LHC physics simulation using CernVM and BOINC \»

Bem
tre
0TN-2009-01 openlab Summer Student Report
.\' LHC physics simulation using CernVM and BOINC
\. : 2 Jarno Rantala (Supervisor: Ben Segal / IT)
> 21 August 2009
CERN Version 1
openlab Distribution:: Public
Y 0 1= = Lo S 1
TN oo LU o § o1 o IS 1
1 Background and Previous WOTK ... 2
N =10 | (O T =T o] o L= PP PPPPPPP 2
2.1 OrigINAL WIAPPET ...ttt ettt ettt e e s 2
2.2 Wrapper for virtual Machinescocovoiiiiiiii s 3
I T O 0 Y P 5
N o | o 1 S 5
LT ==Y U 1 PP 6
5.1 Worker application ina hoSt Machinecoccuoiiiiiiiiiii e 6
5.2 Worker application iN @ VMooiiiiiiiiieiiee s 6
5.3 CO-PIlOL JODS ...t 6
I S N\ 0] T PP P PP PPPPPTOPPP 7
5.5 ACKNOWIEAGEMENTS ...ttt 7
I N o] o= s [o I o 2SSOSR PPPPPPPPPPPPPP 7
6.1 JODXIMIFHIES ..o 7
6.1.1 The job.xml file used with worker.py COMPULALIONS..........ccviiiiiiiiiieiieee e 7
6.1.2 The job.xml used With COPIlOt JODSccviiiiiiieiic e 8
6.2 The code of WOrker appliCatioNSccovieeiiie e 9
B.2.1 OrigiNal WOTKEEiiiiieee et e e e e et e e et e e e te e e s raaeenaaeas 9
(I A (o] 4 (- 1 o) V2RSSR 11
6.3 Original WrapPer COUEuueiiiiii ettt st e e sbe e eneas 12
6.4 VIMWIAPPEE COUR....ueiiiiiiiiiiee ittt e sttt ettt e et e e st e e st e e et e e st e e stbe e e saeeeabeeeanbeeesnteeeseeeenees 22
Abstract

The basic goal was to set up a prototype cluster running LHC simulation jobs on BOINC hosts. We created a
BOINC project server to manage a set of hosts (Windows, Linux or MacOSX) which register as willing to
run Virtual Machines (VM's) on behalf of an LHC experiment. These VM's run a CernVM image to deploy
the experiment's software environment, and use Co-Pilot agents to interface to the experiment's job
production system via an Co-Pilot gateway. ALICE was the first LHC experiment to be demonstrated, with
ATLAS, LHCb and CMS to follow as soon as possible.

Introduction

Over the last 3 years, work has been ongoing to support the execution of large physics application programs,
developed under the Red Hat Scientific Linux operating system for the LHC experiment collaborations, on
platforms volunteered by their owners via the BOINC (http://boinc.berkeley.edu/) distributed computing
system. These platforms run Windows, MacOS and various flavours of Linux. To solve issues of cross-
platform compatibility and to interface well with the experiments’ existing programming and job production
systems, it was decided to run these applications in Virtual Machines and to use the recently developed
CernVM (http://cern.ch/cernvm/) facility to build and update the virtual images that are run.

This paper describes a major final step in this work, the development and testing of a new BOINC Wrapper

Page 1 of 36

http://boinc.berkeley.edu/
http://cern.ch/cernvm/

\» LHC physics simulation using CernVM and BOINC

program which allows an unmodified BOINC client to run such virtual applications successfully. This
Wrapper is not restricted to running just the desired LHC/CernVM applications but will allow any Virtual
Machine based BOINC application to be developed.

1 Background and previous work

> First work done in 2006 (Daniel Lombrana Gonzalez):

Published as: ""Customizable Execution Environments with Virtual Desktop Grid Computing™.
Presented at the Parallel and Distributed Computing and Systems Conference (PDCS 2007),
Cambridge, Massachusetts, USA (November 19-21, 2007).

> Next work in 2007 (David Weir):

BOINC and Paravirtualization: what needs to be considered before we can run BOINC in 'black
box' virtual machines on a large scale without problems.
(https://twiki.cern.ch/twiki/bin/view/LHCAtHome/BOINCAnNdParavirtualization)

BOINC and Atlas: setting up a VMWare image that can execute Atlas physics applications, and
some comments on using Pythia for progress reporting. Includes scripts and RPMs for creating an
Atlas-ready guest OS.

(https://twiki.cern.ch/twiki/bin/view/LHCAtHome/BOINCANdALtlas)

BOINC and Atlas Job transforms: Providing a cookbook-style approach on how to run real
physics applications in form of job transformation scripts in the BOINC Atlas environment.
(https://twiki.cern.ch/twiki/bin/view/LHCAtHome/BOINCANdAtlasJobtransform)

> Next work done in 2008 (Ben Segal, David Weir, Kevin Reed et al):

General considerations for ""Running apps in virtual machines"
(http://boinc.berkeley.edu/trac/wiki/VVmApps)

-> Next work done in 2009:

A Python API for BOINC (David Weir):
(http://plato.tp.ph.ic.ac.uk/~djw03/boinc-python/documentation-0.3.1/)

A host <-> guest VM communication system for Virtual Box (David Garcia Quintas):
(http://boinc.berkeley.edu/trac/wiki/VirtualBox)

2 BOINC wrapper

2.1 Original wrapper

The original wrapper application (http://boinc.berkeley.edu/trac/wiki/WrapperApp), which is standard
BOINC source code, was written to run applications without doing modifications to the applications. The
wrapper communicates with the BOINC core client i.e. suspending, resuming and measuring cpu time of the
applications.

The wrapper reads an xml-file called job.xml which contains a sequence of tasks which should be run by the
wrapper. Each task contains the name of application to run, the name of files to which connect the stdin,
stdout and stderr. One can also define a command line to give to the application and, if the application uses a
checkpoint file, the name of the file should also be defined. Each task also has a weight which tells how
much time a task would take compared to other tasks. For example, if task X takes twice the time compared
to task Y then the weight of X should be 2 and task Y 1.

Page 2 of 36

https://twiki.cern.ch/twiki/bin/view/LHCAtHome/BOINCAndParavirtualization
https://twiki.cern.ch/twiki/bin/view/LHCAtHome/BOINCAndAtlas
https://twiki.cern.ch/twiki/bin/view/LHCAtHome/BOINCAndAtlasJobtransform
http://boinc.berkeley.edu/trac/wiki/VmApps
http://plato.tp.ph.ic.ac.uk/~djw03/boinc-python/documentation-0.3.1/
http://boinc.berkeley.edu/trac/wiki/VirtualBox
http://boinc.berkeley.edu/trac/wiki/WrapperApp

LHC physics simulation using CernVM and BOINC \»
.. Py

...

Format of job.xml:

<job desc>
<task>
<application>worker</application>
[<stdin_filename>stdin file</stdin_ filename>]
<stdout filename>stdout file</stdout filename>]
<stderr_filename>stderr file</stderr filename>]
<command_line>--foo bar</command line>]
<weight>X</weight>]
[<checkpoint filename>filename</checkpoint filename>]
</task>
[...]

</j0b_dééc>

[
[
[
[

2.2 Wrapper for virtual machines

The wrapper for virtual machines called “VMwrapper” (http://boinc.berkeley.edu/trac/wiki/VmApps) works
compatibly with the original one. One can give it the same kind of job.xml file and VMwrapper will do the
same as the original wrapper. In addition, one can now run applications in virtual machines. VMwrapper
suspends, resumes or aborts the VM computations under control of the volunteer via the BOINC core client.

VMwrapper is written in Python using BOINC API Python bindings written by David Weir. VMwrapper
uses VM controllers written by David Garcia Quintas to communicate with these guest VMs. The VM
controller code is also written in Python. The system architecture is shown here:

hypervisor

VM

VMMain.py application

BOINC PR HostMain. py

These are parts of a
"WM controller" subsystem

VMwrapper can copy input and application files to a VM and run a command there. After that, it can copy
VM output files to the volunteer's host machine. There are appropriate extra tags that we have implemented
in job.xml files which can be specified to do this, as explained now.

Format of job.xml for VMwrapper:
<job desc>

<unzip task>
<application></application>

<command line></command line>
</unzip task>
<VMmanage task>

Page 3 of 36

http://boinc.berkeley.edu/trac/wiki/VmApps

\» LHC physics simulation using CernVM and BOINC

<application></application>

<command_ line></command line>

</VMmanage task>

<task>
<virtualmachine></virtualmachine>

<application></application>
<copy app to VM></copy app to VM>
<copy file to VM></copy file to VM>
<copy file to VM></copy file to VM>
<stdin_filename></stdin_filename>
<stdout filename></stdout filename>
<stderr_filename></stderr_filename>
<copy file from VM></copy file from VM>
<command line></command line>
<weight></weight>

</task>

</job desc>

There are two special kinds of tasks: VM managing tasks "VMmanage_task™ and unpacking tasks
"unzip_task". The unpacking tasks are performed before any other tasks. They are used to unpack a packed
file from the project-directory to the slot-directory. VM managing tasks are used to control VM’s and they
are started only if there is a task using a VM. These VM managing tasks have to run in parallel with any
tasks using a VM because they do the communication with the VM. We need to run a Python script called
"HostMain.py" and a broker for this communication. ActiveMQ (http://activemqg.apache.org/) has been used
as the broker in our tests.

The descriptor for each task includes:

Tag Description
virtualmachine The name of the virtual machine
image The logical name of the image to be loaded

Specifies if the application should be copied to the

copy_app_to_VM VM. (zero or nonzero)

The logical name(s) of file(s) which should be

copy_file to VM copied to the VM. (input files, stdin file name)
The name(s) of file(s) copied from the VM after
copy_file_from_VM computation. (output files, stdout_filename)
application The logical name of the application
stdin_filename, The logical names of the files to which stdin,
stdout_filename, stdout, and stderr are to be connected (if any).

stderr_filename

Command line arguments to be passed to the

command_line* oo
- application.

The contribution of each task to the overall fraction
done is proportional to its weight (floating-point,

weight default 1).

Page 4 of 36

http://activemq.apache.org/

LHC physics simulation using CernVM and BOINC \»
.. PR
- 0’

The name of the checkpoint file used by the app, if
any. When this is modified, the wrapper assumes

checkpoint_filename that a checkpoint has been completed and notifies
the core client.

e One can also give a command line to ""VMwrapper.py™ and this is passed to the "'task™-applications
appended to the command line in job.xml (command_line in job.xml + " " + command_line for
wrapper). If one gives a file name in command_line (recognized by "./") then the
boinc_resolve_filename-method is used to resolve the physical name of the file.

Examples of job.xml files for VM applications are given in Appendix 6.1 below.

3 CernVM

As stated in the Introduction, virtualization permits cross-platform execution of applications developed under
each specific LHC software environment. But to support a full set of LHC experiment software packages, a
very large size of virtual image is required (8-10 GB); furthermore, some component packages also change
frequently, requiring a full image reload in principle. Both these factors would be show-stoppers for the
BOINC environment.

The CernVM project was launched as a general solution to the problem of virtual image management for
physics computing. Instead of loading each running virtual machine with a full image, only a basic "thin
appliance™ of about 100MB is loaded initially, and further image increments are downloaded from a
CernVM image repository as needed by any given application and choice of LHC experiment. In this way a
virtual image of the order of 1 GB suffices to run typical LHC physics problems. An image is not only
custom-built incrementally for each application but is cached on each execution node and so remains
available for succeeding jobs of the same application type, without further need for communication with the
repository. Updates to images are made automatically by the CernVM system when required by changes in
the package sources. The use of CernVM thus makes it possible to distribute LHC physics jobs to any
reasonably well configured BOINC client node, including all important platform types.

4 Co-Pilot

Each LHC physics experiment needs to run hundreds of thousands of jobs on the various computing fabrics
available to it. This job flow is managed by “job production” facilities of several types. We choose to
interface BOINC volunteer machines as a “best-effort Cloud”, using the same approach as has recently been
taken to interface the ALICE experiment’s physics job production system to other Cloud facilities such as
Amazon EC2, reported in the paper CHEP179: “Dynamic Virtual AliEn Grid Sites on Nimbus with
CernVM”, A. Harutyunyan, P. Buncic, T. Freeman, and K. Keahey; Computing in High Energy and Nuclear
Physics (CHEP), Prague, March 2009. The information in the rest of this section is based on a part of this

paper.

The approach is based on “pilot jobs” sent out by the job production system to explore cloud resources, and
“pilot agents” running on the cloud’s worker nodes which will request and run received jobs. The approach

is general, as all the LHC experiments have pilot job systems, even though they are not identical. To exploit
this fact, an “Adapter” is introduced between the pilot job system and the clouds to be interfaced: on each
cloud worker node (in our case a BOINC client) a standard “Co-Pilot Agent” runs and uses the Jabber/XMPP
instant messaging protocol to communicate with the “Co-Pilot Adapter”, which runs outside the cloud

and interfaces to the various job production systems. The use of Jabber/XMPP allows scaling of the system
in case of a high load on the Adapter node by just adding new Adapter node(s) to the existing messaging
network.

Page 5 of 36

\» LHC physics simulation using CernVM and BOINC

The Co-Pilot Agent code is a standard part of Cern\VM and is thus freely available to BOINC nodes running
with VMwrapper. The Co-Pilot Adapter system exists already in a version for the ALICE experiment, in this
case interfacing to the AliEn job production system. (Later versions will become available for ATLAS, CMS
and LHCDb). So testing with ALICE jobs only requires:

1. Ensure the CernVM Co-Pilot Agent code is loaded in the BOINC nodes.
2. Transfer credentials (agent username and password) from AliEn to the newly created nodes.
3. Start the Co-Pilot Agent service on the worker nodes.

Each Agent is preconfigured with the Jabber server hostname and the Jabber ID of the Co-Pilot Adapter,
which are the only configuration parameters it needs. The Co-Pilot Agent then contacts the Co-Pilot Adapter
service and requests a job to execute. Upon receiving the job request from an Agent, the Adapter contacts the
AIliEn Job Broker central service which fetches jobs from the ALICE task queue and sends them to the
Adapter, which in turn forwards jobs to the Agents. When the job is done, the Agent reports its results to the
Adapter which in turn forwards them to the AliEn central services.

5 Results

5.1 Worker application in a host machine

The first thing to do was to test that VMwrapper would be able to run applications on a host machine,
compatibly with the original Wrapper program.. This was done by running the "worker" application which is
included in the standard BOINC source code. This application reads from stdin and writes the same input to
stdout, reads file "in" and writes these contents to file "out", and uses CPU time at least the time specified in
the command line in seconds. This was run successfully in a Linux host machine.

(NOTE: this won't work properly at the moment in a Windows host because the methods used to suspend
and resume computing do not work in Windows).

5.2 Worker application in a VM

The second step was to compute the same kind of task in a VM. A Python version of the “worker”
application ("worker.py') was written for this, and run in a very simple VM in which Python was already
installed.

The job.xml file used in these computations is shown in Appendix 6.1.1. In the server side, the used
configuration files for a BOINC task i.e. workunit and result templates are the same as running the worker
application with original wrapper. VMwrapper was able to start the VM, copy the application file and input
files to the VM and run the application with a command line specified in job.xml. After the computation
VMwrapper was able to copy the output file from the VM and write the stdout of the application to the file
specified in job.xml. After this, VMwrapper killed the VM managing tasks and exited.

5.3 Co-Pilot jobs

A Co-Pilot job was tested after these two steps. There existed already a Co-Pilot gateway for ALICE Co-
Pilot jobs, so it was used. The script called "copilotAgent" was already in the image of Cern\VM which was
used. The script was written to ask for jobs from ALICE’s job production system, run these jobs in the VM,
and send the results back to the job production system. In this case, VMwrapper had to just run the script.
The job.xml file used in these computations is shown in Appendix 6.1.2. It was confirmed both from the log
file in the VM and from the ALICE production system log that these jobs were run successfully. The jobs
were in fact just "hello world" jobs, not real physics computations, but provided convincing proof that the
whole computation chain was working correctly. The CernVM image used in the VM was configured with
the full ALICE system environment required to run real ALICE jobs.

Page 6 of 36

LHC physics simulation using CernVM and BOINC \»
.. PR

.0.

5.4 Notes

In these test computations, the image was not sent as part of the BOINC task because there was not an
existing image which would run VMMain.py automatically. So the test was done by starting VMMain.py in
the VM manually and saving the state of VM after that. Anyway, it has been tested that VMwrapper.py is
able to create a new VM properly. There is demo video about that suspending, resuming and aborting
BOINC tasks is working under BOINC core client using VMwrapper.py. The demo can be found from
[afs/cern.ch/user/r/rantala/public/\VVMwrapperDemo.

5.5 Acknowledgements

First of all, | want to thank my supervisor Ben Segal for all the advice and support I have had during the
summer. It has been an honour and very pleasant to work under his guidance. | have been extremely lucky to
work with brilliant people during my stay at CERN. | want to thank all the people who have helped me with
my project: David Garcia Quintas, David Weir, Predrag Buncic, Artem Harutyunyan. | am also very grateful
to the CERN openlab secretariat for hosting me and to Markus Nordberg and Robert Piche for financial
support. Finally, I want to thank all the other CERN openlab summer students for the great summer.

6 Appendices

6.1 job.xmlfiles

6.1.1 The job.xml file used with worker.py computations

<job_desc>

<unzip_task>
<application>tar</application>
<command_line>-xf ./cctools-2_5 2-i686-linux-2.6.tar</command_line>
<stdout_filename>stdout_tar</stdout_filename>
<stderr_filename>stderr_tar</stderr_filename>

</unzip_task>

<unzip_task>
<application>tar</application>
<command_line>-xf ./apache-activemq-5.2.0.tar</command_line>
<stdout_filename>stdout_tar</stdout_filename>
<stderr_filename>stderr_tar</stderr_filename>

</unzip_task>

<unzip_task>
<application>tar</application>
<command_line>-xf ./boincvm.tar</command_line>

</unzip_task>

<VMmanage_task>
<application>./apache-activemq-5.2.0/bin/activemqg</application>
<stdin_filename></stdin_filename>
<stdout_filename>stdout_broker</stdout_filename>
<stderr_filename>stderr_broker</stderr_filename>
<command_line></command_line>

</VMmanage_task>

<VMmanage_task>
<application>./boincvm/HostMain.py</application>
<stdin_filename></stdin_filename>
<stdout_filename>stdout_HostMain</stdout_filename>
<stderr_filename>stderr_HostMain</stderr_filename>

Page 7 of 36

\» LHC physics simulation using CernVM and BOINC

<command_line>./boincvm/HostConfig.cfg</command_line>

</VMmanage_task>

<task>
<virtualmachine>CernVM</virtualmachine>

<app_pathVM></app_pathVM>
<application>./worker.py</application>
<copy_app_to_VM>1</copy_app_to_VM>
<copy_file_to_VM>stdin</copy_file_to_VM>
<copy_file_to_VM>in</copy_file_to_VM>
<stdin_filename>stdin</stdin_filename>
<stdout_filename>stdout</stdout_filename>
<stderr_filename></stderr_filename>
<copy_file_from_VM>out</copy_file_from_VM>
<command_line>2</command_line>
<weight>2</weight>

</task>

</job_desc>

6.1.2 The job.xml used with Copilot jobs

<job_desc>

<unzip_task>
<application>tar</application>
<command_line>-xf ./cctools-2_5_2-i686-linux-2.6.tar</command_line>
<stdout_filename>stdout_tar</stdout_filename>
<stderr_filename>stderr_tar</stderr_filename>

</unzip_task>

<unzip_task>
<application>tar</application>
<command_line>-xf ./apache-activemq-5.2.0.tar</command_line>
<stdout_filename>stdout_tar</stdout_filename>
<stderr_filename>stderr_tar</stderr_filename>

</unzip_task>

<unzip_task>
<application>tar</application>
<command_line>-xf ./boincvm.tar</command_line>

</unzip_task>

<VMmanage_task>
<application>./apache-activemq-5.2.0/bin/activemqg</application>
<stdin_filename></stdin_filename>
<stdout_filename>stdout_broker</stdout_filename>
<stderr_filename>stderr_broker</stderr_filename>
<command_line></command_line>

</VMmanage_task>

<VMmanage_task>
<application>python</application>
<stdin_filename></stdin_filename>
<stdout_filename>stdout_HostMain</stdout_filename>
<stderr_filename>stderr_HostMain</stderr_filename>
<command_line>./boincvm/HostMain.py ./boincvm/HostConfig.cfg</command_line>

</VMmanage_task>

<task>

Page 8 of 36

LHC physics simulation using CernVM and BOINC \»

<virtualmachine>CernVMAgent</virtualmachine>

<app_pathVM></app_pathVM>
<application>./copilotAgent</application>
<copy_app_to_VM>0</copy_app_to_VM>
<copy_file_to_VM></copy_file_to_VM>
<copy_file_to_VM></copy_file_to_VM>
<stdin_filename></stdin_filename>
<stdout_filename>stdout_agent</stdout_filename>
<stderr_filename></stderr_filename>
<copy_file_from_VM></copy_file_from_VM>
<command_line></command_line>
<weight>2</weight>

</task>

</job_desc>

6.2 The code of worker applications

6.2.1 Original worker

This file is part of BOINC.
http://boinc.berkeley.edu
Copyright (C) 2008 University of California

BOINC is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License

as published by the Free Software Foundation,

either version 3 of the License, or (at your option) any later version.

BOINC is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with BOINC. If not, see <http://www.gnu.org/licenses/>.

worker - application without BOINC runtime system;
used for testing wrapper.
What this does:

copies one line of stdin to stdout
copies one line of "in" to "out"

uses 10 sec of CPU time

(or as specified by a command-line arg)

THIS PROGRAM SHOULDN'T USE ANY BOINC CODE. That's the whole point.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

//
//
//
//

do a billion floating-point ops

(note: I needed to add an arg to this;
otherwise the MS C++ compiler optimizes away
all but the first call to it!)

Page 9 of 36

//

sta

int

}

#if
#in

#de
#de
#de
#de

int

tic double do_a giga flop(int foo) {

double x = 3.14159*foo0;
int 1i;
for (i=0; 1i<500000000; i++) {

x += 5.12313123;
x *= 0.5398394834;
}

return x;

main (int argc,
char buf[256];
FILE* in, *out;

char** argv) {

fprintf (stderr, "worker starting\n");

in = fopen("in", "xr");

if (!'in) {
fprintf (stderr, "missing input file\n");
exit (1),

}

out = fopen ("out", "w");

if (lout) {
fprintf (stderr, "can't open output file\n");
exit (1) ;

}

fgets (buf, 256, in);

fputs (buf, out);

fgets (buf, 256, stdin);

fputs (buf, stdout);

int start = time(0);

int nsec = 10;

if (argc > 1) nsec = atoi(argv[l]);

int i=0;

while (time (0) < start+nsec) {

do_a giga flop(i++);
}
fputs ("done!\n",
return 0;

stdout) ;

def WIN32
clude <windows.h>

LHC physics simulation using CernVM and BOINC

take a string containing some space separated words.
return an array of pointers to the null-terminated words.

Modifies the string arg.
Returns argc
TODO: use strtok here

fine
fine
fine
fine

NOT IN TOKEN

IN SINGLE QUOTED TOKEN
IN DOUBLE QUOTED TOKEN
IN_UNQUOTED TOKEN

w NP O

parse command line(char* p,
int state = NOT IN TOKEN;
int argc=0;

char** argv) {

Page 10 of 36

LHC physics simulation using CernVM and BOINC \»

while (*p) {
switch (state) {
case NOT IN TOKEN:
if (isspace(*p)) {

} else if (*p == "\'") {
pt+;
argv[argc++] = p;
state = IN SINGLE QUOTED_ TOKEN;
break;
} else if (*p == "\"') {
pt+;
argv[argc++] = p;
state = IN DOUBLE QUOTED TOKEN;
break;
} else {
argv[argc++] = p;

state = IN UNQUOTED TOKEN;
}
break;
case IN SINGLE QUOTED TOKEN:
if ()p == "\"") {
*p = 0;
state = NOT IN TOKEN;
}
break;
case IN DOUBLE QUOTED TOKEN:
if (*p == "\"") {
*p = 0;
state = NOT_ IN TOKEN;
}
break;
case IN _UNQUOTED TOKEN:
if (isspace (*p)) |
*p = 0;
state = NOT_ IN TOKEN;
}
break;
}
p++;
}
argvlargc] = 0;
return argc;

}

int WINAPI WinMain (HINSTANCE hInst, HINSTANCE hPrevInst, LPSTR Args, int
WinMode) {

LPSTR command line;

char* argv([100];

int argc;

command line = GetCommandLine () ;
argc = parse command line(command line, argv);
return main(argc, argv);

}

#endif

6.2.2 worker.py

#!/usr/bin/env python
import sys, string, time

Page 11 of 36

def do a giga flop(foo):
x = 3.14159*foo
for i in range(1,500000) :
x += 5.12313123;
x *= 0.5398394834;
return x

Main

sys.stderr.write ("worker starting\n")

try:
infile = open("in", "r")

except:
sys.stderr.write("missing input file\n")
sys.exit (1)

try:
outfile = open("out", "w")

except:
sys.stderr.write("can't opent output file\n")
sys.exit (1)

outfile.write(infile.read())
sys.stdout.write(sys.stdin.read())

nsec = 10

if len(sys.argv) > 1:
nsec = int(sys.argv[1l])

i =20

tic = time.time ()
toc = time.time ()

while toc-tic < nsec:
do_a giga flop(i+l)
toc = time.time ()

sys.stdout.write ("done!\n")
sys.exit (0)

6.3 Original wrapper code

/I This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California

LHC physics simulation using CernVM and BOINC

// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License

// as published by the Free Software Foundation,

// either version 3 of the License, or (at your option) any later version.

// BOINC is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

// See the GNU Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public License

Page 12 of 36

LHC physics simulation using CernVM and BOINC \»
.. PR
- 0’

// along with BOINC. If not, see <http://www.gnu.org/licenses/>.

// wrapper.C
// wrapper program - lets you use non-BOINC apps with BOINC

// Handles:

// - suspend/resume/quit/abort

// - reporting CPU time

// - loss of heartbeat from core client

// - checkpointing

// (at the level of task; or potentially within task)

// See http://boinc.berkeley.edu/wrapper.php for details
// Contributor: Andrew J. Younge (ajy4490@umiacs.umd.edu)

#include <stdio.h>
#include <vector>
#include <string>
#ifdef WIN32
#include "boinc win.h"
#include "win util.h"
#else

#include <sys/wait.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "procinfo.h"
#endif

#include "boinc api.h"
#include "diagnostics.h"
#include "filesys.h"
#include "parse.h"
#include "str util.h"
#include "util.h"

#include "error numbers.h"

#define JOB FILENAME "job.xml"
#define CHECKPOINT FILENAME "checkpoint.txt"

#define POLL PERIOD 1.0

using std::vector;
using std::string;

struct TASK {
string application;
string stdin filename;
string stdout filename;
string stderr filename;
string checkpoint filename;
// name of task's checkpoint file, if any
string command line;
double weight;
// contribution of this task to overall fraction done
double final cpu time;
double starting cpu;
// how much CPU time was used by tasks before this in the job file
bool suspended;

Page 13 of 36

\» LHC physics simulation using CernVM and BOINC

double wall cpu time;
// for estimating CPU time on Win98/ME and Mac
#ifdef WIN32
HANDLE pid handle;
DWORD pid;
HANDLE thread handle;
struct stat last stat; // mod time of checkpoint file
#else
int pid;
struct stat last stat;
#endif
bool stat first;
int parse(XML_PARSER&) ;
bool poll(int& status);
int run(int argc, char** argv);
void kill();
void stop();
void resume();
double cpu time();
inline bool has checkpointed() {
bool changed = false;
if (checkpoint filename.size() == 0) return false;
struct stat new stat;
int retval = stat(checkpoint filename.c str(), &new stat);
if (retval) return false;
if (!stat first & new stat.st mtime != last stat.st mtime) {
changed = true;
}

stat first = false;
last stat.st mtime = new stat.st mtime;
return changed;

};

vector<TASK> tasks;
APP_INIT DATA aid;
bool graphics = false;

int TASK::parse(XML PARSER& xp) {
char tag[1024], buf[8192], buf2[8192];
bool is tag;

weight = 1;
final cpu time = 0;
stat first = true;
while (!xp.get(tag, sizeof(tag), is tag)) {
if (!'is tag) {
fprintf(stderr, "%s TASK::parse(): unexpected text %s\n",
boinc msg prefix(), tag
);

continue;

}

if (!strcmp(tag, "/task")) {
return 0;

}

else if (xp.parse string(tag, "application", application)) continue;

else if (xp.parse string(tag, "stdin filename", stdin filename))
continue;

Page 14 of 36

LHC physics simulation using CernVM and BOINC \I »
.. PR

.0’

else if (xp.parse string(tag, "stdout filename", stdout filename))
continue;
else if (xp.parse string(tag, "stderr filename", stderr filename))
continue;
else if (xp.parse str(tag, "command line", buf, sizeof(buf))) {
while (1) {
char* p = strstr(buf, "$PROJECT DIR");
if (!'p) break;
strcpy(buf2, p+strlen("$PROJECT DIR"));
strcpy(p, aid.project dir);
strcat(p, buf2);
}
command line = buf;
continue;

else if (xp.parse string(tag, "checkpoint filename",
checkpoint_filename)) continue;
else if (xp.parse double(tag, "weight", weight)) continue;

}
return ERR XML PARSE;
}
int parse job file() {
MIOFILE mf;
char tag[1024], buf[256];
bool is tag;
boinc resolve filename(JOB FILENAME, buf, 1024);
FILE* f = boinc fopen(buf, "r");
if (1) {
fprintf(stderr, "%s can't open job file %s\n", boinc msg prefix(), buf);
return ERR FOPEN;
}
mf.init file(f);
XML _PARSER xp (&nf) ;
if (!xp.parse start("job desc")) return ERR XML PARSE;
while (!xp.get(tag, sizeof(tag), is tag)) {
if (!'is tag) {
fprintf(stderr, "%s SCHED CONFIG::parse(): unexpected text %s\n",
boinc msg prefix(), tag
);
continue;
}
if (!strcmp(tag, "/job desc")) {
fclose(f);
return 0;
}
if (!strcmp(tag, "task")) {
TASK task;
int retval = task.parse(xp);
if ('retval) {
tasks.push back(task);
}
}
}
fclose(f);
return ERR XML PARSE;
}

Page 15 of 36

\» LHC physics simulation using CernVM and BOINC

#ifdef WIN32
// CreateProcess() takes HANDLEs for the stdin/stdout.
// We need to use CreateFile() to get them. Ugh.
//
HANDLE win_fopen(const char* path, const char* mode) {
SECURITY ATTRIBUTES sa;
memset(&sa, 0, sizeof(sa));
sa.nLength = sizeof(sa);
sa.bInheritHandle = TRUE;

if (!'strcmp(mode, "r")) {
return CreateFile(
path,
GENERIC READ,
FILE SHARE_READ,
&sa,
OPEN_EXISTING,
0, 0
);
} else if (!strcmp(mode, "w")) {
return CreateFile(
path,
GENERIC WRITE,
FILE SHARE WRITE,
&sa,
OPEN_ALWAYS,
0, 0
);
} else if (!strcmp(mode, "a")) {
HANDLE hAppend = CreateFile(
path,
GENERIC WRITE,
FILE SHARE WRITE,
&sa,
OPEN ALWAYS,
0, 0
);
SetFilePointer(hAppend, 0, NULL, FILE END);
return hAppend;
} else {
return 0;
}

}
#endif

void slash to backslash(char* p) {
while (1) {
char* q = strchr(p, '/');
if (!'q) break;

*q = "\\"';
}

int TASK::run(int argct, char** argvt) {
string stdout path, stdin path, stderr path;
char app path[1024], buf[256];

strcpy(buf, application.c str());

Page 16 of 36

LHC physics simulation using CernVM and BOINC \»
.. PR

.0’

char* p = strstr(buf, "$PROJECT DIR");
if (p) {
p += strlen("$PROJECT DIR");
sprintf(app_path, "%s%s", aid.project dir, p);
} else {
boinc resolve filename(buf, app path, sizeof(app path));
}

// Append wrapper's command-line arguments to those in the job file.
//
for (int i=1; i<argct; i++){

command line += string(" ");

command line += argvt[il];

}

fprintf(stderr, "%s wrapper: running %s (%s)\n",
boinc msg prefix(), app _path, command line.c str()

);

#ifdef WIN32
PROCESS INFORMATION process info;
STARTUPINFO startup info;
string command;

slash to backslash(app path);

memset (&process info, 0, sizeof(process info));

memset (&startup info, 0, sizeof(startup info));

command = string("\"") + app path + string("\" ") + command line;

// pass std handles to app

//
startup info.dwFlags = STARTF USESTDHANDLES;
if (stdout filename != "") {
boinc resolve filename s(stdout filename.c str(), stdout path);
startup_info.hStdOutput = win fopen(stdout path.c str(), "a");
}
if (stdin_ filename != "") {
boinc resolve filename s(stdin filename.c str(), stdin path);
startup_info.hStdInput = win fopen(stdin path.c str(), "r");
}
if (stderr filename !'= "") {

boinc resolve filename s(stderr filename.c str(), stderr path);
startup_info.hStdError = win fopen(stderr path.c str(), "a");

} else {
startup_info.hStdError = win fopen(STDERR FILE, "a");

}

if (!'CreateProcess(
app_path,
(LPSTR)command.c_str(),
NULL,
NULL,
TRUE, // bInheritHandles
CREATE_NO WINDOW|IDLE PRIORITY CLASS,
NULL,
NULL,
&startup info,
&process info

Page 17 of 36

\» LHC physics simulation using CernVM and BOINC

return ERR_EXEC;

pid handle = process info.hProcess;
pid = process info.dwProcessId;
thread handle = process info.hThread;
SetThreadPriority(thread handle, THREAD PRIORITY IDLE);
#else

int retval, argc;
char progname[256];
char* argv[256];
char arglist[4096];

FILE* stdout file;

FILE* stdin file;

FILE* stderr file;

pid = fork();

if (pid == -1) {
boinc_finish(ERR _FORK) ;

}

if (pid == 0) {
// we're in the child process here
//
// open stdout, stdin if file names are given
// NOTE: if the application is restartable,
// we should deal with atomicity somehow

//
if (stdout filename != "") {
boinc resolve filename s(stdout filename.c str(),
stdout path);
stdout file = freopen(stdout path.c str(), "a", stdout);
if (!stdout file) return ERR FOPEN;
}
if (stdin_filename != "") {
boinc resolve filename s(stdin filename.c str(),
stdin path);
stdin file = freopen(stdin path.c str(), "r", stdin);
if (!stdin file) return ERR FOPEN;
if (stderr filename != "") {

boinc resolve filename s(stderr filename.c str(), stderr path);
stderr file = freopen(stderr _path.c str(), "a", stderr);
if (!stderr file) return ERR FOPEN;

// construct argv

// TODO: use malloc instead of stack var
//
argv[0] = app _path;
stricpy(arglist, command line.c str(), sizeof(arglist));
argc = parse _command line(arglist, argv+l);
setpriority(PRIO PROCESS, 0, PROCESS IDLE PRIORITY);
retval = execv(app path, argv);
exit (ERR _EXEC);

}

#endif

wall cpu time = 0;

suspended = false;

return 0;

Page 18 of 36

LHC physics simulation using CernVM and BOINC

bool TASK::poll(int& status) {
if (!suspended) wall cpu time += POLL PERIOD;
#ifdef WIN32
unsigned long exit code;
if (GetExitCodeProcess(pid handle, &exit code)) {
if (exit code != STILL ACTIVE) {
status = exit code;
final cpu_time = cpu_time();
return true;

}

#else
int wpid, stat;
struct rusage ru;

wpid = wait4(pid, &status, WNOHANG, &ru);
if (wpid) {
final cpu time = (float)ru.ru utime.tv sec +
((float)ru.ru utime.tv usec)/le+6;
return true;
}

#endif
return false;
}

void TASK::kill() {
#ifdef WIN32
TerminateProcess(pid handle, -1);
#else
::kill(pid, SIGKILL);
#endif
}

void TASK::stop() {
#ifdef WIN32
suspend or resume_threads(pid, false);
#else
::kill(pid, SIGSTOP);
#endif
suspended = true;
}

void TASK::resume() {
#ifdef WIN32
suspend or resume threads(pid, true);
#else
::kill(pid, SIGCONT);
#endif
suspended = false;
}

void poll boinc messages(TASK& task) {
BOINC STATUS status;
boinc_get status(&status);
if (status.no _heartbeat) {
task.kill();
exit(0);

Page 19 of 36

\» LHC physics simulation using CernVM and BOINC

if (status.quit request) {
task.kill();
exit(0);

}

if (status.abort request) {
task.kill();
exit(0);

}

if (status.suspended) {
if ('task.suspended) {

task.stop();

}

} else {
if (task.suspended) {
task.resume();
}

}

double TASK::cpu time() {
#ifdef WIN32
double x;
int retval = boinc process cpu time(pid handle, x);
if (retval) return wall cpu time;
return Xx;
#elif defined(APPLE)
// There's no easy way to get another process's CPU time in Mac 0S X
//
return wall cpu time;
#else
return linux cpu time(pid);
#endif
}

void send status message(
TASK& task, double frac done, double checkpoint cpu time
) {
double current cpu time = task.starting cpu + task.cpu time();
boinc_report app status(
current cpu time,
checkpoint cpu time,
frac_done
);
}

// Support for multiple tasks.
// We keep a checkpoint file that says how many tasks we've completed
// and how much CPU time has been used so far
//
void write checkpoint(int ntasks, double cpu) {
FILE* f = fopen(CHECKPOINT FILENAME, "w");
if (!f) return;
fprintf(f, "%d %f\n", ntasks, cpu);

fclose(f);

}

void read checkpoint(int& ntasks, double& cpu) {
int nt;
double c;

Page 20 of 36

LHC physics simulation using CernVM and BOINC \»
.. PR

.0’

ntasks = 0;

cpu = 0;

FILE* f = fopen(CHECKPOINT FILENAME, "r");
if (!'f) return;

int n = fscanf(f, "%d %Lf", &nt, &c);
fclose(T);

if (n !'= 2) return;

ntasks = nt;

cpu = C;

int main(int argc, char** argv) {
BOINC OPTIONS options;
int retval, ntasks;
unsigned int i;
double total weight=0, w=0;
double checkpoint cpu time;
// overall CPU time at last checkpoint

for (i=1; i<(unsigned int)argc; i++) {
if (!strcmp(argv[i], "--graphics")) {
graphics = true;
}

}

memset (&options, 0, sizeof(options));
options.main program = true;
options.check heartbeat = true;
options.handle process control = true;
if (graphics) {

options.backwards compatible graphics = true;
}

boinc init options(&options);
fprintf(stderr, "wrapper: starting\n");

boinc_get init data(aid);

retval = parse job file();

if (retval) {
fprintf(stderr, "can't parse job file: %d\n", retval);
boinc finish(retval);

}

read checkpoint(ntasks, checkpoint cpu time);

if (ntasks > (int)tasks.size()) {
fprintf(stderr, "Checkpoint file: ntasks %d too large\n", ntasks);
boinc_finish(1);

for (i=0; i<tasks.size(); i++) {
total weight += tasks[i].weight;

for (i=0; i<tasks.size(); i++) {
TASK& task = tasks[i];
w += task.weight;
if ((int)i<ntasks) continue;
double frac done = w/total weight;
task.starting cpu = checkpoint cpu time;

Page 21 of 36

\» LHC physics simulation using CernVM and BOINC

retval = task.run(argc, argv);
if (retval) {
fprintf(stderr, "can't run app: %d\n", retval);
boinc_ finish(retval);
}
while(1l) {
int status;
if (task.poll(status)) {
if (status) {
fprintf(stderr, "app exit status: Ox%x\n", status);
// On Unix, if the app is non-executable,
// the child status will be 0x6c00.
// If we return this the client will treat it
// as recoverable, and restart us.
// We don't want this, so return an 8-bit error code.
//
boinc finish(EXIT CHILD FAILED);

}

break;

poll boinc messages(task);
send status message(task, frac done, checkpoint cpu time);
if (task.has checkpointed()) {
checkpoint cpu time = task.starting cpu + task.cpu time();
write checkpoint(i, checkpoint cpu time);
}
boinc sleep(POLL PERIOD);
}
checkpoint cpu time = task.starting cpu + task.final cpu time;
write checkpoint(i+l, checkpoint cpu time);
}
boinc finish(0Q);

}
#ifdef WIN32

int WINAPI WinMain (HINSTANCE hInst, HINSTANCE hPrevInst, LPSTR Args, int
WinMode) {

LPSTR command line;

char* argv[100];

int argc;

command line = GetCommandLine();
argc = parse_command line(command line, argv);
return main(argc, argv);

}

#endif

6.4 VMwrapper code

The source code can be found from https://svhweb.cern.ch/world/wsvn/vmwrapper/.

#!/usr/bin/env python

VMwrpapper.py

VMwrapper program - lets you use non-BOINC apps with BOINC in volunteers machines or in
virtual machines.

#

Handles:

Page 22 of 36

https://svnweb.cern.ch/world/wsvn/vmwrapper/

LHC physics simulation using CernVM and BOINC \»

A Voda
. .’

- suspend/resume/quit/abort

- reporting CPU time

- loss of heartbeat from core client

- checkpointing (at least at the level of task)

*volunteers machine: checkpoint filename of application has to be specified
*VM: Takes periodic snapshots of the virtual machine

- (supposed to also handle trickle messaging in future)

#

See http://boinc.berkeley.edu/trac/wiki/VmApps for details

Contributor: Jarno Rantala (jarno.rantala@gmail.com)

#

The original code was made under the CERN openlab summer student program July-August
2009

import sys, string, xmlrpclib, time, subprocess, signal, os, traceback

from boinc import *

from xml.dom import minidom

JOB_FILENAME = "job.xml"
CHECKPOINT_FILENAME = "checkpoint.txt"
SERVER_PROXY = 'http://localhost:8080/RPC2'
POLL_PERIOD = 1.0
CHECKPOINT_PERIOD = 15*60
TRICKLE_UP_PERIOD = 120
MAX_WAIT_TIME = 60
TASK_TAGS = ['virtualmachine',

'image’,

‘application’,

‘copy_app_to_VM',

‘copy_file_to_ VM,

'stdin_filename’,

'stdout_filename',

'stderr_filename',

‘copy_file_from_VM',

‘checkpoint_filename',

‘command_line',

'weight']

class TASK:
virtualmachine =
image ="
application =
copy_app_to VM =0
copy_files_ to VM =]
copy_stdin_to VM =0
stdin_filename ="
stdout_filename =
stderr_filename =
copy_files_from_VM =]
checkpoint_filename ="
command_line ="
weight = 1.0
Cmdid ="

Page 23 of 36

LHC physics simulation using CernVM and BOINC

CmdResults = None

app_process = None # instance of Popen class of subprocess Module

suspended = 0
starting_cpu = 0.0
final_cpu_time = 0.0
time_checkpointed = 0

contribution of this task to overall fraction done

final_cpu_time =0
starting_cpu =0
ready = 0
exitCode = None

how much CPU time was used by tasks before this in the job file

suspended = 0 # zero or nonzero (false or
wall_cpu_time =0

def readTag(self, tag, data):
If tag == "virtualmachine":
self.virtualmachine = data

elif tag == "image™:
self.image = data

elif tag == "copy_file_to_VM™":
self.copy_files_to_VM.append(data)

elif tag == "application":
self.application = data

elif tag == "copy_app_to_VM":
self.copy_app_to_VM = int(data)

elif tag == "copy_stdin_to_VM":
self.copy_stdin_to_VM = int(data)

elif tag == "stdin_filename":
self.stdin_filename = data

elif tag == "stdout_filename":
self.stdout_filename = data

elif tag == "stderr_filename":
self.stderr_filename = data

elif tag == "copy_file_from_VM":
self.copy_files_from_VM.append(data)

elif tag == "command_line":
self.command_line = data

elif tag == "checkpoint_filename":
self.checkpoint_filename = int(data)

elif tag == "weight":

true)

Page 24 of 36

LHC physics simulation using CernVM and BOINC

self.weight = int(data)

else:
sys.stderr.write("Unknown tag: " + tag + "\n")

Replace file names in command line with the physical names

resolved by boinc_resolve_filename-method. Every word which
starts "./" is recognised as file name.

def resolve_commandline(self):

newline =™
for word in self.command_line.split():
I word[0:2] =="./"
newline = newline + " " + boinc_resolve_filename(word)
else:

newline = newline + " " + word
self.command_line = newline

def kill(self, VMmanage):
if self.virtualmachine '="":

VMmanage.saveState(self.virtualmachine) # saves and power off the VM

else:
If not self.ready:
self.app_process.kill()

def stop(self, VMmanage):
self.suspended = 1
If self.virtualmachine '=""
VMmanage.pause(self.virtualmachine)
else:
self.app_process.send_signal(signal.SIGSTOP)

def resume(self, VMmanage):
self.suspended =0
If self.virtualmachine '=""
VMmanage.unpause(self.virtualmachine)
else:
self.app_process.send_signal(signal.SIGCONT)

def has_checkpointed(self, VMmanage, checkpoint_period):
If self.virtualmachine '=""

if time.time()-self.time_checkpointed > checkpoint_period:
time to checkpoint

VMmanage.saveSnapshot(self.virtualmachine, self.checkpoint_filename)

sys.stderr.write("snapshot at time: "+str(time.time())+"\n")
self.time_checkpointed = time.time()
return 1

else:
return O

else:

changed =0

If self.checkpoint_filename == ""
return O

is the file changed ?7?

Page 25 of 36

l\',-
l"

LHC physics simulation using CernVM and BOINC

def cpu_time(self, VMmanage):
If self.virtualmachine = ""
linux VM assumed!!!!
If self.suspended: # we cannot send a cmd to VM which is paused

return O

cmdid = VMmanage.runCmd(self.virtualmachine, "cat", ["/proc/uptime™])

wait = 1
tic = time.time()
while wait:
for cmd in VMmanage.listFinishedCmds():
if cmd == cmdid:
wait = 0
break
sys.stderr.write("Wait cpu_time cmd: "+str(wait)+"\n")
time.sleep(1)
if time.time() - tic > 10:
sys.stderr.write("It took too long to get cpu time! \n")
wait = 0

res = VMmanage.getCmdResults(cmdid)['out']
return reduce(lambda x,y: x-y, map(float, res.split()))

else:
cpu of subprocess
sys.stderr.write(str(os.times()[2]) +"\n")
return os.times()[2]

def poll(self, VMmanage = "):
If self.virtualmachine '="":
for Cmd in VMmanage.listFinishedCmds():
if Cmd == self.Cmdld:
self.ready = 1

if self.ready:
self.CmdResults = VMmanage.getCmdResults(self.Cmdld)

self.exitCode = self.CmdResults['exitCodeOrSignal’]
self.final_cpu_time = self.CmdResults['resources']['ru_stime'] +
self.CmdResults['resources][ru_utime']

else:
self.exitCode = self.app_process.poll()
If self.exitCode '= None:
self.ready = 1
self.final_cpu_time = self.cpu_time(VMmanage)

def VMrunning(self, VMmanage):
running = 0
for VM in VMmanage.listRunningVMs():
If VM == self.virtualmachine:
running = 1
return running

def runVM(self, VMmanage, commandline = "™, max_wait_time = float('inf")):

Page 26 of 36

LHC physics simulation using CernVM and BOINC \»

I‘F,-
I"

app_path = boinc_resolve_filename(self.application)
image_path = boinc_resolve_filename(self.image)
vm_path = boinc_resolve_filename(self.virtualmachine)
input_path = boinc_resolve_filename(self.stdin_filename)

Append wrapper's command-line arguments to those in the job file.
self.command_line = self.command_line + " " + commandline#+ " < "+ self.stdin_filename

Check if the virtual machine is already on client
doCreateVM = 1

for VM in VMmanage.listAvailableVMs():
If VM == self.virtualmachine:
doCreateVM = 0

I doCreateVM:

we assume that base directory of createVM is home_of _boinc/.VirtualBox
and that VM is in project directory home_of boinc/projects/URL_of project
in image_path we have the path of image relative to boinc/slot/n/ directory
that's why we have to remove first "../" and then it should be OK.
image_path = image_path[3:len(image_path)]
try:

VMmanage.createVM(self.virtualmachine, image_path)
except Exception as e:

sys.stderr.write("Creation of VM failed! \n")

sys.stderr.write(str(e) + "\n")

raise Exception(3)

restore snapshot if there is one
If VMmanage.getState(self.virtualmachine) '= "Saved":
try:
VMmanage.restoreSnapshot(self.virtualmachine)
except:
sys.stderr.write("Restoring snapshot failed. \n")

start VM
self.time_checkpointed = time.time()
if not self.VMrunning(VMmanage):
try:
VMmanage.start(self.virtualmachine)
except Exception as e:
sys.stderr.write("Can't start VM: " + self.virtualmachine + "\n")
sys.stderr.write(str(e) + "\n")
raise Exception(3)

wait until VM is running
tic = time.time()
while not self.VMrunning(VMmanage):
sys.stderr.write("Wait VM ™ + self.virtualmachine + " to run.\n")

If time.time() - tic > max_wait_time:
sys.stderr.write("It took too long to VM to run. \n")
raise Exception(5)

time.sleep(1)

Page 27 of 36

\» LHC physics simulation using CernVM and BOINC

wait until VM has connected to broker successfully
tic = time.time()
while 1:
try:
VMmanage.ping(self.virtualmachine)
except Exception as e:
sys.stderr.write("waiting for VM to connect to the broker \n")

If time.time() - tic > max_wait_time:
sys.stderr.write(str(e)+"\n")
sys.stderr.write("It took too long to VM to connect to the broker. \n")
raise Exception(5)

time.sleep(10)
continue
break

copy app file to VM
If self.copy_app_to_VM:
sys.stderr.write("copy file "+app_path+" to VM\n")

[out, err, status] = VMmanage.cpFileToVM(self.virtualmachine, app_path, self.application)
If status:

sys.stderr.write("Can't copy app to VM \n")

sys.stderr.write(err)

raise Exception(4)

copy files file to VM

for fileName in self.copy_files_to VM:
file_path = boinc_resolve_filename(fileName)
sys.stderr.write("copy file "'+file_path+" to VM\n")

[out, err, status] = VMmanage.cpFileToVM(self.virtualmachine, file_path, fileName)
If status:

sys.stderr.write("Can't copy files to VM \n")

sys.stderr.write(err)

raise Exception(4)

If self.application !=
above
sys.stderr.write("run command on VM: "+self.application+
tic = time.time()

or self.command_line '="": # we put " " to command_line couple of lines

+self.command_line+"\n")

while 1:
try:
self.Cmdld = VMmanage.runCmd(self.virtualmachine, self.application,
[self.command_line], '{}, ‘None', input_path)

except Exception as e:
sys.stderr.write("command didn't succeed.. try again.. \n")

if time.time() - tic > max_wait_time:
sys.stderr.write(str(e)+"\n")
sys.stderr.write("Running command in VM didn't succeed. \n")
raise Exception(5)

Page 28 of 36

LHC physics simulation using CernVM and BOINC \l »
l\ PR

|o’

time.sleep(10)
continue
break

def run(self, commandline = "):
app_path = boinc_resolve_filename(self.application)

stdout_file = None
stdin_file = None
stderr_file = None

If self.stdout_filename '=""
output_path = boinc_resolve_filename(self.stdout_filename)
sys.stderr.write("stdout file: "+output_path+"\n")
stdout_file = open(output_path, "a")

if self.stdin_filename '="":
input_path = boinc_resolve_filename(self.stdin_filename)
sys.stderr.write("stdin file: "+input_path+"\n")
stdin_file = open(input_path, "r"

If self.stderr_filename '="":
err_path = boinc_resolve_filename(self.stderr_filename)
sys.stderr.write("stderr file: "+err_path+"\n")
stderr_file = open(err_path, "a")

Append wrapper's command-line arguments to those in the job file.
self.command_line = self.command_line + " " + commandline

resolve file names in command line
self.resolve_commandline()

sys.stderr.write("wrapper: running "+app_path+" "+"("+self.command_line+") \n")
runs application on host machine

self.app_process = subprocess.Popen((app_path+" "+self.command_line).split(), 0, None,
stdin_file, stdout _file, stderr_file)

def read_job_file(filename):
input_path = boinc_resolve_filename(filename)

open the job file

try:
infile = boinc_fopen(input_path, 'r")

except boinc.error:
sys.stderr.write("Can't open job file: " + input_path)
raise Exception(1)

jobxml = minidom.parse(infile)
infile.close()

Page 29 of 36

\» LHC physics simulation using CernVM and BOINC

read the context of job file
try:

xmltasks = jobxml.getElementsByTagName("job_desc")[0]
except IndexError:

sys.stderr.write("Can't read job file: no 'job_desc' tag \n")

tasks =]

read the attributes of tasks

for xmltask in xmltasks.getElementsByTagName("task"):
task = TASK()

for tag in TASK_TAGS:
try:
taglist = xmltask.getElementsByTagName(tag)
for tagxml in taglist:
data = tagxml.childNodes[0].data
task.readTag(tag, data)
except IndexError:
sys.stderr.write("Task has no "+tag+" \n")

tasks.append(task)

read attributes of VMmanage tasks

VMmanageTasks =[]

for xmltask in xmltasks.getElementsByTagName("VMmanage_task"):
task = TASK()

for tag in TASK_TAGS:
try:
taglist = xmltask.getElementsByTagName(tag)
for tagxml in taglist:
data = tagxml.childNodes[0].data
task.readTag(tag, data)
except IndexError:
sys.stderr.write("Task has no "+tag+" \n")

VMmanageTasks.append(task)

read attributes of unzip tasks

unzipTasks =[]

for xmltask in xmltasks.getElementsByTagName("unzip_task"):
task = TASK()

for tag in TASK_TAGS:
try:
taglist = xmltask.getElementsByTagName(tag)
for tagxml in taglist:
data = tagxml.childNodes[0].data
task.readTag(tag, data)
except IndexError:
sys.stderr.write("Task has no "+tag+" \n")

unzipTasks.append(task)

Page 30 of 36

LHC physics simulation using CernVM and BOINC

jobxml.unlink()
return [tasks, VMmanageTasks, unzipTasks]

def read_checkpoint(filename):
ntasks = 0
cpu=0

try:

f = open(filename, "r");
except:

return [ntasks, cpu]

data = f.readline().split()
f.close()

try:
ntasks = int(data[0])
cpu = float(data[1])
except:
sys.stderr.write("Can't read checkpoint file \n")
return [0, O]

return [ntasks, cpu]

def poll_boinc_messages(task, VMmanage):
status = boinc_get_status()
exit = 0 # if nonzero then VMwrapper should exit
#sys.stderr.write("status suspended: "+str(status['suspended])+" \n")
#sys.stderr.write("status no heartbeat: "+str(status['no_heartbeat])+" \n")
#sys.stderr.write("status quit request: "+str(status['quit_request])+" \n")
#sys.stderr.write("status abort request: "+str(status[‘abort_request])+" \n")

If status['no_heartbeat'] or status['quit_request’] or status['abort_requestT:
task.kill(VMmanage)
exit=1

If status['suspended:
If not task.suspended:
task.stop(VMmanage)
else:
If task.suspended:
task.resume(VMmanage)

return exit

def send_status_message(task, VMmanage, frac_done, checkpoint_cpu_time):
current_cpu_time = task.starting_cpu + task.cpu_time(VMmanage)
boinc_report_app_status(current_cpu_time, checkpoint_cpu_time, frac_done)

Support for multiple tasks.
We keep a checkpoint file that says how many tasks we've completed
and how much CPU time has been used so far
def write_checkpoint(filename, ntasks, cpu):
try:
f = open(filename, "w")

Page 31 of 36

\» LHC physics simulation using CernVM and BOINC

except IOError:
sys.stderr.write("Writing checkpoint file failed. \n")

f.write(str(ntasks)+" "+str(cpu)+"\n")
f.close()

#def wait(n):

tic = time.time()

toc = time.time()

while toc - tic <n:
time.sleep(1)
toc = time.time()

HHHFHH

BOINC OPTIONS (bools) :
main_program = 1

check heartbeat = 1
handle_process_control = 1
send_status msgs =1
handle_trickle_ups =0
handle_trickle_downs = 0

retval = boinc_init_options(main_program, check heartbeat, handle_process_control,
send_status_msgs, handle_trickle _ups, handle_trickle _downs)

If (retval):
sys.exit(retval)

read command line

commandline ="

for arg in sys.argv[l:len(sys.argv)]:
commandline = commandline + arg + " "

read job file

[tasks, VMmanageTasks, unzip_tasks] = read_job_file(JOB_FILENAME)

read checkpoint file
ntasks = 0
[ntasks, checkpoint_cpu_time] = read_checkpoint(CHECKPOINT_FILENAME)
If ntasks > len(tasks):
sys.stderr.write("Checkpoint file: ntasks "+str(ntasks)+" too large\n")
boinc_finish(1)
If ntasks == len(tasks):
sys.stderr.write("Workunit is already computed.\n")
boinc_finish(0)

calculate the total weight
total_weight =0
for task in tasks:
total_weight = total_weight + task.weight

Page 32 of 36

LHC physics simulation using CernVM and BOINC \»

I‘F,-
I"

sys.stderr.write('ntasks: '+str(ntasks)+" len tasks: "+str(len(tasks))+"\n")

check if there is a task which uses VM
isVM =0
for i in range(ntasks, len(tasks)):
If tasks[i].virtualmachine '="":
isVM = 1
break

unzip the archives first
for task in unzip_tasks:
task.run()

for task in unzip_tasks:
task.poll()
tic = time.time()
while not task.ready:

If time.time() - tic > MAX_WAIT_TIME:
sys.stderr.write("Unzip task "+task.application +
task.kill()
boinc_finish(5)

nn

+task.command_line+" take too long. \n")

sys.stderr.write("Wait for unzip tasks. \n")
time.sleep(2)
task.poll()

try-finally structure makes sure that we kill the VMmanage tasks also when
there is an error.
exitStatus = 0

try:

If there is a task which uses VM we start VMmanageTasks
If iIsSVM:
for task in VMmanageTasks:
task.run()

VM_MANAGE = xmlrpclib.ServerProxy(SERVER_PROXY)

wait until VMmanageTasks started succesfully
tic = time.time()

time.sleep(5)

VMmanageRunning = 0

while 1:

check that tasks are still running
for task in VMmanageTasks:
task.poll()
if task.ready:
sys.stderr.write("VM manage tasks "+task.application+" not running. Exit status:
"+str(task.exitCode)+"\n")
raise Exception(5)

try:
VM_MANAGE .listAvailableVMs()

Page 33 of 36

\» LHC physics simulation using CernVM and BOINC

except Exception as e:

sys.stderr.write("Wait VM manage tasks to start. \n")

traceback.print_exc()

If time.time() - tic > MAX_WAIT_TIME:
sys.stderr.write(str(e)+"\n")
sys.stderr.write("It took too long to VM manage tasks to start. \n")
raise Exception(5)

time.sleep(5)

continue

sys.stderr.write("VM manage tasks started successfully \n")
VMmanageRunning = 1
break
else:
VM_MANAGE =[]

weight_done =0

for iin range(ntasks, len(tasks)):
weight_done = weight_done + tasks][i].weight
frac_done = weight_done / total_weight
tasks]i].starting_time = checkpoint_cpu_time

sys.stderr.write(‘task number: '+str(i)+"\n")

If tasks]i].virtualmachine '=""
check VMmanageTasks process
#for task in VMmanageTasks:
[ready, status] = task.poll()
if ready:
sys.stderr.write("App "'+task.application+" is not running. Exit status: "+str(status)+"\n")
boinc_finish(195); # EXIT_CHILD_FAILED

run app in VM (JOB_FILENAME used as a connection test file)

sys.stderr.write('run virtual machine: "'+tasks]i].virtualmachine+"\n")

tasks[i].runVM(VM_MANAGE, commandline, MAX_WAIT_TIME)
else:

run app in host

sys.stderr.write('run application on Host: "'+tasks[i].application+"\n")

tasks[i].run(commandline)

wait for the task to accomplish
while 1:
tasks]i].poll(VM_MANAGE)

If tasks][i].ready:
If tasks][i].exitCode:
sys.stderr.write("App exit code "+str(task.exitCode)+" \n")
sys.stderr.write("App stderr: \n")
sys.stderr.write(tasks[i]. CmdResults['err']+"\n")
raise Exception(195) # EXIT_CHILD_FAILED
break

If poll_boinc_messages(tasks][i], VM_MANAGE):

VMwrapper should exit cleanly
raise Exception(0)

Page 34 of 36

LHC physics simulation using CernVM and BOINC \»
.. PR]
- "

If task.has_checkpointed(VM_MANAGE, CHECKPOINT_PERIOD):
checkpoint_cpu_time = tasksJi].starting_cpu + tasks[i].cpu_time(VM_MANAGE)
write_checkpoint(CHECKPOINT_FILENAME, i, checkpoint_cpu_time)

send_status_message(tasks|i], VM_MANAGE, frac_done, checkpoint_cpu_time)
time.sleep(POLL_PERIOD)

If tasks]i].virtualmachine '=""

write stdout and stderr

If tasks]i].stdout_filename '=""
fpath = boinc_resolve_filename (tasks[i].stdout_filename)
fout = open(fpath, "w"
fout.write(tasks[i]. CmdResults['outT)

If tasks[i].stderr_filename = ""
fpath = boinc_resolve_filename (tasks[i].stderr_filename)
ferr = open(fpath, "w"
ferr.write(tasks[i].CmdResults['err'])

else:
sys.stderr.write(tasks[i].CmdResults['err")

if we are going to copy files to VM we need to try that VM has connected to
broker successfully
If len(tasks]i].copy_files_from_VM) > 0:
tic = time.time()
while 1:
try:
VM_MANAGE.ping(tasks]i].virtualmachine)
except Exception as e:
sys.stderr.write("waiting for VM to connect to the broker \n")
sys.stderr.write(str(e)+"\n")
if time.time() - tic > MAX_WAIT_TIME:
sys.stderr.write(str(e)+"\n")
sys.stderr.write("It took too long to VM to connect to the broker. \n")
raise Exception(5)

time.sleep(10)
continue
break

copy files from VM
for fileName in tasksJi].copy_files _from_ VM:
file_path = fileName # is it always true?
sys.stderr.write("Copy file from VM: "+file_path+"\n")
[out, err, status] = VM_MANAGE.cpFileFromVM(tasks[i].virtualmachine, file_path,
fileName)
If status:
sys.stderr.write("Can't copy file from VM \n")
sys.stderr.write(err)
raise Exception(4)

save state of VM and Kkill it (VMMain.py is running on VM!)
VM_MANAGE .saveState(tasks][i].virtualmachine) # or do we want to power off??

Page 35 of 36

\» LHC physics simulation using CernVM and BOINC

checkpoint_cpu_time = tasksJi].starting_cpu + tasks]i].final_cpu_time
write_checkpoint(CHECKPOINT_FILENAME, i+1, checkpoint_cpu_time)

read the exit status from raised exception
except Exception as e:
sys.stderr.write(str(e)+"\n")
traceback.print_exc()
If type(e.args[0]) == int:
exitStatus = e.args[0]

finally:
it isVM:
save state of running VMs
If VMmanageRunning: # otherwise listRunningVMs() never exits
for task in tasks:
If task.virtualmachine '=""
try:
for VM in VM_MANAGE.listRunningVMs():
if VM == task.virtualmachine:
VM_MANAGE.saveState(task.virtualmachine)
except:
sys.stderr.write("Couldn't save state of "+task.virtualmachine+". \n")
traceback.print_exc()

kill VM manage tasks

for task in VMmanageTasks:
sys.stderr.write("Kill the VM manage task: "+task.application+" \n")
task.kill(VM_MANAGE)

boinc_finish(exitStatus)

Page 36 of 36

