The overhead of profiling
using PMU hardware
counters

July 2014
Authors:

Georgios Bitzes, Andrzej Nowak

CERN openlab Report 2014

CERN openlab

CERN openlab Report 2014

Abstract

Run-time profiling of executable binaries can offer valuable insight into the performance
characteristics and behaviour of a program. Some methods, such as instrumentation, are invasive
and involve modifications of the profiled binary. This can significantly impact performance, to
the point that an instrumented binary runs many times slower than the original. The Performance
Monitoring Unit found in many modern processors offers the possibility of low-overhead
profiling through a plethora of performance events. In this report, we investigate and quantify this
overhead for a variety of tests and configurations, using the “perf” tool of the Linux kernel.
Results for four main usage modes of the PMU are included: counting, sampling, PEBS events,
and Last Branch Record (LBR).

Table of Contents

Y 01 1 = Vo PR 2
R {11 o o [ox 1 o] o PSR 3
2 The Perf tool and the LiNUX KEIrMEl..............uuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiiieieiieveeeaeeeeeees 3
G T I =2 AT 11 o LU 4
N (1= 1| 5
4.1 (@0] 10 To [1[0 Lo = SRR 5
4.2 ST Va1 o] 1 o 1 0o o - RS 6
4.3 Precise Event-Based Sampling (PEBS)uuiiiieiiiiiiiiiiece e ectieee e ssinnee e e e e 10
4.4 Last Branch RECOId (LBR).......ccuuuiiiiieeeie it e e st e e e s st e e e e e e s snnnnane e e e e e e e nnnes 12
ES T 0] oo 11] (0] 1 14
B REIEIENCES. ... e ennana 14
A Y o] o 1= gl Dt q Nl Y =T o | £ USRS 15

8 Appendix B — BENCHMAIKSciii it e e e e e e aeaanes 16

CERN openlab Report 2014

1 Introduction

Modern processors are equipped with a Performance Monitoring Unit (PMU) which allows
programmers to peek into the inner workings of the processor during the execution of their
binaries [1]. From an extensive list, the user can select the performance-related events to monitor,
such as cache misses, branch mispredictions or various other kinds of hardware stalls. The list of
supported events varies depending on the manufacturer and the model of the processor.

Whenever any of the selected events occurs during execution, the processor increments the
respective event counter inside the PMU. It is possible to instruct the processor to issue an
interrupt whenever a counter exceeds a user-specified threshold — this enables recording the
instruction pointer and examining the location inside the code that an event occurred. Using
statistical sampling, we can now determine which piece of code consumes the most cycles or
causes the most cache misses, among other things.

An important thing to note is the skid of the instruction pointer — by the time the interrupt is
issued and caught, the instruction pointer is likely to have progressed and thus give a slightly
inaccurate location of the code that triggered the event. This is possible to mitigate by having the
processor itself store the instruction pointer (along with other information) in a designated buffer
in memory — no interrupts are issued for each sample and the instruction pointer is off only by a
single instruction, at most. This needs to be supported by the hardware, and is typically available
only for a subset of supported events — this capability is called Precise Event-Based Sampling
(PEBS) on Intel processors. The skid will generate a shadow, which will “hide” any occurring
events. Such behaviour can be a particular problem in regular loops, where a recurring scenario
could mask a large portion of events.

2 The Perf tool and the Linux kernel

Starting from version 2.6.31, the Linux kernel provides a formal interface for managing hardware
counters through the “perf_event_open” system call, as well as a user-space tool which utilizes
the kernel interfaces and acts as a profiler — called “perf”.

Two main modes of usage are available — counting and sampling. Counting measures the overall
number of events during the entire execution without offering any insight regarding the
instructions or functions that generated them. On the other hand, sampling gives a correlation of
the events to the code through captured samples of the Instruction Pointer. When sampling, the
kernel instructs the processor to issue an interrupt when a chosen event counter exceeds a
threshold. This interrupt is caught by the kernel and the sampled data — including the Instruction
Pointer value — are stored into a ring buffer. The buffer is polled periodically by the user-space
perf tool and its contents written to disk. In post-processing, the Instruction Pointer is matched to
addresses in binary files, which can be translated into function names and such.

It’s easy to see that while counting mode collects less information, it also incurs less overhead —
there’s no need for regular interrupts or writing to disk, and two value samples per counter should
be enough to obtain the result.

3|Page

CERN openlab Report 2014

Another important consideration is the number of counters that are available inside the PMU unit
—as an example, in Intel Ivy Bridge micro-architecture there are three fixed counters that measure
core cycles, reference cycles and core instructions as well as four programmable counters that can
be assigned to any of the available events that the processor offers. Simultaneously measuring
more than four events requires multiplexing by regularly rotating the set of events that are active
at each moment. This incurs some further overhead.

When Hyper-Threading is disabled on modern Intel CPUs, however, the programmable counters
of the unused hardware thread become available to the other — so there are eight available in total,
per core.

A novel capability of recent processors is the Last Branch Record (LBR) with which it is possible
to sample the last 16 branches, recording their source and target addresses. All this information is
stored by the processor into a ring buffer. This feature on its own incurs no overhead, but due to
the limited size of the ring buffer regular interrupts are still needed to sample and retrieve data
from it.

3 Test setup

We used dual-socket systems equipped with Intel Ivy Bridge E5-2695 v2 @ 2.40GHz having 12
physical cores on each socket, running Scientific Linux 6.5 and version 3.11.6 of the Linux
kernel. The systems were each equipped with 3 Intel SSDSC2CW240A3 SSDs in an
LV M/stripping configuration.

All tests were run with Hyper-Threading enabled, except those where it is explicitly stated
otherwise.

The benchmarks were chosen to mimic scientific workloads. Code was taken from the well-
known SPEC 2006 suite [2], as well as the ROOT toolkit [3]. As all the applications are single-
threaded, as most scientific code ran at CERN, multiple instances were launched in order to
utilize all cores. Each process was pinned with taskset to its own core, ensuring an even
distribution across the two sockets and utilizing SMT only when having run out of independent
hardware threads. A separate perf process was used to monitor each instance — we observed no
significant difference when all instances were monitored under a single perf process.

Another benchmark used was the multithreaded Geant4 prototype [4] — in this case, no pinning
was applied and all threads were monitored under a single perf process. More information about
the benchmarks can be found in Appendix B.

We benchmarked for a varying number of processes or threads, measuring each time the
percentage difference between a monitored and unmonitored workload — this gives the overhead.
As an example, on a workload with 12 processes, if the sum of the execution times of all
processes is 100 without perf and 110 seconds while being profiled, the overhead is at 10%.

Turbo mode was disabled. Perf’s automatic throtting mechanism through

/proc/sys/kernel/perf_cpu_time_max_percent was turned off — max sampling rate
perf_event_max_sample_rate remained at its default value, 100000.

4|Page

CERN openlab Report 2014

The list of events used is a mixture of hardware and resource stalls, as well as a few internal
processor events. Not all of these events are supported in PEBS, so a different set was used with
PEBS measurements. Both can be found in Appendix A. Event set #1 was used in all cases except
where indicated otherwise. The periods employed were those that are recommended by expert
tools [5] or commonly used in the industry [6].

Perf does not support supplying the symbolic event names as defined by the CPU manufacturers
— using UNHALTED_CORE_CYCLES instead of “ex3c”, for example. Libpfm [6] was used to aid in
the translation of the event names to the raw hex codes that the CPU understands. This should not
have any effects on performance as it’s only done once during initialization, nevertheless we
mention this as it is a part of the setup.

To sum up, we monitored overheads in several dimensions:

Different profiling methods: counting, sampling, sampling with PEBS, LBR sampling
Varying number of events: 1, 4, 8, 16

Varying number of cores: 1, 4, 12, 24, 48

Hyper-threading on or off

Varying sampling periods (for LBR)

Multiple nodes

Different benchmarks from the SPEC, ROOT and Geant4 packages

Since there were many configurations, in some cases we chose to look for the most important
data points. Overall, we tried to identify the most common usage scenarios and to quantify their
performance. The penalties presented are cumulative penalties of the hardware and the perf
subsystem that drives it. While it is not easily possible to distinguish the two sources, results
suggest that the software system is the major source of overheads.

4 Results

The most important obstacle encountered in measurements was a relative instability of some of
the runtimes, which would vary between runs on the same configuration. Some benchmarks
varied more than others, and those with the greatest variations (+10% between runs on the same
configuration) were altogether excluded from this report.

While great care was taken to ensure the stability and reliability of the results presented, there’s
still some uncertainty due to the inherent variations between runs, which could typically reach
0.5-2%. We ran each configuration three times and averaged, which should limit such effects —
readers are however reminded that a small fraction of such measurements relies on chance.

Having said that, clear overhead trends, depending on the configuration, do emerge.

4.1 Counting mode

Figure 1 presents the average overhead incurred in counting mode depending on the number of
instances and the number of events, averaged across all benchmarks. As can be seen this mode
incurs a particularly low overhead, which for most intents and purposes can be considered
negligible.

5|Page

CERN openlab Report 2014

14
1.2

0.8 B 1event

0.6
0.4
0.2

B 4 events

m 8 events

Percentage overhead

M 16 events

-0.2 1 4 12 24 48
Instances

Figure 1. Average overhead in counting mode

The jump in overhead due to multiplexing is evident — Figure 2 presents a comparison between
having Hyper-Threading on and off for a single benchmark, “444.namd”. When disabled, the
jump does not occur until 16 events (per core) as there are more hardware counters available and
there’s no need to multiplex at 8 events.

=oe
= N D

o
o0

0.6 B HT on

H HT off

Percentage overhead

© o
N b

o
|

1 4 8 16
Number of events

Figure 2. Effects of turning off Hyper-Threading — counting mode for
444 .namd using 24 instances

4.2 Sampling mode

In this mode, we observed that the workload being profiled and the choice of events strongly
influence the amount of overhead incurred. Figure 3 provides measurements for our most
intensive case — sampling for 16 events when running 48 simultaneous instances.

6|Page

CERN openlab Report

Percentage overhead
N
(03]

2014

M Event set #1

O N N Ng » \u Q NE
/z§° b??} @ ,b‘;@ ‘06\ &) *O'@ \90 Qf(o {\9
& o < ° RS N o
- A Q A>) RN > \3 o
ot W g & & ¥
il r_)‘g<’ & \é’ @f’
™ & 5 5 B
& 2 &
& &

M Event set #2

Figure 3. Overhead from sampling mode — 48 instances using 16 events

Figure 4 shows how the average overhead across all benchmarks behaves as we increase the
number of instances.

7|Page

14

12

[
o

(o]

N

Percentage overhead
(@)}

N

o
I

1
N

1 4 12 24 48

Instances

Figure 4. Average overhead across all benchmarks

H 1 event
W 4 events
H 8 events

M 16 events

CERN openlab Report 2014

14

[EEN
N

[EEN
o

M 1 instance

H 4 instances

M 12 instances

M 24 instances

Percentage overhead
[e)]

W 48 instances

Events

Figure 5. Average overhead across all benchmarks

Once again we see that the cost of multiplexing is very high, increasing the penalty by an order of
magnitude. We find that turning off Hyper-Threading sharply reduces the overhead suffered at 8
events.

Percentage overhead
w

B HT on
2 W HT off
1
0 -
1 4 8 16
Events

Figure 6. The influence of Hyper-Threading — sampling mode for 444.namd
using 24 instances

Figure 7 presents a comparison across the number of events and instances just for a single
benchmark, “447.dealll”.

8|Page

CERN openlab Report 2014

©
©
(]
-
S
g
o ml
[J]
[-T]
S m4
]
o m8
&
m16

Events

Instances

Figure 7. Sampling overhead for 447.dealll

Of course, the performance impact depends on the events being monitored and in particular, their
periods. An event whose counter overflows often and for which many samples are collected will
contribute to a higher overhead than a less commonly occurring event.

Figure 8 shows this clear trend — dividing the periods of all events by 10 and 100 increases
sampling overhead.

12

10

M Event set #1

Percentage overhead
()]

H x10 frequency
* 1 x100 frequency
2
0 .
1 4
Events

Figure 8. The influence of period on overhead — 12 instances, 444.namd

9|Page

CERN openlab Report 2014

30

25

20

15 M Event set #1

M x10 frequency
10

= x100 frequency

Percentage overhead

Events

Figure 9. The influence of period on overhead — 24 instances, 444.namd

We encountered a peculiarity during 24 instances and 100x frequency — overhead dramatically
increases to 24% only for 4 events. This is a strange result we could not adequately explain.

4.3 Precise Event-Based Sampling (PEBS)

Profiling using PEBS seems to incur identical overhead as regular sampling — the following
figures show the average overhead across all benchmarks on the same event set both when
utilizing the processors’ PEBS mechanism and without.

M PEBS
H Sampling
1 4 12 24 48

Instances

0.9
0.8
0.7
0.6
0.5
0.4

0.3

Percentage overhead

0.2

0.1
0

Figure 10. Sampling for 1 event on event set #2

10|Page

CERN openlab Report 2014

m PEBS
j I I I o
1 4 12 24 48

Instances

3.5

2.5

Percentage overhead

Figure 11. Sampling for 4 events on event set #2

7

6
]
o5
<
$
34
()]
® 3 - m PEBS
€
I m Sampling
G 2
a.

1 .

0 i T T T T

1 4 12 24 48

Instances

Figure 12. Sampling for 8 events on event set #2

11|Page

CERN openlab Report 2014

16

14

12

10

m PEBS
6 - .
m Sampling
4 -
2 _
0 T T T T T
1 4 12 24 48

Instances

Percentage overhead
o]

Figure 13. Sampling for 16 events on event set #2

This behaviour can be explained by the fact that the kernel, even in PEBS mode, still copies from
the PEBS buffer on each sample by setting the overflow threshold to 1 record.® We predict that
having the kernel copy samples in batch, rather than one at a single time, would significantly
lower the impact of profiling with PEBS.

Therefore, these results do not necessarily reflect the inherent cost of sampling with PEBS, but
rather the limitations of the current implementation in the Linux kernel.

4.4 Last Branch Record (LBR)

Last Branch Record was tested using only a single event each time — this is because of issues and
limitations in perf. Average overhead of all benchmarks is presented below.

! See functions intel_pmu_drain_pebs_core and alloc_pebs_buffer in

arch/x86/kernel/cpu/perf_event_intel_ds.c of the Linux 3.11.6 kernel

12|Page

CERN openlab Report 2014

Percentage overhead

Period

Instances

Figure 14. Average overhead for event rob_misc_events:lbr_inserts

Percentage overhead

Period

Instances

Figure 15. Average overhead for event br_inst_retired:near_taken

While this mode seems to incur only a little overhead, there’s a jump when using a period of 100k
— this is likely due to the very large amount of data that is collected during this configuration. As
an example, Figure 13 presents the volume of data collected depending on the period per every
473.astar instance. At such point, the overhead incurred from 1/0 would be significant.

13|Page

CERN openlab Report 2014

700

600

500

400

Size in MB

300 L .
H File size per instance

200

100

20M 5M 1M 500K 100K
Period

Figure 16. File size of sampled data per each instance of 473.astar (LBR)

5 Conclusions

We set out to measure the overhead incurred when profiling with PMU hardware counters.
Results show how it can vary in many dimensions — the events selected, their frequencies, the
workload, the number of events and in particular, the profiling method. An exact measurement of
the hardware (vs. software) overheads would require more detailed instrumentation of the kernel
— our results only demonstrate the overheads a performance tuner would see from their
perspective.

One of the biggest sources of overheads seems to be multiplexing — users concerned with
performance are advised not to use more events than there are hardware counters available, in
particular in sampling mode. When multiplexing and with a very demanding set of counters of
configurations, overheads can reach as much as 25% - a number more commonly seen when
using software instrumentation to monitor workloads. This result suggests that there still might be
room for optimization in the perf subsystem.

6 References

[1] “Intel 64 and IA-32 Architectures Optimization Reference Manual.” Intel Corporation, July
2013. http://www.intel.com/content/dam/wwwi/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf.

[2] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH Comput. Archit.
News, vol. 34, no. 4, pp. 1-17, 2006.

[3] R. Brun and F. Rademakers, “ROOT — An object oriented data analysis framework,” Nucl.
Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 389, no.
1-2, pp. 81-86, Apr. 1997.

l4|Page

CERN openlab Report 2014

[4] X. Dong, G. Cooperman, and J. Apostolakis, “Multithreaded Geant4: Semi-automatic
Transformation into Scalable Thread-Parallel Software,” in Euro-Par 2010 - Parallel
Processing, P. D’Ambra, M. Guarracino, and D. Talia, Eds. Springer Berlin Heidelberg,
2010, pp. 287-303.

[5] Google, Gooda - a pmu event analysis package. 2012.

[6] Intel Corporation, “Intel VTune Amplifier XE 2013,” 2012. [Online]. Available:
http://software.intel.com/en-us/intel-vtune-amplifier-xe. [Accessed: 22-Nov-2012].

[7] Libpfm library, http://perfmon2.sourceforge.net

7 Appendix A — Events
Event set #1

uops_retired:stall_cycles:period=20000000
itlb_misses:stlb_hit:period=2000000
uops_retired:any:period=20000000
resource_stalls:any:period=20000000
mem_load_uops_retired:11_hit:period=20000000
rs_events:empty_cycles:period=20000000
itlb_misses:walk_completed:period=2000000
mem_load_uops_retired:12_hit:period=2000000
itlb_misses:walk_duration:period=20000000
10. 12_rgsts:code_rd_hit:period=2000000

11. br_inst_retired:all_branches:period=2000000
12. baclears:any:period=2000000

13. cpl_cycles:ring0_trans:period=200000

14. 12_rqsts:code_rd_miss:period=1000000

15. arith:fpu_div_active:period=20000000

16. arith:fpu_div:period=2000000

CoNoO~WNE

Event set #2
All events in this list support PEBS.

uops_retired:stall_cycles:period=2000000
uops_retired:any:period=2000000
mem_load_uops_retired:11_hit:period=2000000
mem_load_uops_retired:12_hit:period=2000000
br_inst_retired:all_branches:period=2000000
br_inst_retired:cond:period=2000000
br_inst_retired:near_taken:period=2000000
br_misp_retired:all_branches:period=2000000
br_misp_retired: cond: period=2000000

10 br_misp_retired:near_taken:period=2000000
11. inst_retired:all:period=2000000

12. mem_uops_retired:all_loads:period=2000000

©oN>T~wdh

15|Page

http://perfmon2.sourceforge.net/

CERN openlab Report

13. mem_uops_retired:all_stores:period=2000000
14. uops_retired:total_cycles:period=2000000

2014

15. mem_uops_retired:stlb_miss_loads:period=2000000
16. mem_uops_retired:stlb_miss_stores:period=2000000

8 Appendix B —Benchmarks

Benchmarks taken from SPEC 06 suite: 444.namd, 447.dealll, 453.povray, 483.xalancbmk.

Benchmarks taken from ROOT framework tests:

Test

Command that was run

stressEntryList2m

./stressEntrylList 2000000

stressFitMinuit100k

./stressFit Minuit 100000

stressinterpreter50

./stressInterpreter 50

stressVector20k

./stressVector 20000

Finally, the multi-threaded Geant4 prototype (version 9.6-ref09a) was run on geometry
benchmark from the CMS experiment at CERN, simulating 100 pi- events per thread. Only the
time spent in the scalable event loop was measured — initialization and finalization were

excluded.

16|Page

	The overhead of profiling using PMU hardware counters
	February 2014
	Authors:
	Georgios Bitzes, Andrzej Nowak
	CERN openlab Report 2014

	Abstract
	Table of Contents
	1 Introduction
	2 The Perf tool and the Linux kernel
	3 Test setup
	4 Results
	4.1 Counting mode
	4.2 Sampling mode
	4.3 Precise Event-Based Sampling (PEBS)
	4.4 Last Branch Record (LBR)

	5 Conclusions
	6 References
	7 Appendix A – Events
	8 Appendix B – Benchmarks

