration:slp_config_mtu;
slp_config_port ATTRIB SFSlpConfiguration:slp_config_port;
slp_config_mc_addr ATTRIB SFSlpConfiguration:slp_config_mc_addr;
slp_config_interface ATTRIB SFSlpConfiguration:slp_config_interface;
slp_config_debug ATTRIB SFSlpConfiguration:slp_config_debug;
slp_config_log_errors ATTRIB SFSlpConfiguration:slp_config_log_errors;
slp_config_log_msg ATTRIB SFSlpConfiguration:slp_config_log_msg;
slp_config_logfile ATTRIB SFSlpConfiguration:slp_config_logfile;

}

sfConfig extends SFSlpDA {

}

Implementation Source Code

package org.smartfrog.services.comm.slp;

import org.smartfrog.sfcore.prim.PrimImpl;
import org.smartfrog.sfcore.prim.Prim;
import org.smartfrog.sfcore.prim.TerminationRecord;
import org.smartfrog.sfcore.common.SmartFrogException;

import java.rmi.RemoteException;
import java.util.Properties;

import org.smartfrog.services.comm.slp.agents.DirectoryAgent;

/**

68 APPENDIX B. COMPONENT DESCRIPTIONS AND SOURCE CODE

SmartFrog component for the Directory Agent.
*/
public class SFSlpDAImpl extends PrimImpl implements Prim, SFSlpDA {

private DirectoryAgent da;

public SFSlpDAImpl() throws RemoteException {

}

public void sfDeploy() throws SmartFrogException, RemoteException {
super.sfDeploy();
// get properties
Properties properties = new Properties();
String s = (String)sfResolve("slp_config_interface");
if(!s.equals("")) properties.setProperty("net.slp.interface", s);
properties.setProperty("net.slp.useScopes",

sfResolve("slp_config_scope_list").toString());
properties.setProperty("net.slp.mtu",

sfResolve("slp_config_mtu").toString());
properties.setProperty("net.slp.port",

sfResolve("slp_config_port").toString());
properties.setProperty("net.slp.multicastAddress",

sfResolve("slp_config_mc_addr").toString());
properties.setProperty("net.slp.debug",

sfResolve("slp_config_debug").toString());
properties.setProperty("net.slp.logErrors",

sfResolve("slp_config_log_errors").toString());
properties.setProperty("net.slp.logMsg",

sfResolve("slp_config_log_msg").toString());
properties.setProperty("net.slp.logfile",

sfResolve("slp_config_logfile").toString());

// create DA.
try {

da = new DirectoryAgent(properties);
}catch(ServiceLocationException sle) {

throw (SmartFrogException)SmartFrogException.forward(sle);
}

}

// make sure DA stops on sfTerminate...
public void sfTerminateWith(TerminationRecord tr) {

da.killDA();
da = null;
super.sfTerminateWith(tr);

}
}

Appendix C

Test Programs

This appendix contains the test programs used to test that the SLP library was able to
handle multiple requests in parallel.

C.1 Advertising the Service
//
// AdvertiserTest.java
// AdvertiserTest
//
// Created by Glenn Hisdal on Mon May 10 2004.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
import java.util.*;
import org.smartfrog.services.comm.slp.*;

public class AdvertiserTest {
private static final String SERVICE_TYPE ="service:testservice";
public static void main (String args[]) {

try {
Properties p = new Properties();
p.put("net.slp.port", "4427");
ServiceLocationManager.setProperties(p);
Advertiser advertiser =

ServiceLocationManager.getAdvertiser(new Locale("en"));
ServiceURL url = new ServiceURL(SERVICE_TYPE+"://at.some.server",

ServiceURL.LIFETIME_PERMANENT);
advertiser.register(url, new Vector());

while(true) {
Thread.sleep(10000);

}
}catch(Exception ex) {

ex.printStackTrace();
}

}
}

C.2 Locating the Service
//
// LocatorTest.java

69

70 APPENDIX C. TEST PROGRAMS

// LocatorTest
//
// Created by Glenn Hisdal on Mon May 10 2004.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
import java.util.*;
import java.io.*;
import org.smartfrog.services.comm.slp.*;

public class LocatorTest implements Runnable {
private static final String SERVICE_TYPE = "service:testservice";
private int nextId = 1;
private Locator locator;
private ServiceType serviceType;
private static int numThreads;

public LocatorTest() throws ServiceLocationException {
Properties p = new Properties();
p.put("net.slp.port", "4427");
ServiceLocationManager.setProperties(p);
locator = ServiceLocationManager.getLocator(new Locale("en"));
serviceType = new ServiceType(SERVICE_TYPE);

}

public static void main (String args[]) {
try {

numThreads = 10;
if(args.length != 0) numThreads = Integer.parseInt(args[0]);

LocatorTest test = new LocatorTest();

// create locator threads...
for(int i=0; i<numThreads; i++) {

Thread t = new Thread(test);
t.start();

}
}catch(Exception ex) {

ex.printStackTrace();
}

}

public synchronized int getNextId() {
return nextId++;

}

public void run() {
int tid = getNextId();
try {

Vector scopes = new Vector();
scopes.add("default");
ServiceLocationEnumeration srv = locator.findServices(serviceType,

scopes, "");

PrintWriter file = new PrintWriter(new FileWriter("thread-"
+tid+".txt"));

while(srv.hasMoreElements()) {
file.println(srv.nextElement().toString());

}
file.close();

}catch(Exception ex) {
ex.printStackTrace();

}
}

}

Appendix D

PBS System

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/comm/slp/components.sf"
#include "pbsNode.sf"
#include "pbsServer.sf"

/*
Starts a pbs server and a number of nodes.
Some nodes are registered with the server on startup, while others are
advertised through SLP. The advertised nodes can then be registered with
the server at a later time...

The components will read the pbs configuration found in
pbsConfig.sf
*/

sfConfig extends Compound {
// server
server extends pbsServer;

// registered nodes...
node1 extends pbsNode {

sfProcessHost "hostname1";
sendTo:foo LAZY server;

}

node2 extends pbsNode {
sfProcessHost "hostname2";
sendTo:foo LAZY server;

}

// advertised nodes
node3 extends pbsAdvertisedNode {

sfProcessHost "hostname3";
}

node4 extends pbsAdvertisedNode {
sfProcessHost "hostname4";

}
}

71

Appendix E

SLP User Guide

This is the user guide for the SLP library. A copy of this document can also be found
on the attached CD-ROM under the name slpManual.pdf.

E.1 Introduction

This aim of this manual is to show how the Service Location Protocol library can be
used. It is split into two parts: SLP API classes and SLP SmartFrog components. The
API classes implements the standard Java API for SLP as defined in RFC-2614. These
can be used to add SLP support to any Java program. The SLP SmartFrog components
are special SmartFrog components that allow the SLP library to be used easily within
a SmartFrog application.

The Service Location Protocol is a protocol for advertising and locating services over
a network. The main parts of the protocol are the Service Agent (Advertiser) and the
User Agent (Locator). The Advertiser is responsible for advertising the existence of
one or more services. The Locator is used to search for advertised services in the
network.

73

74 APPENDIX E. SLP USER GUIDE

E.2 SLP API Classes

This section explains how to use the features of the SLP library directly within your
own source code, without going through the SmartFrog components. In fact, you don’t
have to be running SmartFrog at all. The API presented follows the standard suggested
in RFC-2614, so it may already be familiar. This document will go through the typical
usage of SLP in a program. More details on the available classes and methods can
be found in the javadoc files. The important classes for using the library are in the
org.smartfrog.services.comm.slp package.

E.2.1 ServiceLocationManager

The Service Location Manager manages the access to the SLP framework. One can
use this to obtain an advertiser or locator for use in a program. Multiple programs
within the same JVM can share a locator or advertiser object. The Service Location
Manager will only create a new locator or advertiser if none of the existing ones have
the correct properties. The following methods are useful for dealing with the service
location manager:

• static Vector findScopes()
Returns the names of all scopes known by the Locators and Advertisers created
by this service location manager.

• static Advertiser getAdvertiser(Locale loc)
Returns an advertiser object for the specified language. This can be used to
advertise a service. If an advertiser can not be obtained, an exception is thrown
indicating the cause of the failure.

• static Locator getLocator(Locale loc)
Returns a locator object for the specified language. This can be used to discover
services. If a locator can not be obtained, an exception is thrown indicating the
cause of the failure.

• static void setProperties(Properties p)
Sets the properties to use for Locators and Advertisers returned by future calls
to getLocator or getAdvertiser. This method is an extension to the standard, and
is only needed if the default settings can not be used. The possible properties are
given in Section E.2.4.

E.2.2 Advertiser

The Advertiser (Service Agent) is used for advertising services. The Advertiser in-
terface defines the methods needed in order to register a service to be advertised or
deregister a service that is no longer available. As well as the methods for registering

E.2. SLP API CLASSES 75

and re-registering services, the interface defines methods to add or delete attributes for
a registered services. These methods are not implemented in the current version of this
library. Using them will result in a ServiceLocationException being thrown with the
error code set to NOTIMPLEMENTED.

• void register(ServiceURL url, Vector attributes)
Registers a service and starts advertising it. The URL is a standard service URL
as defined in RFC-2608. The URL is typically of the form ”service:mytype://location”.
The attributes is a Vector of ServiceLocationAttribute objects. See also the
javadoc files for information on how the ServiceURL and ServiceLocationAt-
tribute classes work. If the registration is not successful, a ServiceLocationEx-
ception is thrown indication the cause of the failure.

• void deregister(ServiceURL url)
Deregisters a service. After this, the service can no longer be found using SLP
discovery. The service is deregistered in every scope and language it was regis-
tered in. If the operation fails, an exception is thrown.

E.2.3 Locator

The Locator (User Agent) is used for locating advertised services. The Locator inter-
face has methods for finding services, service types and service attributes. For each
type of discovery, a ServiceLocationEnumeration object holding all results of the re-
quest is returned. The standard Java Enumeration methods can be used to get the
results from the enumeration.

• ServiceLocationEnumeration findServices(ServiceType serviceType, Vector
scopes, String searchFilter)
Tries to find the services with the given service type. The scope vector allows
you to limit the search to a given set of scopes. To further limit the number
of results, a search filter can be given. The search filter specifies attributes and
their values that needs to be present for the discovered service. The filter is
an LDAPv3 search filter. The following operators are supported by the current
implementation:

– | - or operator. At least one of the given attributes need to be present with
the correct value.

– & - and operator. All given attributes must be present with the correct
value.

– = - equals operator. At least one of the values for the given attribute must
equal the value given in the search filter.

– < - less than operator. At least one of the values for the given attribute
must be less than, or equal to the value given in the search filter.

76 APPENDIX E. SLP USER GUIDE

– > greater than operator. At least one of the values for the given attribute
must be greater than, or equal to the value given in the search filter.

A filter may look like: (&(attr1=3)(attr4<8)).
The ServiceLocationEnumeration returned by this operation contains zero or
more ServiceURL objects giving the location of the discovered services. If the
operation fails, an exception is thrown.

• ServiceLocationEnumeration findServiceTypes(String namingAuthority, Vec-
tor scopes)
Finds all the service types available in the given scope. The namingAuthority
string may be the name of a naming authority, an empty string or null. If a nam-
ing authority is given, only service types registered with that naming authority
are returned. If an empty string is provided, only service types registered with
the default naming authority are returned. Providing a null pointer will result
in all available service types being returned. The ServiceLocationEnumeration
returned by the operation contains zero or more ServiceType objects. One for
each service type found. If the operation fails, an exception is thrown.

• ServiceLocationEnumeration findAttributes(ServiceURL URL, Vector scopes,
Vector attributeIds)
Finds all attributes registered with the given service. The attributeIds vector can
be used to only return a subset of the registered attributes. If not empty, only
attributes given in the attributeIds vector are returned. The returned ServiceLo-
cationEnumeration contains one ServiceLocationAttribute object for each dis-
covered attribute. If the operation fails, an exception is thrown.

• ServiceLocationEnumeration findAttributes(ServiceType serviceType, Vec-
tor scopes, Vector attributeIds) throws ServiceLocationException
This is the same as the above method except that it will find the attributes of all
services of the given type.

E.2.4 Configurable Properties

The following properties can be set for the SLP agents (UA, SA, DA). Normally a Java
Property object containing the desired properties are created and passed to the service
location manager before obtaining the Advertiser or Locator. The DA, as a standalone
application, is currently not configurable. If the DA is started as a SmartFrog compo-
nent, it will get its properties from the SmartFrog description in the same way as any
other agent.

• net.slp.multicastMaximumWait
Sets the time to wait for replies to a multicast request. During this time, the
original request may be resent a number of times. Default is 15 seconds

E.2. SLP API CLASSES 77

• net.slp.randomWaitBound
Sets the maximum value for the various random waits used in the library. Default
is 1 second.

• net.slp.initialTimeout
The time before a request is retransmitted for the first time. Default is 2 seconds.
The time to wait is doubled each time a message is retransmitted.

• net.slp.unicastMaximumWait
Maximum time to wait for a reply to a unicast request. During this time the
message can be resent a number of times. Default is 15 seconds.

• net.slp.DAHeartBeat
The time between each multicast DAAdvert sent by the Directory Agent to ad-
vertise its existence. Default is 3 hours.

• net.slp.DAActiveDiscoveryInterval
The time between each attempt by a User Agent or Service Agent to actively
discover a Directory Agent. The default is 900 seconds.

• net.slp.useScopes
Sets the scopes to use by the agent. The scopes are separated with a comma
character. Default is ”default”.

• net.slp.DAAddresses
Comma-separated list of IP-addresses or hostnames giving the location of Di-
rectory Agents. This is useful if a DA can not be discovered by multicast. The
default is ”” (no predefined DA).

• net.slp.passiveDADetection
A boolean enabling or disabling passive DA detection. If disabled, the UAs and
SAs will not listen for DAAdverts on the multicast address. Default is true.

• net.slp.MTU
Sets the MTU for SLP messages (maximum message size). Default is 1400
bytes.

• net.slp.port
Sets the default port for SLP messages. All requests are sent to this port. The
default is 427.

• net.slp.uaport
The port used for sending messages from the UA. When set to 0, the system will
select a free port. If, for some reason, a special port has to be used then set this
attribute. Default is 0.

78 APPENDIX E. SLP USER GUIDE

• net.slp.saport
The port used for sending messages from the SA. This is also the port on which
the SA will be able to receive TCP requests. Default is 0 (system selects).

• net.slp.locale
The language supported by the agent. Each UA/SA supports one language. To
register a service in multiple languages, one Advertiser for each language is
required. This attribute is set automatically by the service location manager
when the getAdvertiser and getLocator methods are called, as these takes the
language as a parameter. The default language is English (en).

• net.slp.multicastAddress
The multicast address used for SLP messages. Default is 239.255.255.253.

• net.slp.interface
The IP-address of the network interface to use for SLP messages. Use this if a
host has more than one network interface, and you do not want to use the default.

• net.slp.debug
Enable/disable debug output from the SLP library. Default is false.

• net.slp.logErrors
Enable/Disable logging of errors in the SLP library. Default is false.

• net.slp.logMsg
Enable/disable logging of messages sent and received in the SLP library. Default
is false.

• net.slp.logfile
The name of the file to write debug, errors and message logs to. If an empty
string, all output goes to stdout. Default is ”” (stdout).

E.3. SLP SMARTFROG COMPONENTS 79

E.3 SLP SmartFrog Components

This section will explain the use of the SmartFrog components for SLP and the special
SmartFrog deployer class that uses SLP to find a process compound in which to deploy
a component. There are two components, the SFSlpAdvertiser and the SFSlpLocator.
The deployer class is the class SFSlpDeployerImpl found in the org.smartfrog.services.comm.slp
package. The next sections will show how the SLP components can be used in Smart-
Frog.

E.3.1 SFSlpAdvertiser

The SFSlpAdvertiser component is used to advertise things through SLP. The ”toAd-
vertise” attribute points to what you want to advertise. The ”toAdvertise” attribute
can be a reference to another attribute, including other components, or it can be just a
simple value. You also need to set some other attributes in order to tell the component
which type of service it is advertising, and how long the advertisement should last. The
important attributes are given in the list below. In addition, it is possible to override
the default settings for the SLP library. The attributes defining the SLP configuration
are given in Section E.3.4.

• serviceType
Sets the service type for the advertised service. The service type must be in the
format specified in RFC-2608. An example is ”service:sf-prim:printer”. This
could be used to advertise the Printer component in the Hello World example
provided with SmartFrog. This attribute must be given. Failing to provide this
attribute will make the component fail in sfDeploy().

• serviceAttributes
This attribute should be set to a Vector of attributes that are valid for the ad-
vertised service. An attribute is represented by a Vector where the first element
is the name of the attribute and the remaining elements are the values for that
attribute. The default is an empty Vector. Example:
serviceAttribute [[”a1Name”, ”a1Value1”, ”a1Value2”], [”a2Name”, ”a2Value2”]
];

• serviceLifetime
The life time of the service. That is, for how long should the service be adver-
tised. This is given as a positive Integer giving the number of seconds for which
the service is advertised. Alternatively, a life time of -1 can be given. This
makes the advertisement permanent. I.e. it is advertised as long as the advertiser
component is running. The default is -1.

• toAdvertise
Gives the thing to advertise. This can be a simple value or a reference to an-
other attribute. The example below shows how the SFSlpAdvertiser component

80 APPENDIX E. SLP USER GUIDE

is used to advertise the Printer component in the Hello World example. This at-
tribute must be given. Failing to provide this attribute will cause the component
to fail in sfDeploy().

• advertiseReference
When the toAdvertise attribute is a Reference, like in the example below, setting
this attribute to ”true” will cause the Reference to be advertised instead of the
resolution of the Reference. The default is ”false”.

Example of how the SLP advertiser can be used to advertise another component is
given in Figure E.1.

#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/services/comm/slp/components.sf"

sfConfig extends Compound {
p extends Printer;
adv extends SFSlpAdvertiser {

serviceType "service:sf-prim:printer";
toAdvertise LAZY p;

}
}

Figure E.1: Advertising a Component using SLP

E.3.2 SFSlpLocator

The SFSlpLocator component is used to locate advertised services. Other component
use a reference to the ”result” attribute of the SFSlpLocator in order to get the result of
the search. To be able to search, the component needs to know which type of service
to look for. It may also be given a search filter in order to make sure certain attributes
are present in the discovered service. The important attributes are given below. As for
the advertiser component, the default SLP configuration can be overridden.

• serviceType
The service type for the service to discover. This attribute has to be given, or the
component will fail on startup. The service type should match the service type
of an advertised service.

• searchFilter
A String giving a search filter to use for the discovery. This search filter must be
given in the format shown in Section E.2.3. Specifying this attribute is optional.
The default is to use an empty String.

E.3. SLP SMARTFROG COMPONENTS 81

• discoveryInterval
The search done by the component may be repeated periodically. This attribute
sets the time (in milliseconds) between each search. A value of zero, means that
the search is only performed once, and not repeated.

• discoveryDelay
Sets the delay (in milliseconds) before the first attempt at finding the service.
This is to allow the user agent to have time to discover directory agents before it
starts searching for services. The default value is zero.

• returnEnumeration
This is a boolean attribute controlling what is returned from the locator when the
result attribute is requested. The default is to return the first of the discovered
Objects. If this attribute is set to ”true”, the unmodified ServiceLocationEnu-
meration object is returned. The component requesting the service must then be
able to get the information it needs from this. The default is ”false”.

• result
This is not an attribute that can be set by the user. It is the attribute name one
would use in references to obtain the result of the service discovery. The value
of the attribute may differ for each time sfResolve is called, as new services may
be found.

Figure E.2 shows how the SFSlpLocator can be used to locate another component.

#include "org/smartfrog/examples/helloworld/generator.sf"
#include "org/smartfrog/services/comm/slp/components.sf"

sfConfig extends Compound {
g extends Generator {

printer LAZY loc:result;
}
loc extends SFSlpLocator {

serviceType "service:sf-prim:printer";
}

}

Figure E.2: Locating a Component using SLP

E.3.3 SFSlpDeployerImpl

The SLP deployer class, org.smartfrog.services.comm.slp.SFSlpDeployerImpl, is used
to deploy SmartFrog components into a process compound advertised using SLP. If no

82 APPENDIX E. SLP USER GUIDE

PC is found during discovery, the standard deployer class is used instead. A process
is advertised by setting the toAdvertise attribute in the advertiser to be a reference to
sfProcess. An example is given in Figure E.3.

sfConfig extends Compound {
adv extends SFSlpAdvertiser {

serviceType "service:sf-pc:whatever";
toAdvertise LAZY sfProcess;

}
}

Figure E.3: Advertising a SmartFrog Process

In order to use SLP, the deployer class needs to know the service type to look for.
It may also need some special SLP configuration. This is done by adding the attribute
slpConfig to the description. This should be a component description having at least
one attribute. The serviceType attribute. Figure E.4 shows a simple example.

sfConfig extends Compound {
sfDeployerClass "org.smartfrog.services.comm.slp.SFSlpDeployerImpl";
slpConfig extends SFSlpConfiguration {

serviceType "service:sf-pc";
}
...

}

Figure E.4: Using the SFSlpDeployerImpl Class

E.3. SLP SMARTFROG COMPONENTS 83

E.3.4 SmartFrog SLP Configuration

This section gives an overview of the possible SmartFrog attributes for configuring
the SLP agents used by the SmartFrog components. See also Section E.2.4 for an
explanation on each of the properties. The default values for these attributes are in the
org/smartfrog/services/comm/slp/sf/SFSlpConfiguration.sf file.

• slp config mc max Sets the vaule for the net.slp.multicastMaximumWait prop-
erty.

• slp config rnd wait Sets the value for the net.slp.randomWaitBound property.

• slp config retry Sets the value for the net.slp.initialTimeout property.

• slp config retry max Sets the vaue for the net.slp.unicastMaximumWait prop-
erty.

• slp config da beatSets the value for the net.slp.DAHeartBeat property.

• slp config da find Sets the value for the net.slp.DAActiveDiscoveryInterval prop-
erty.

• slp config daAddressesSets the value for the net.slp.DAAddresses property.

• slp config scopelist Sets the value for the net.slp.useScopes property.

• slp config mtu Sets the value for the net.slp.MTU property.

• slp config port Sets the value for the net.slp.port property.

• slp config localeSets the value for the net.slp.locale property.

• slp config mc addr Sets the value for the net.slp.multicastAddress property.

• slp config interface Sets the value for the net.slp.interface property.

• slp config debugSets the value for the net.slp.debug property.

• slp config log errors Sets the value for the net.slp.logErrors property.

• slp config log msgSets the value for the net.slp.logMsg property.

• slp config logfile Sets the value for the net.slp.logfile property.

