

Design and
implementation
of probes for
the WLCG SAM
framework

Robert Vežnaver

CERN openlab
18th September 2010

Design and implementation of probes for the WLCG SAM tools

 Page 2 of 10

oTN-2010-01 openlab Summer Student Report

Design and implementation of probes
for the WLCG SAM framework

Student: Robert Vežnaver
Supervisor: Wojciech Łapka

17th September 2010
Version 0.2

Distribution: Public

Abstract ..2	

Introduction..3	

1	
 Stored procedures in MRS..4	

1.1	
 MySQL ... 6	

1.2	
 Oracle.. 6	

2	
 Nagios probe ..6	

2.1	
 Perl and Nagios::Plugin .. 7	

2.2	
 pnp4nagios PHP template... 8	

3	
 MyEGI..9	

4	
 Bibliography ...10	

Abstract

The SAM (Service and Availability Monitoring) framework tests the WLCG (Worldwide LHC Computing
Grid) infrastructure. This framework is distributed across all NGIs (National Grid Initiatives) and a
centralized instance at CERN. The main component of SAM is Nagios, which schedules and executes tests.

The aim of this project was to build a Nagios probe within the SAM framework which checks if the MRS
(Metric Result Store) database is receiving enough test results. These results will ultimately help in building
a robust Grid Monitoring Infrastructure for they will enable the detection of several issues such as problems
with sending test results, problems with the messaging brokers, problems with messaging consumers, etc.

As a by-product of the main goal, procedures were developed which calculate the mean and standard
deviation for metric frequencies from the data collected in the MRS database. These values were later used
from within MyEGI to plot the normal distribution graph for a given metric.

Design and implementation of probes for the WLCG SAM tools

 Page 3 of 10

Introduction

The SAM (Service and Availability Monitoring) framework is a distributed system for distributed
monitoring. From a subsystem standpoint, it consists of Nagios instances deployed across NGIs and CERN,
a messaging system for returning the results (metrics) of some probes and transferring all results back to
CERN, and databases (both locally at NGIs and a central one at CERN).

One may also view SAM from a geographical standpoint. At the NGI level there is one Nagios instance that
collects metric data, which is saved inside a MySQL database. The messaging system is used within the grid
infrastructure for returning the metrics of passive checks. The transfer of metrics to the MySQL database is
done via the org.egee.SendToMetricStore probe, while the transfer of metrics to the CERN central database
is done via the org.egee.SendToMsg probe. At the CERN level there is a so-called “Super Nagios” instance
(also called ops-monitor) that is responsible for monitoring the Nagioses of all NGIs. This Nagios also
monitors the messaging system and the central Oracle database installation at CERN.

The SAM database (both MySQL and Oracle) currently consists of three database components (although
merging is in progress):

- ATP (Aggregated Topology Provider), which describes the topology of services
- MDDB (Metric Description Database), which describes the metrics
- MRS (Metric Store), which holds the metric data

The NCG (Nagios Configuration Generator) is used for automatic generation of Nagios configuration files
out of templates and the SAM database. As this project was primarily focused on operating on the MRS
database and implementing an active Nagios probe, there is no need to explain the messaging subsystem.

Figure 1: SAM graphic representation

Design and implementation of probes for the WLCG SAM tools

 Page 4 of 10

1 Stored procedures in MRS

The getFreshMetrics stored procedure is the materialization of the main goal. This procedure tells the end
user (usually the NGI system administrator) whether the metrics received from the NGI are “fresh” enough.
If the metrics are fresh enough, it means that test results are coming in the MRS database within the expected
timeframe and that the messaging system is working fine. If not, there may be a problem somewhere.

One of the main problems is defining “fresh”. Each metric has a frequency (time between checks), which is
actually the frequency of the Nagios probe (set up for each probe in NCG) that returns it. In the case of
active Nagios probes, these frequencies are good values because in most cases active Nagios probes both
finish and return the metrics before the start of the next check or simply do not return anything. So, taking
into account these frequencies and adding a little bit of extra “wiggle” time (usually the time it takes the
metric to transfer into the MRS database), the procedure works fine. The problem lies in the passive checks.
During the alpha phase of the procedure development, it has been seen that passive tests in most cases return
later than the specified frequency, which does not mean they do not return at all (obviously, “fresh” has a
rather broad definition). To account for these deviations, a side procedure named calculateMetricFreq was
created.

The calculateMetricFreq stored procedure is used for dynamic statistical calculation of metric frequencies. It
takes into account all metrics in the metricstore.metricdata table, which are within the past two weeks. First
it groups them by NGI, flavour, and metric and calculates the frequency for each metric (based on the time
the metric arrived). After that it calculates the mean and standard deviation for each NGI, flavour, and metric
pair. Based on the central limit theorem (CLT), the assumption is that all metric frequencies will be
approximately normally distributed, with a mean shift towards the value they were set up with. This
assumption was tested in Mathematica, which showed that metrics really do behave in this way.

Figure 2: Histrogram and calculated normal distribution for

NorthernEurope / CREAM-CE / JobSubmit
µ = 57.77, σ = 84.88

During the calculation, the procedure takes into account the fact that Nagios tends to increase the frequency
of probes when they go into critical state. Discarding all frequencies that are two times higher than the
original one mitigates this issue. The resulting data containing the metric frequency statistics is put into the
metricstore.mon_frequency_statistics table. This table is generated weekly.

Taking into account the frequency statistics, a “fresh” metric is one that has the following property:

Design and implementation of probes for the WLCG SAM tools

 Page 5 of 10

check_time is the time when the result was available, now is the current time (both in UNIX timestamp
format), devPerc is the allowed offset in percentage, devTime is the allowed offset in minutes. Nagiosfreq
refers to the original frequency set up in Nagios, while µfreq + 2σfreq refers to the calculated mean and
standard deviation.

getFreshMetrics filters out all fresh metrics from metricstore.metricdata_latest and puts the data in a
temporary table named tmpFilteredMetrics. After that it collects all configured metrics for given parameters
and puts them in the tmpMetricCount temporary table. It then joins these two tables and outputs data so the
end user may see the number of fresh metrics, total metrics, and a percentage of fresh in total metrics. The
output is ordered by NGI, flavour, and metric. The procedure may filter by a list of profiles, NGIs, service
flavours, metric names, and FQANs.

Figure 3: Graphic overview of getFreshMetrics stored procedure input

NGI flavour_name metric_name fqan_name recei

ved
total percen

tage
UKI CE hr.srce.GRAM-CertLifetime NULL 43 47 92
UKI CE org.sam.CE-JobSubmit /ops/Role=lcgadmin 36 47 77
UKI CE org.sam.WN-Bi /ops/Role=lcgadmin 32 47 69
UKI CE org.sam.WN-CAver /ops/Role=lcgadmin 32 47 69
UKI CE org.sam.WN-Csh /ops/Role=lcgadmin 32 47 69
UKI CE org.sam.WN-Rep /ops/Role=lcgadmin 31 47 66
UKI CE org.sam.WN-SoftVer /ops/Role=lcgadmin 32 47 69
UKI CREAM-CE hr.srce.CREAMCE-CertLifetime NULL 7 7 100
… … … … … … …

Figure 4: Example output of getFreshMetrics

Although the stored procedures for MySQL and Oracle share a lot of code, there are some differences that
need to be explained.

Design and implementation of probes for the WLCG SAM tools

 Page 6 of 10

1.1 MySQL

Because there is no function for splitting a list of string in MySQL, alongside aforementioned procedures,
there was another stored procedure created as a by-product of the main goal. list2table is a MySQL stored
procedure which takes a comma-separated list of varchars and splits them into a temporary table. The
procedure has only two parameters: the list, and the desired name of the temporary table that will hold the
data. It must be called as a prepared procedure.

Apart from having every list in a separate temporary table, the getFreshMetrics procedure relies heavily on
other temporary tables, namely tmpFilteredMetrics and tmpMetricCount. As temporary tables in MySQL are
created locally, they are only visible after the execution of the procedure and only in the session in which
they were created.

1.2 Oracle

Since calcMetricFreq is based on a cursor, which goes through the metricdata table, the only real difference
between the MySQL and Oracle (or PL/SQL) version is in the syntax. Also, it should be noted that PL/SQL
does not have a function which outputs date and time in a UNIX timestamp format, so the MRS to_unixts
function was used instead.

The getFreshMetrics procedure in Oracle uses nested tables to hold the multiple lists. The lists are retrieved
from the MRS function split which splits a comma-separated list into piped rows. The output is then put into
a nested table. Oracle uses global temporary tables, and as a procedure in Oracle cannot return a table (unlike
MySQL), apart from tmpFilteredMetrics and tmpMetricCount, it also uses the tmpFreshMetrics as a
temporary data holder.

2 Nagios probe

The Nagios probe acts as a wrapper and finer-grained filter for the stored procedure inside the MRS
database. It produces output in the standard Nagios format, as well as HTML formatted output that enable
the probe to display both warning and critical information at once. The probe is configured via Hash.pm, one
of the main NCG templates file. The configuration for the probe is as follows:

$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{native} = "Nagios";
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{probe} = 'check_missing_probes_mrs';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{metricset} = "nagios";
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{config}->{path} =
$NCG::NCG_PLUGINS_PATH_GRIDMON;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{config}->{interval} = 5;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{config}->{timeout} = 30;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{config}->{retryInterval} = 3;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{config}->{maxCheckAttempts} = 3;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{flags}->{NOHOSTNAME} = 1;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{flags}->{PNP} = 1;
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--profileName'} =
'ROC_OPERATORS';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--NGIName'} = 'ANY';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--flavourName'} =
'ANY';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--metricName'} = 'ANY';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--fqanName'} = 'ANY';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--devPerc'} = '5';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--devTime'} = '15';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--warning'} = '90';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--critical'} = '70';
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--extra-opts'} =
'send_to_db@/etc/nagios/plugins/send_to_db.ini';

Design and implementation of probes for the WLCG SAM tools

 Page 7 of 10

The settings up to {flags}->{PNP} = 1 are more or less standard for any Nagios probe configured in NCG.
{flags}->{PNP} = 1 enables pnp4nagios. All parameters except the last three are directly passed to the stored
procedure. The {‘--warning’} and {‘--critical’} setting set the global threshold such that if any metric
percentage goes over it automatically raises an alert in Nagios. The {‘--extra-opts’} setting is used for
sending extra options contained in a text file to a probe (in this case, the database connection information).

The warning and critical threshold may be configured for each metric separately using the file
/etc/nagios/plugins/check_missing_probes.cfg. This is an Apache-style XML configuration file in which the
users may specify their own threshold regarding of the situation. It has to be defined per flavour and per
metric, although the user might save some time writing a simple regular expression. A sample configuration
file looks like this:
<flavour CE>
 <metric org.sam.*>
 warning 70
 critical 60
 </metric>
</flavour>
<flavour CREAM-CE>
 <metric org.sam.*>
 warning 70
 critical 60
 </metric>
</flavour>

There is a slight difference in configuring the Nagios probe for NGIs, as to configuring it for the ops-
monitor. The line:
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{parameter}->{'--NGIName'} = 'ANY';

… is replaced by:
$WLCG_SERVICE->{'org.egee.MrsCheckMissingProbes'}->{attribute}->{NGI_NAME} = "--NGIName";

Because the ops-monitor instance has one check per NGI, an attribute has to be defined which tells NCG that
there is a variable that needs to be changed per site. These attributes are defined per site in ncg.localdb. For
example:
HOST_ATTRIBUTE!sam-ap-roc.cern.ch!NGI_NAME!"AsiaPacific"

2.1 Perl and Nagios::Plugin

The probe is written in Perl 5 using the Nagios::Plugin module. The algorithm is quite simple:

1. Read configuration file
2. Connect to database
3. Call stored procedure with given parameters
4. For each returned row

I. Set warning and critical threshold to global
II. If there are different thresholds in the configuration file overwrite previous setup
III. If percentage is below critical threshold add to critical stack, else if below warning threshold

add to warning stack
IV. Add data to perfdata (so it can be picked up by pnp4nagios)

5. Generate text output
6. Generate HTML output
7. Disconnect from database
8. Exit with appropriate alert level

There is a slight difference between the Oracle and MySQL version of the probe. When connecting to
Oracle, the probe tries to read /etc/mrs.d/oracle-mrs.conf, which contains Oracle connection parameters.
Another thing is that when calling the procedure in Oracle, the probe does a select query on
tmpFreshMetrics.

Design and implementation of probes for the WLCG SAM tools

 Page 8 of 10

Figure 5: HTML output from Nagios probe

2.2 pnp4nagios PHP template

pnp4nagios is a plugin for Nagios which puts all perfdata from a given probe into a rrd database, and then
reads from this database and creates graphs. Since visualization is an important part of this project, a special
pnp4nagios PHP template was created which colours each metric percentage with a different colour, and
groups metrics which have the same flavour and NGI into one graph. This enables the user to check the
fluctuation in metrics even when there is no critical or warning alert.

Figure 6: Metric fluctuation of CEs in 24h

Design and implementation of probes for the WLCG SAM tools

 Page 9 of 10

3 MyEGI

MyEGI is the main visualization tool to present a grid-aware view of the data collected by the SAM
framework. It is written in Python using the Django framework. It uses the Model-View-Controller design
pattern and an Object Relational Mapper for database abstraction.

Since this project created a new table that gathers metric frequency statistics, it seemed obvious to visualize
this data to the end user. The MyEGI portal already had a view for metric details, so a link was added on that
view which points to a plot generator that plots the normal distribution based upon the parameters of the
selected metric.

A new class was added to the model representing the tmpMetricFreq table, and a view method was added
which returns a png image generated by numpy and matplotlib. This provides the user a feeling of how well
the metric is actually behaving over the period of two weeks.

Figure 7: MyEGI normal distribution plot for a metric

Design and implementation of probes for the WLCG SAM tools

 Page 10 of 10

4 Bibliography

[1] https://twiki.cern.ch/twiki/bin/view/EGEE/GridMonitoringNcgYaim

[2] https://twiki.cern.ch/twiki/bin/view/EGEE/GridMonitoringNcgOverview

[3] https://twiki.cern.ch/twiki/bin/view/LCG/SAMProbesMetrics

[4] https://twiki.cern.ch/twiki/bin/view/LCG/SamCern

[5] http://dev.mysql.com/doc/refman/5.1/en/stored-routines.html

[6] http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html

[7] http://stanford.edu/dept/itss/docs/oracle/10g/appdev.101/b10807/toc.htm

[8] http://nagiosplug.sourceforge.net/developer-guidelines.html

[9] http://docs.pnp4nagios.org/pnp-0.4/start

[10] http://search.cpan.org/dist/Nagios-Plugin/lib/Nagios/Plugin.pm

