
Openlab summer student report

Performance and threading studies of
High Energy Physics software

Marc D'Arcy

CERN openlab
21st June - 14th August 2009

Supervisor: Andrzej Nowak

Distribution: Public

29th September 2009
Version 1.1

Openlab summer student report

Marc D'Arcy

21st June - 14th August 2009

Abstract

This report details some of the recent work carried out during a summer placement
with CERN openlab. The report covers two main projects; �rstly experience with
Intel IPP and its integration into the High Energy Physics application, ROOT. This
initial investigation suggests that Intel IPP can bring about some good increases in
performance particularly on the Nehalem architecture, with minimal inconvenience
incurred.

The second part of the report details the multi-threaded Geant4 prototype sca-
lability testing carried out on the Nehalem architecture including perfmon analysis.
The results suggest good potential for thread scalability on Nehalem, but some sca-
ling problems are highlighted with the multi-threaded Geant4 prototype beyond 8
threads.

Contents

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and objectives . 1
1.3 Report organisation . 1

2 Intel IPP 2
2.1 Intel IPP . 2

2.1.1 Overview of Intel IPP . 2
2.1.2 How IPP optimises for performance 2
2.1.3 The future with Intel AVX . 3
2.1.4 Advantages and limitations of IPP 3

2.1.4.1 Advantages . 3
2.1.4.2 Limitations . 4

2.1.5 IPP availability at CERN . 4
2.1.6 Compression algorithms within Intel IPP 4
2.1.7 Moving from Penryn to Nehalem and beyond without recom-

piling . 5
2.2 Intel IPP within a real High Energy Physics application 7

2.2.1 Overview of ROOT . 7
2.2.2 The bene�t of IPP integration within ROOT 7
2.2.3 Extending the current compression methods within ROOT . . 7
2.2.4 Testbed con�guration . 9

2.3 Performance results and analysis . 9
2.3.1 IPP gzip & zlib - Intel Harpertown vs Nehalem 9
2.3.2 IPP gzip decompression problems 11
2.3.3 ROOT vs ROOT with new IPP zlib compression algorithm . . 11

2.4 Conclusions . 13
2.5 Further work . 13

3 Multi-threaded Geant4 scalability testing 16
3.1 Overview of Geant4 . 16
3.2 Objective of scalability testing . 16
3.3 Results . 17

3.3.1 Single run benchmarks on Nehalem 17
3.3.2 Batch script with perfmon on Nehalem 18

iii

Contents iv

3.4 Conclusions . 19
3.5 Further work . 19

Bibliography 20

Appendix 22

A IPP & ROOT 22
A.1 Process to integrate IPP zlib compression algorithm into ROOT . . . 22

A.1.0.1 Replacement of standard zlib �les with ipp_zlib �les 23
A.1.0.2 Building ROOT with IPP zlib compression 23

A.2 BKM for setup and compiling of ROOT when used with IPP 24
A.3 Intel ipp_gzip decompression bug report 25

B MTGeant4 28
B.1 Con�guration of the MTGeant4 prototype 28
B.2 MTG4 Nehalem Xeon X5570 scaling testing with perfmon output . . 29

List of Figures

2.1 Encoding Data Block with Intel IPP ZLIB Functions [1] 6
2.2 Decoding Data Block with Intel IPP ZLIB Functions [1] 6

v

List of Tables

2.1 Intel IPP linkage method summary comparison [2] 4
2.2 Summary of dynamic linking features [2] 7
2.3 Arguments for the sample ROOT application; Event [3] 10
2.4 gzip vs ipp_gzip on Intel Harpertown and Nehalem based systems . . 12
2.5 Performance results for standard ROOT vs ROOT with new IPP

based zlib compression algorithm on Harpertown 14

3.1 Single run scaling performance testing of MTGeant4, running on a
Nehalem based Xeon X5570 8 core system 18

3.2 Time [s] output by MTGeant4 running on a Nehalem based Xeon
X5570 8 core system . 18

A.1 Types of Libraries of Intel IPP [2] . 26
A.2 Identi�cation of Codes Associates with Processor-Speci�c Libraries [2] 26

vi

Glossary of technical terms

Perfmon2 Hardware based performance monitoring interface for the Linux kernel.
Perfmon2 makes use of the Performance monitoring unit (PMU), which is
hardware within the CPU collecting micro-architectural events on the pipeline,
system bus, and caches. As well as providing access to these low-level counters,
it also provides a high-level analysis facility.

Pfmon Performance monitoring client which works together with perfmon2 to mo-
nitor counters.

Pfmon deluxe A python script which facilitates easier pfmon usage.

Intel IPP Intel Integrated Performance Primitives (Intel IPP) is an extensive li-
brary of multicore-ready, highly optimised software functions for digital media
and data-processing applications.

ROOT An object oriented framework for large scale data analysis, developed at
CERN.

Geant4 A toolkit for the simulation of the passage of particles through matter,
developed at CERN.

Multi-threaded Geant4 prototype A multi-threaded Geant4 prototype develo-
ped by Xin Dong and Gene Cooperman both of Northeastern University. The
prototype includes the full CMS benchmark.

icc Intel C++ Compiler available for Linux, Microsoft Windows and Mac OS X.
The current version at the time of writing and the one used throughout this
report is 11.1.

vii

Chapter 1

Introduction

1.1 Motivation

Optimisation is not a process that is performed only once, but rather a continual
process that evolves with the latest software developments and hardware availability.
In order to achieve the highest level of performance possible from the High Energy
Physics applications used at CERN, openlab investigates a range of optimisation
avenues.

With the recent developments in Intel processor architecture there are numerous
openings to achieve additional levels of performance. This report will detail some
of the work I have carried out in the area in recent weeks.

1.2 Aims and objectives

Having de�ned the motivation behind this study, the objectives can be summarised
as follows:

� To investigate and evaluate Intel IPP.

� To integrate IPP functions to enhance the speed and performance of the zlib
compression algorithm available within the ROOT framework.

� To evaluate the scaling performance of the multi-threaded Geant4 framework
on Nehalem.

1.3 Report organisation

The report has been divided into two main chapters. The �rst of these chapters
details the work undertaken with Intel IPP. The latter part of this chapter goes
on to discuss the inclusion of Intel IPP into the High Energy Physics application;
ROOT.

Chapter 3 covers some recent testing carried out with the multi-threaded proto-
type of the Geant4 toolkit.

1

Chapter 2

Intel IPP

2.1 Intel IPP

2.1.1 Overview of Intel IPP

Intel Integrated Performance Primitives (Intel IPP) is a library of software functions,
produced and provided by Intel. The aim of IPP is to provide a highly optimised
set of core functions which outperform what optimised compilers can deliver alone.

The library provides functions that cover a number of compute areas including
general signal and image processing, computer vision, speech recognition, data com-
pression, cryptography, string manipulation, audio processing, video coding, realis-
tic rendering and 3D data processing [2]. By providing these low-level functions, it
allows applications to be developed across a wide array of domains.

2.1.2 How IPP optimises for performance

IPP employs two main techniques in order to realise an increase in compute perfor-
mance;

� Not using complicated data structures, and therefore reducing overall execu-
tion overhead.

� By utilising all the bene�ts of the Intel architecture on which the software is
being run. For example through data-level parallelism via Intel SSE, as well as
cache use optimisation. For current Nehalem CPUs the latest version of SSE
is SSE4.2. On the next generation of Intel CPUs (Sandy Bridge) SSE will be
extended with the introduction of Advanced Vector Extensions (AVX). This
is a 256 bit instruction set which will largely bene�t �oating point intensive
computations. The current release of IPP at the time of writing is 6.1 and
introduces support for AVX. However, this report focuses on a comparison
between the current Nehalem generation supporting SSE 4.2 and the legacy
Penryn based Harpertown Xeon processors supporting SSE 4.1.

2

2.1. Intel IPP 3

2.1.3 The future with Intel AVX

Following on from the point made about the introduction of the AVX instruction set
in upcoming Intel processor architecture, we should consider how today's applica-
tions will be e�ected by the move. Article [4] details a number of key enhancements
that AVX brings as well as some detail on how existing SSE instructions will be
ported. From [4] the following points are worth noting here;

� A large number (200+) of legacy Intel SSEx instructions are upgraded by the
enhanced instruction encoding to take advantage of features like a distinct
source operand and �exible memory alignment.

� A moderate number (< 100) of legacy 128-bit Intel SSEx instruction have been
promoted to process 256-bit vector data.

� A number of new data processing and arithmetic operations (< 100), not
present in legacy Intel SSEx, are added to Intel processors to be launched in
2010 and beyond.

Also in [4], the following interesting points are highlighted with regards to developing
with Intel AVX in mind;

� Most apps written with intrinsics need only recompile.

� There is a straight forward porting of existing Intel SSE to Intel AVX 256 with
Intel libraries and Intel IPP.

� All Intel SSE/2 instructions are extended via simple pre�x (�VEX�).

2.1.4 Advantages and limitations of IPP

When evaluating a new technology for inclusion in existing software frameworks, as
far as is possible the advantages and limitations should be made known from the
start. Having read around numerous resources regarding IPP, this can be summari-
sed as;

2.1.4.1 Advantages

� Allows for additional performance increase over standard compiled code.

� Cross-architecture support through a common API for all processors, with
underlying function implementations accounting for variations in the processor
architecture being used.

� All IPP functions are thread-safe in both dynamic and static libraries, and
can therefore be used in multi-threaded applications.

� Common API across Windows, Linux and MacOS

� Support for both 32 and 64 bit processors.

� Using dynamically linked libraries, the latest additions in Intel processor ar-
chitecture can be taken advantage of without recompiling.

2.1. Intel IPP 4

Table 2.1: Intel IPP linkage method summary comparison [2]

2.1.4.2 Limitations

� Unless using dynamic linking of libraries, recompiling is required to fully bene-
�t from the latest hardware additions in future processors. This is summarised
in table 2.1.

2.1.5 IPP availability at CERN

IPP is installed and maintained by CERN openlab, available on AFS. The current
release at the time of writing, 11.1 038, can be found at;

/afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/11.1/038/ipp/em64t/

Further information regarding the setup of IPP as well as other Intel tools made
available by CERN openlab can be found at;

https://twiki.cern.ch/twiki/bin/view/Openlab/IntelTools

In order to setup the IPP environment variables a script is provided, located at;
/afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/11.1/038/ipp/em64t/

tools/env/ippvarsem64t.sh

Alternatively the environment variables can be setup manually, for which Chap-
ter 3 of [2] should be consulted.

2.1.6 Compression algorithms within Intel IPP

As it has been brie�y described already, IPP provides a broad array of low-level
functions, applicable to a range of domains. With the size of the software frameworks
in use at CERN there are numerous areas which IPP could be applied. Due to
the limited amount of time available for this initial research into IPP, e�orts have
been focused on data compression. The reason for this being that the developers
of ROOT, a widely used data analysis framework at CERN, identi�ed that the
compression part of the framework was consuming some 20-30% of the run-time.

2.1. Intel IPP 5

This bottleneck presented an ideal platform on which to begin a study into the
integration of IPP functions into an existing high energy physics application.

Shipped with Intel IPP 6.1 are a number of data compression implementations;

� Ipp_gzip - Implements e�ective loss-less data compression by utilising the
Intel IPP data compression domain API. Dictionary-based IPP functions are
used, implementing Lempel-Ziv (LZ77) algorithm and the original GZIP data
formats. This results in compressed data formats being fully compatible with
the original GZIP formats. 1 2

� Ipp_bzip2 - The use of IPP functions implemented over the top of bzip2/libbzip2;
a program and library for loss-less, block-sorting data compression.

� Ipp_compress � Universal primitives for loss-less data compression using the
IPP data compression domain (without support for existing formats). Includes
but is not limited to, Hu�man encoding, Run length encoding, move-to-front
transform and burrows-wheeler.

� Ipp_zlib - Implements the same API as the latest version of the standard zlib
library. Functions include well-known de�ateInit, De�ate, de�ateEnd, de�ate-
Reset in�ateInit, In�ate, in�ateEnd Adler32 and crc32 checksum calculating
functions. Figures 2.1 and 2.2 describe respectively where IPP functions are
used to perform the zlib compression algorithm.

In terms of additional performance increase alone the default choice would have
been to implement a data compression function using the universal IPP compression
primitives. This does however bring with it a major disadvantage in that there is
no support for existing compressed formats. Since this work is primarily being
carried out to enhance the compression part of the ROOT framework, the existing
compression implementation should be taken into account.

2.1.7 Moving from Penryn to Nehalem and beyond without

recompiling

By the nature of the work carried out at CERN, the workloads require the highest
level of compute performance available. This therefore leads to the searching of
performance enhancements from both software and hardware systems. Upgrade
hardware arrives at the CERN computer centre on six month intervals, with the
lifetime of the hardware being approximately three years. With frequent upgrades
to hardware, the recompiling of software for each new architecture would be incon-
venient. For this reason, the dynamic linking method has been used to include the
IPP library �les, the bene�ts of which are summarised in table 2.2.

1Although IPP GZIP is claimed to be fully compatible with GZIP, a bug has been discovered
with the decompression of IPP gzipped �les, as later detailed in this report.

2Also implemented in the sample code provided is a way of parallelizing an application using
Intel Virtual Machine.

2.1. Intel IPP 6

Figure 2.1: Encoding Data Block with Intel IPP ZLIB Functions [1]

Figure 2.2: Decoding Data Block with Intel IPP ZLIB Functions [1]

2.2. Intel IPP within a real High Energy Physics application 7

Table 2.2: Summary of dynamic linking features [2]

2.2 Intel IPP within a real High Energy Physics

application

2.2.1 Overview of ROOT

ROOT is an object oriented framework for large scale data analysis developed at
CERN. It was originally for, and continues to be used for particle physics data
analysis, although it's usage has now extended beyond this into other applications
such as astronomy and data mining.

Since one of the main uses of ROOT is for data analysis and data acquisition it
should store this data e�ciency on disk; both in terms of disk space usage and ease
and speed of access for the physicists.

2.2.2 The bene�t of IPP integration within ROOT

IPP makes available a set of low-level fundamental functions, which live in many
existing algorithms and applications. HEP applications are typically very large and
complex with many years of development involved; one such example in the ROOT
framework.

For this initial study into IPP, the data compression algorithm within ROOT
has been targeted although in such an application there are many areas that could
bene�t from low-level optimisation, from data I/O to visualisation. Where possible
Intel has used the same API for their IPP functions which replace existing functions
to perform the same task. This can make the transition from standard code to
code optimised for the latest Intel processors relatively quick while maintaining
dependencies and functional compatibly.

2.2.3 Extending the current compression methods within ROOT

ROOT currently uses the latest version of the zlib 1.2.3 library [5�7], which in-
cludes an abstraction of the DEFLATE algorithm. A ROOT speci�c compression
function has then been implemented in bits.h. The function shown in 2.1, R__zip,
is an in-memory compression function and a variant of the standard in-memory
R__memcompress function.

2.2. Intel IPP within a real High Energy Physics application 8

Algorithm 2.1 R__zip de�ate function implemented within ROOT for compres-
sion

void R__zip(i n t cx l ev e l , i n t * s r c s i z e , char * src , i n t *
t g t s i z e , char * tgt , i n t * i r e p)

Input c x l e v e l = compress ion l e v e l
s r c s i z e = s i z e o f input bu f f e r
s r c = input bu f f e r
t g t s i z e = s i z e o f t a r g e t bu f f e r
Output tg t = ta rg e t bu f f e r (compressed)
i r e p = s i z e o f compressed data

The R__zip function performs the following tasks in order;

1. Creates a zlib stream

2. Error checking on the target and source bu�ers

3. Uses the zlib lib to set the next input byte, number of bytes available at
next_in, next output byte, remaining free space at next_out...etc

4. de�ateInit() initialises the internal stream state for compression, passing the
z_stream and compression level to be used

5. de�ate() compresses as much data as possible, and stops when the input bu�er
becomes empty or the output bu�er becomes full

There are currently two zlib implementations included in ROOT - the old zlib algo-
rithm and the current standard zlib algorithm. The new IPP zlib based algorithm
would therefore be implemented as a third, initially experimental algorithm. This
approach ensures backward compatibility with existing �les compressed with ROOT,
while allowing the additions of IPP to be taken advantage of.

Since ROOT already implements the zlib compression function, the easiest and
most compatible IPP implementation should be ipp_zlib. From [8] it is said that
ipp_zlib implements the same API as standard zlib. The process of replacing it
should therefore be a relatively simple exchange of the source and header �les.

Another function worth highlighting is void R__SetZipMode(int mode). Since
ROOT already implements two compression algorithms, this function is used to
switch between each algorithm. This function can be utilised to further extend
the compression capabilities of ROOT to include the new IPP based compression
algorithm(s). Continuing on from the current trend, this could be con�gured as;

(R__ZipMode = 1) The current latest zlib implementation

(R__ZipMode = 0) A legacy zlib implementation

(R__ZipMode = 2) New IPP based compression implementation

2.3. Performance results and analysis 9

In terms of the enhancement of the compression capabilities in ROOT, there are
two main objectives in the following order;

1. Achieve a signi�cant decrease in the time taken for compression at run-time,
by use of IPP data compression functions. This should then be presented as a
proof of concept, to then consider the stability of the algorithm for inclusion
in a future ROOT release.

2. Maintain the portability of the source code across Linux, Windows and Solaris
operating systems3.

2.2.4 Testbed con�guration

Event is an example ROOT application, which shall be used as a benchmark, al-
lowing the new IPP compression algorithm to be critically compared with those
existing implementations. Event consists of a ROOT �le with a tree and two histo-
grams. The Event benchmark is located and can be run from /root/test/Event,
together with the following steps;

1. Event is created by compiling MainEvent.cxx and Event.cxx, which is perfor-
med by running the included 'make' �le.

2. During this testing the Event benchmark has been used as follows to perform
compression and decompression respectively (where 1 denotes write and 20
denotes read);

. / Event 5000 0 99 1

. / Event 5000 0 99 20

Event can also take some optional arguments, as described in table 2.3.

2.3 Performance results and analysis

2.3.1 IPP gzip & zlib - Intel Harpertown vs Nehalem

In order to evaluate the compression algorithm implemented with IPP functions it
has been compared against the standard gzip compression tool. A sample .tar �le of
1.4 GB has been used which comprises of regular data. In fact, it is the source �les
for some application, and so the data represents realistic data that may be used.
The results are included in table 2.4.

In each case listed in table 2.4, the highest level of compression was used; level 9.
The following commands invoke each test in turn to perform compression followed
by the decompression of the test �le l_cproc_p_11.1.038_backup.tar.

3IPP currently supports Windows, Linux (including Moblin and QNX) and Mac OS. At the time
of writing there is no support for Solaris within Intel IPP. It may however be possible to investigate
the use of the static IPP libraries on Solaris if it uses the ELF object �le format compatible with
Linux.

2.3. Performance results and analysis 10

Table 2.3: Arguments for the sample ROOT application; Event [3]

2.3. Performance results and analysis 11

time gz ip −9 l_cproc_p_11 . 1 . 0 3 8_backup . ta r

time gz ip −d l_cproc_p_11 . 1 . 0 3 8_backup . ta r . gz

time . / ipp_gzip −9 l_cproc_p_11 . 1 . 0 3 8_backup . ta r

time . / ipp_gzip −d l_cproc_p_11 . 1 . 0 3 8_backup . ta r . gz

time . / ipp_minigzip −9 l_cproc_p_11 . 1 . 0 3 8_backup . ta r

time . / ipp_minigzip −d l_cproc_p_11 . 1 . 0 3 8_backup . ta r . gz

From the results presented in table 2.4 a number of observations can be made.
Looking at the Harpertown architecture alone, ipp_gzip achieves only a small per-
formance increase over standard gzip. Interestingly, on the same architecture, zlib
achieves a further performance gain of almost two fold for compression and 1.5x for
decompression. Moving to Nehalem sees this increase further to 2.3x for compres-
sion and 3.2x on decompression. It can also be seen that on Nehalem, the ipp_gzip
implementations out perform ipp_zlib, whereas on Harpertown the inverse is true.

Compiling the IPP code with icc on both Harpertown and Nehalem systems
brings about additional performance optimisations resulting in faster compression
at run-time. Finally, aside from the di�erences observed with regard to the compiler
used, all implementations see some performance gain when porting to the Nehalem
architecture.

2.3.2 IPP gzip decompression problems

During the testing of the compression algorithms utilising IPP a bug was discovered
with the decompression part of IPP gzip. After conducting an in-depth investigation
into the issue, a bug report was �led with Intel; the status of which is still pending.

At the time of writing only the compression part of IPP GZIP is functional as
was intended. It was found that when attempting to decompress with IPP GZIP the
results are of mixed success. Generally the smaller �les would decompress without
problems, while larger �les would not. More dangerously, some �les appeared to
decompress correctly but the byte count did not match that of the original �le
before compression took place. This problem is isolated to ipp_gzip only, with
ipp_zlib decompressing as expected.

For further details, the bug report which was �led with Intel has been included
in the appendix.

2.3.3 ROOT vs ROOT with new IPP zlib compression algo-

rithm

Presented in table 2.5 are the performance results for the de-/compression part
of ROOT compared with the new IPP implementation. The results are based on
modi�ed ROOT source �les compiled with icc running the Event benchmark on
Harpertown architecture.

2.3. Performance results and analysis 12

Table 2.4: gzip vs ipp_gzip on Intel Harpertown and Nehalem based systems
sample .tar �le = 1.4 GB l_cproc_p_11.1.038.tar
icc �version = 11.1 20090511 gcc �version = 4.1.2 20080704

Time (secs)
Real User System Speedup1

Intel Xeon E5450 @ 3.00 GHz
(Harpertown), icc 11.1

gzip compress 79.790 76.485 3.184 0.98
gzip decompress 14.879 11.293 2.464 1.00

ipp_gzip compress 64.856 54.051 5.636 1.21 x
ipp_gzip decompress2 - - - -

Intel Xeon E5450 @ 3.00 GHz
(Harpertown), gcc 4.1.2

gzip compress 78.381 75.489 2.804 1 (base)
gzip decompress 14.884 11.197 2.472 1 (base)

ipp_gzip compress 73.239 73.193 5.776 1.07 x
ipp_gzip decompress - - - -

ipp_minigzip (zlib) compress 39.349 35.758 2.404 1.99 x
ipp_minigzip (zlib) decompress 10.038 3.464 2.716 1.48 x
Intel Xeon X5570 @ 2.93 GHz

(Nehalem), icc 11.1
gzip compress 66.867 65.960 0.897 1.17 x
gzip decompress 10.096 9.270 0.825 1.47 x

ipp_gzip compress 27.312 82.925 3.653 2.87 x
ipp_gzip decompress - - - -

ipp_minigzip (zlib) compress 33.943 32.319 1.501 2.31 x
ipp_minigzip (zlib) decompress 4.653 2.814 1.690 3.20 x
Intel Xeon X5570 @ 2.93 GHz

(Nehalem), gcc 4.1.2
gzip compress 67.852 66.857 0.985 1.16 x
gzip decompress 10.241 9.505 0.735 1.45 x

ipp_gzip compress 30.732 112.161 3.144 2.55 x
ipp_gzip decompress - - - -

ipp_minigzip (zlib) compress 35.357 33.138 1.857 2.22 x
ipp_minigzip (zlib) decompress 4.656 2.867 1.650 3.20 x

1 Based on real time with respect to gzip de-/compression on Harpertown compiled
with gcc.

2 Due to the bug discovered and reported regarding the decompression part of
ipp_gzip, it has not been possible to include these �gures in this report.

2.4. Conclusions 13

Using a compression level of 1, compression sees a 1.52x speedup in performance
over the standard implementation. Increasing the compression level to the maximum
of 9, the speedup is further increased to 2.25x. This is comparable to the two fold
increase observed with ipp_zlib compression on Harpertown presented in 2.4. It
is the level 1 compression that is of particular interest since it is the one most
commonly used. The reason for this being that little disk space is saved by using
the higher compression level, with a relatively high penalty paid in the compression
time.

With the decompression times being relatively low with the standard implemen-
tation, there is little to no performance gain with ipp_zlib.

2.4 Conclusions

The results indicate that there is little performance gain when comparing ipp_gzip
to standard gzip on Harpertown, whereas zlib does incur a good performance in-
crease.

Moving to Nehalem a large performance increase is observed with ipp_gzip. It
should be noted that this increase is not due to parallelization occurring since the
functions used are non-threaded, and observing the CPU utilisation at run-time
shows only a single core being used. For a complete list of the IPP functions being
used in the gzip and zlib algorithms, [8, 9] should be consulted respectively with
detailed information on each function found in Chapter 13 of Data Compression
Functions of Intel® Integrated Performance Primitives Reference Manual: Volume
1 [1]. Although an increasing number of the IPP functions are becoming threaded
with each release of IPP, none of the data compression functions used in ipp_gzip
or ipp_zlib are threaded (using IPP 6.1) [10].

This suggests that there is either some problem with the Harpertown architecture
and ipp_gzip or that ipp_gzip is taking advantage of additions in the instruction
set on Nehalem architecture; namely SSE 4.2.

When evaluating the ipp_zlib compression algorithm within ROOT on Harper-
town a good increase in performance has been achieved, which mirrors the perfor-
mance gain observed for the standalone implementations outside of ROOT. This
study should be further extended to include ROOT running on Nehalem with both
icc and gcc compiled code.

2.5 Further work

� Extending the study to include testing of the ROOT framework with IPP
based compression on Nehalem architecture.

� Evaluating other IPP based compression functions, particularly the universal
IPP functions within ROOT.

� Identifying and applying IPP functions to other parts of ROOT beyond data
compression. Through further investigation IPP could also be applied to

2.5. Further work 14

T
ab
le
2.
5:

P
er
fo
rm

an
ce

re
su
lt
s
fo
r
st
an
d
ar
d
R
O
O
T
v
s
R
O
O
T
w
it
h
n
ew

IP
P
b
as
ed

zl
ib

co
m
p
re
ss
io
n
al
go
ri
th
m

on
H
ar
p
er
to
w
n

F
il
e
S
iz
e

(b
y
te
s)

T
re
e

co
m
p
re
s-

si
on

fa
ct
or

R
ea
lT
im
e

C
p
u
T
im
e

M
b
y
te
s
/

R
ea
lt
im
e

se
co
n
d
s

M
b
y
te
s
/

C
p
u
ti
m
e

se
co
n
d
s

S
p
ee
d
u
p

W
ri
te

(c
om

p
re
ss
)

ip
p
ev
en
t_

50
00
_
0_

99
_
1

35
64
06
27
7

1.
03

22
.6
1

5.
43

15
.6
0

64
.9
3

1.
40

x
ip
p
ev
en
t_

50
00
_
1_

99
_
1

15
15
18
25
7

2.
43

13
.1
2

9.
59

26
.8
7

36
.7
7

1.
52

x
ip
p
ev
en
t_

50
00
_
9_

99
_
1

14
09
39
89
2

2.
61

38
.7
5

36
.8
5

9.
10

9.
57

2.
25

x
ev
en
t_

50
00
_
0_

99
_
1

35
64
51
04
5

1.
03

31
.5
6

6.
76

11
.1
7

52
.1
6

-
ev
en
t_

50
00
_
1_

99
_
1

14
90
54
83
9

2.
47

19
.9
3

15
.4
3

17
.6
9

22
.8
5

-
ev
en
t_

50
00
_
9_

99
_
1

14
09
33
73
1

2.
61

87
.1
8

86
.1
6

4.
04

4.
09

-

R
ea
d
(d
e-
co
m
p
re
ss
)

ip
p
ev
en
t_

50
00
_
0_

99
_
20

-
-

3.
80

3.
8

92
.6
7

92
.7
8

0.
61

x
ip
p
ev
en
t_

50
00
_
1_

99
_
20

-
-

3.
81

3.
81

92
.6
0

92
.5
4

1.
05

x
ip
p
ev
en
t_

50
00
_
9_

99
_
20

-
-

3.
82

3.
82

92
.3
5

92
.3
0

0.
99

x
ev
en
t_

50
00
_
0_

99
_
20

-
-

2.
31

2.
31

15
2.
62

15
2.
63

-
ev
en
t_

50
00
_
1_

99
_
20

-
-

4.
00

4.
01

88
.1
0

87
.9
3

-
ev
en
t_

50
00
_
9_

99
_
20

-
-

3.
78

3.
79

93
.1
5

93
.0
3

-

2.5. Further work 15

many other software applications and frameworks currently in development
at CERN.

� Building minimal custom dynamic shared libraries speci�c to the IPP func-
tions required by ROOT. Refer to 'Building a Custom SO' in [2] for further
information.

Chapter 3

Multi-threaded Geant4 scalability

testing

3.1 Overview of Geant4

Geant4 is described by it's developers as

�... a toolkit for the simulation of the passage of particles through mat-
ter. Its areas of application include high energy, nuclear and accelerator
physics, as well as studies in medical and space science.�

For further information on the toolkit itself, the reader should consult the two main
reference papers published in [11] and [12].

In addition to the standard Geant4 toolkit there exists a multi-threaded Geant4
prototype. The prototype has been developed by Xin Dong and Gene Cooperman
both of Northeastern University. The prototype includes the full CMS benchmark,
which shall be used to perform this scaling performance testing.

3.2 Objective of scalability testing

One of the key activities within openlab is to plan for the inclusion of future relea-
sed hardware into the computer centre. This is achieved by evaluating the latest
hardware platforms and simulating future software and hardware con�gurations to
the best ability at the current point in time.

It has become apparent in recent years that it is no longer possible to reap the
performance increases on processor frequency scaling alone. Instead, we now see each
new processor architecture including an increasing amount of cores. Available today
are multi-core processors for which the high-end models from Intel are typically
clocked at around 3.0 GHz. The CERN computer centre currently runs mostly quad-
core Intel Xeon E5450 @ 3.00GHz (Harpertown) in a dual-socket system totalling
8 cores for a single system. Within CERN openlab the hardware is more recent,
currently experimenting with Intel Xeon X5570 @ 2.93GHz (Nehalem), again in a
dual-socket system providing 8 cores and 16 hardware threads for a single system.

It is clear that the current trend of multi-core systems will continue on to become
many-core systems. Within the next couple of years it is quite possible that we will

16

3.3. Results 17

be dealing with systems with tens to hundreds of relatively low (not increasing much
beyond today's clock speeds) clocked cores. For example, Intel has recently publi-
shed [13] which details a GPU-type architecture built on x86 micro-architecture. At
the time of writing details on Larrabee are rather limited, but it is evident that this
will be a many-core x86 architecture with a coherent cache, as well as GPU-like
qualities such as wide SIMD vector units and texture sampling hardware. Where
Larrabee will di�er greatly from today's GPUs is that it will contain little specialised
graphics hardware but rather perform these graphics tasks in software. Although
Larrabee seems to be initially targeted at the current GPU/gaming market, it's
�exible many-core architecture will also prove very useful to the high performance
computing (HPC) market.

Aside from multi-core technology, the latest generation of Intel CPUs also reintro-
duce Simultaneous Multi-threading (SMT) under the same name it was previously
seen; Intel Hyper-Threading Technology. This was last seen on the Intel Pentium
4 processor, where its e�ective performance was questionable. More recently SMT
has been reintroduced in today's Intel Atom and Nehalem/Core i7 based processors,
and all indications point to hyper-threading being present in future Intel processor
architectures.

This is hardware level support to e�ciently execute multiple threads. The aim is
to increase the utilisation of a single core by leveraging thread-level and instruction-
level parallelism, resulting in increased performance on multi-threaded software.

Although multi-threading often results in increased performance, it should not
be preempted since it brings with it a number of additional considerations. It can
be advantageous since unused resources can be utilised by other threads while a
particular thread may be receiving a lot of cache misses for example, or just simply
unable to fully utilise all available compute resources with the current workload. As
well as this, if multiple threads are using the same dataset, the cache can be shared
between all the threads resulting in more e�cient use of the cache.

On the other hand, running multiple threads can interfere with each other
when sharing hardware resources such as the cache and translation lookaside bu�ers
(TLBs). Multi-threading can also have a detrimental e�ect on the execution times
of individual threads due to reduced clock frequencies and additional pipeline stages.

With the aid of perfmon2, the Performance monitoring unit (PMU) in the CPU
can be used to monitor micro-architectural events; providing detailed information
on the e�ective use of the available multi-core, multi-threaded hardware.

3.3 Results

3.3.1 Single run benchmarks on Nehalem

Table 3.1 details the results of individual runs of the MTGeant4 prototype on a
Nehalem based system, using 1 to 16 threads. These results were recorded without
running perfmon2.

Looking at the results there are a couple of interesting points to note. The
total run-time for the benchmark decreases as the number of threads is increased
from one to eight. Eight threads results in the optimal run-time on this eight core

3.3. Results 18

Table 3.1: Single run scaling performance testing of MTGeant4, running on a Ne-
halem based Xeon X5570 8 core system

Dual-socket Intel Xeon X5570,
SLC5, 8 cores total, 16 HW

threads.
gcc 4.3.3, 64-bit, 24 GB memory

(opladev27).
tcmalloc 1.3, 500 pi- events

1 2 4 8 12 16

Total run-time 3887 2028 1265 842 899 878
Initialisation 271 238 271 238 237 239

Worker initialisation (max) 140 142 146 151 206 224
Worker simulation time (max) 3476 1649 852 456 493 418

Total worker time (max) 3616 1790 993 604 662 639

Table 3.2: Time [s] output by MTGeant4 running on a Nehalem based Xeon X5570
8 core system

Dual-socket Intel Xeon X5570,
SLC5, 8 cores total.

gcc 4.3.3, 64-bit, 24 GB memory
(opladev27).

tcmalloc 1.3, 500 pi- 300GeV evts
total

1 2 4 8

Time [s] as output by MTGeant4 3296 1861 1048 613

system, after which 12 and 16 threads see an increase in the run-time. It can also
be seen from the results that the initialisation time remains constant at around 238
seconds, apart from when running one thread and four threads. Other runs have
seen this reduced slightly to 254 seconds but further investigation is required to fully
understand why this is occurring.

As expected, the time taken to initialise the worker threads increases as the
number of threads increases.

3.3.2 Batch script with perfmon on Nehalem

Table 3.2 shows the time in seconds taken to execute the MTGeant4 benchmark. The
time displayed is that output by the benchmark itself as the 'time for the simulation'.
These results were recorded while also taking perfmon2 counter readings. The full
table of results including the perfmon counters can be found in the appendix.

Looking at the perfmon output it can be seen that both the UNHALTED_CORE
_CYCLES and INSTRUCTIONS_RETIRED counts remain relatively constant as
the number of threads is increased from one to eight. This suggests that good
scalability exists at a micro-architectural level.

The output also indicates that the LAST_LEVEL_CACHE_MISSES count
increases considerably as the number of threads is increased from one to two. This
is normal and as expected, due to the overhead incured by the introduction of

3.4. Conclusions 19

multiple threads. An interesting point to note however is that when going from two
to eight threads, this count increases by 50%. Despite this, it should be noted that
the last level cache miss percentage is still relatively low even with eight threads.

The RESOURCE_STALLS:ANY count does not increase signi�cantly as the
number of threads is scaled from one to eight. However, it can be seen from the perf-
mon output that the RESOURCE_STALLS:LOAD, RESOURCE_STALLS:STORE
and RESOURCE_STALLS:ROB_FULL count does see an increase when scaling
from one to eight threads; which suggests a memory pressure.

3.4 Conclusions

This chapter has seen some scaling performance results including perfmon counts
for the multi-threaded Geant4 application.

The perfmon output indicates that the Nehalem micro-architecture has good
potential for thread scalability. By comparison to similar studies that have been
carried out on the Harpertown architecture in the past, it would appear from these
initial studies that Nehalem performs better in terms of thread scalability than the
legacy Harpertown architecture.

For the single runs of the benchmark on Nehalem some hardware threading
testing has been included for 12 and 16 threads. Observing the total worker time, a
9.6% penalty can be seen when moving from 8 to 12 threads. From 8 to 16 threads
there is also a penalty incurred of 5.8%. This suggests a software problem since the
use of SMT should typically result in around a 25% performance increase.

Further investigation should be performed to gain a full picture of the thread
potential of Nehalem, particularly for the multi-threaded Geant4 prototype. Re-
commendations for this continued work have been outlined in the next section.

3.5 Further work

1. These studies should be continued to include hardware threading together with
perfmon to gain a better insight into how the application scales beyond the
physical number of cores. This has not been included due to some technical
di�culties resulting in a lack of time to collect and analyse the results.

2. The studies conducted here can be further extended to execute a �xed number
of events per thread.

Bibliography

[1] Intel Corporation. Intel® Integrated Performance Primitives for Intel® Archi-
tecture Reference Manual, Volume 1: Signal Processing, a24968-025us edition,
March 2009.

[2] Intel Corporation. Intel® Integrated Performance Primitives for Linux* OS
on IA-32 Architecture User's Guide, 320271-003us edition, March 2009.

[3] ROOT team, CERN, ftp://root.cern.ch/root/doc/20TutorialsandTests.pdf.
The Tutorials and Tests, August 2009.

[4] Intel® avx: New frontiers in performance improvements and energy
e�ciency. Technical report, Intel Corporation, http://software.intel.com/en-
us/articles/intel-avx-new-frontiers-in-performance-improvements-and-energy-
e�ciency/, March 2008.

[5] P. Deutsch and J.-L. Gailly. Zlib compressed data format speci�cation version
3.3, 1996.

[6] P. Deutsch. De�ate compressed data format speci�cation version 1.3, 1996.

[7] P. Deutsch. Gzip �le format speci�cation version 4.3, 1996.

[8] Intel Corporation. Intel® Integrated Performance Primitives Ipp zlib Sample
for Linux, ipp 6.1 edition, August 2009.

[9] Intel Corporation. Intel® Integrated Performance Primitives Data
Compression-based IPP GZIP Sample for Linux, ipp 6.1 edition, August 2009.

[10] Intel Corporation. Threaded Functions List, intel ipp 6.1 edition, August 2009.

[11] "S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,
M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Bou-
dreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chy-
tracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola,
D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger,
F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gó-
mez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Gri-
chine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto,
H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones,
J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kel-
ner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige,

20

Bibliography 21

E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman,
F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Frei-
tas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Ni-
shimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl,
A. Pfei�er, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin,
T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith,
N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev,
E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban,
M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus,
D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche". "g4�a
simulation toolkit". "Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
"506"("3"):"250 � 303", "2003". "".

[12] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Bar-
rand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman,
G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger,
F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikki-
nen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones,
T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei,
O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P.M.
Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati,
L. Peralta, J. Perl, A. Pfei�er, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo,
S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcher-
niaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden,
J.P. Wellisch, D.C. Williams, D. Wright, and H. Yoshida. Geant4 developments
and applications. Nuclear Science, IEEE Transactions on, 53(1):270�278, Feb.
2006.

[13] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Ca-
vin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: a
many-core x86 architecture for visual computing. ACM Trans. Graph., 27(3):1�
15, August 2008.

Appendix A

IPP & ROOT

A.1 Process to integrate IPP zlib compression al-

gorithm into ROOT

In order to draw comparison between a standard ROOT implementation and the
one which includes IPP functions, two ROOT environments have been con�gured.
The standard implementation uses the zlib 1.2.3 compression algorithm, whereas
the latter uses ipp_zlib. The general build steps are as follows;

1. Setup Intel C++ 11.1 compiler environment

(a) source /afs/cern.ch/sw/IntelSoftware/linux/setup.sh

(b) source /afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/11.
1/038/bin/iccvars.shintel64

2. Setup the IPP build environment

(a) source /afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/11.
1/038/ipp/em64t/tools/env/ippvarsem64t.sh

(b) Alternatively the environment variables IPPROOT and LD_LIBRARY_PATH

can manually be created.

i. IPPROOT=/afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/
11.1/038/ipp/em64t/

ii. LD_LIBRARY_PATH=$IPPROOT/sharedlib/

If building the sample IPP source codes you would then build with './buildem64t.sh
icc111' for icc 11.1, or './buildem64t.sh gcc4' for gcc 4.3.3. When building the
ipp_zlib sample sources it was discovered that an additional library needs to be
linked, which has not been included in the ippvarsem64t.sh script. After step 2a the
following environment variable should also be created;

LD_LIBRARY_PATH=/afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/

11.1/038/lib/intel64:$LD_LIBRARY_PATH

22

A.1. Process to integrate IPP zlib compression algorithm into ROOT 23

A.1.0.1 Replacement of standard zlib �les with ipp_zlib �les

The IPP based implementation of zlib used a combination of some of the original
zlib source and header �les, and some updated �les. Included below is a list of the
updated IPP �les that need to replace the original zlib �les.

Updated IPP header �les

� de�ate.h

� in�ate.h

Updated IPP source �les

� adler32.c

� crc32.c

� de�ate.c

� in�ate.c

� ipp_static.cpp

These �les can be obtained from the zlib sample code shipped with IPP under the
following location;

/ipp-samples/data-compression/ipp_zlib/src/

Should additional information be required regarding the changes to these �les,
the readme �le can be consulted at;

/ipp-samples/data-compression/ipp_zlib/readme.htm

Within ROOT the source �les for the compression part are located at /root/
core/zip/src/ and the header �les at /root/core/zip/inc. The updated IPP
�les should override the ones existing in these two directories already.

A.1.0.2 Building ROOT with IPP zlib compression

After completing this �le replacement, the ROOT framework can now be built.

1. First source the IPP variables;
source /afs/cern.ch/sw/IntelSoftware/linux/x86_64/Compiler/11.1/038/
ipp/em64t/tools/env/ippvarsem64t.sh

2. Source the compiler to be used;

(a) For gcc the gcc-setup.sh script can be used;

. . / gcc . sh 4 . 3 . 3

(b) For icc, the Intel environment and compiler should �rst be con�gured
following the instructions at
https://twiki.cern.ch/twiki/bin/view/Openlab/IntelTools

A.2. BKM for setup and compiling of ROOT when used with IPP 24

3. Execute the con�guration script with �ags for the architecture and operating
system con�guration being used1. For example, the following con�gurations
were used during this testing for gcc and icc running on x86-64 hardware
respectively;

. / c on f i gu r e l inuxx8664gcc −−enable−xrootd

. / c on f i gu r e l i nuxx8664 i c c −−enable−xrootd

4. Finally 'make' can be run to build ROOT2.

5. After the build process, a 'bin' directory will have been created containing a
'thisroot.sh' script which must be sourced before running ROOT.

A.2 BKM for setup and compiling of ROOT when

used with IPP

Having spent some time investigating the compression part of ROOT together with
IPP for its inclusion within the framework, a number of problems have been encoun-
tered. This BKM highlights some of these issues and how they can be overcome.

Use of ICC with IPP?

When compiling source code which includes IPP functions, both gcc and icc com-
pilers can be used. Throughout this investigation both compilers have been used;
icc 11.1 and gcc 4.3.3. When using the sample codes, the Intel compiler icc 11.1
can be selected by specifying 'icc111' at the command line during the build process.
Similarly, gcc 4.3.3 can be selected by issuing 'gcc4' at the command line.

No shared object library was found in the Waterfall procedure

If the error message �No shared object library was found in the Waterfall procedure�
is received, it means that Linux is unable to determine the location of the Intel IPP
shared object libraries. To solve this issue:

� Ensure that the Intel IPP directory is in the path.

� Before using the Intel IPP shared object libraries, add the path to the shared
object libraries to the system variable LD_LIBRARY_PATH as described in
�Using Intel IPP Shared Object Libraries (SO)� in Chapter 3 of [2].

1Should a di�erent con�guration be required, './con�gure �help' lists all supported architectures
and operating systems.

2With the standard ROOT source it is possible to build the source in parallel with 'make -j8',
although this has not been veri�ed for the modi�ed ROOT source including IPP zlib compression.

A.3. Intel ipp_gzip decompression bug report 25

Which IPP header �les to include?

The IPP functions are de�ned in a number of header �les within the include folder.
For example, ippdc.h has been used within the software discussed in this report. In
order to ensure forward compatibility, individual header �les for each domain should
not be included, but instead ipp.h. This header �le includes other IPP header �les
as required.

Linking IPP libraries

The shared libraries libipp*.so.6.1 (where * denotes the appropriate function do-
main) are dispatcher dynamic libraries3, as shown in table A.1. At run time, they
detect the processor and load the correct processor-speci�c shared libraries as de-
tailed in table A.2. This allows code to be written that calls the Intel IPP functions
without worrying about which processor the code will execute on - the appropriate
version is automatically used.

These processor-speci�c libraries are named libipp*px.so.6.1, libipp*w7.so.6.1, li-
bipp*t7.so.6.1, libipp*v8.so.6.1, and libipp*p8.so.6.1. For example, in the ia32/sharedlib
directory, libippiv8.so.6.1 re�ects the imaging processing libraries optimised for the
Intel Core 2 Duo processors.

Include in the project soft links to the shared libraries instead of the shared
libraries themselves. These soft links are named as the corresponding shared li-
braries without version indicator: libipp*-6.1.so, libipp*px-6.1.so, libipp*w7-6.1.so,
libipp*t7-6.1.so, libipp*v8-6.1.so, and libipp*p8-6.1.so.

A.3 Intel ipp_gzip decompression bug report

-Overview-

Synopsis: ipp_gzip �decompress (IPP 6.1) code sample results in CRC errors and
unsuccessful uncompressing of .tar.gz

Description:

Compiled the supplied ipp_gzip sample with both gcc 4.1.2 and icc 11.1 on Harper-
town and Nehalem systems. The compression of .tar's of all sizes functions as
expected (mirroring that of gzip). When decompressing the .tar.gz �les created in
the previously described step with ipp_gzip -d, a number of CRC errors are encoun-
tered, usually resulting in unsuccessful decompression.
-Routing information-

Version: Linux Intel IPP 6.1.0.047 samples

Regression version: Unknown, �rst tested with this latest release

Severity: High

3Dispatching refers to detection of the CPU and selecting the Intel IPP binary that corresponds
to the hardware being used.

A.3. Intel ipp_gzip decompression bug report 26

Table A.1: Types of Libraries of Intel IPP [2]

Table A.2: Identi�cation of Codes Associates with Processor-Speci�c Libraries [2]

A.3. Intel ipp_gzip decompression bug report 27

-Test case-

OS:

Harpertown machine: Custom build RHEL5 Linux 2.6.28.3-perfmon (x86_64)

Nehalem machine: Custom build RHEL5 Linux 2.6.18-128.1.1.e15 (x86-64)

Hardware:

Harpertown machine: Dual socket Intel Xeon E5450 @ 3.00GHz, 16GB physical
memory

Nehalem machine: Dual socket Intel Xeon X5570 @ 2.93GHz, 24GB physical
memory

Source code: https://registrationcenter.intel.com/irc_nas/1454/l_ipp-samples_
p_6.1.0.047.tgz

Steps to reproduce:

1. Setup IPP build environment

2. Goto working dir:
.../ipp-samples/data-compression/ipp_gzip/bin/linuxem64t_icc111

3. Compress a large tar (1 GB+): ./ipp_gzip fedCD.tar

4. Decompress the tar.gz: ./ipp_gzip -d fedCD.tar.gz

Expected result: ipp_gzip to decompress the tar.gz without errors and success-
fully, mirroring gzip functionality

Actual result: mixed array of errors, with mixed outcomes of successful uncom-
pressing of .tar.gz (see 'ipp_gzip testing on Harpertown and Nehalem.txt' for
testing results)

-Contact information- Marc D'Arcy mdarcy@cern.ch

Appendix B

MTGeant4

B.1 Con�guration of the MTGeant4 prototype

To build the multi-threaded Geant4 prototype the following process should be fol-
lowed;

1. Ensure the $HOME variable points to a known location and that it has suf-
�cient space. If not, temporarily change the home directory e.g. 'export
HOME=/....'

2. Edit the build script and set the build location and install paths as desired.
The number of cores of the system should also be set here.

3. Execute the build script.

4. MTGeant4 should be built with gcc 4.3.3, which can be sourced with the
included '. gcc-setup.sh 4.3.3'.

5. Open the build script for editing. At the end of the script are a list of com-
ponents that should be installed in order. Each component should be uncom-
mented in the following order to install each individually;

(a) install_clhep

(b) install_xercesc

(c) install_geant4

(d) install_parfullcmsmt

6. After installing the full CMS benchmark, the directory 'ParFullCMSmt' should
be created in the mtg4 directory.

7. Move to this directory and open the script onerun.sh for editing. Ensure that
XERCESCROOT and LD_LIBRARY_PATH point correctly to the install
path selected for mtg4 in step 1. In this script the required benchmark can
also be selected.

8. Run the benchmark with 'time ./onerun.sh #threads'.

28

B.2. MTG4 Nehalem Xeon X5570 scaling testing with perfmon output29

To run MTG4 in a new process after install

1. Ensure that the HOME environment variable is set identical to that in the
initial installation.

2. Source gcc 4.3.3 with the gcc-setup.sh script.

B.2 MTG4 Nehalem Xeon X5570 scaling testing

with perfmon output

MTG4 Nehalem Xeon X5570 scaling testing with perfmon output

Dual-socket Intel Xeon X5570, SLC5, 8 cores total

gcc 4.3.3, 64-bit, 24 GB memory (opladev27)

tcmalloc 1.3, 500 pi- 300GeV evts total

Time [s] as output by Geant4 3296 1861 1048 613

perfmon-output

UNHALTED_CORE_CYCLES 10,315,270,232,308 10,799,625,738,304 11,220,482,050,468 10,923,260,596,904

INSTRUCTIONS_RETIRED 9,701,714,362,048 9,719,376,817,423 10,177,442,279,681 9,981,755,717,118

BR_INST_EXEC:ANY 1,643,994,712,887 1,641,866,144,222 1,700,535,843,855 1,668,765,316,944

BR_MISP_EXEC:ANY 53,496,225,086 53,370,344,809 54,606,992,447 53,668,163,833

INST_RETIRED:X87 1,178,882,152 1,200,737,345 1,268,405,796 1,317,447,103

INST_RETIRED:MMX 0 0 0 0

RESOURCE_STALLS:ANY 2,276,238,512,163 2,473,705,582,012 2,758,865,092,740 2,827,779,374,658

FP_COMP_OPS_EXE:MMX:SSE_DOUBLE_PRECISION:SSE_FP:SSE_FP_PACKED:SSE_FP_SCALAR:SSE_SINGLE_PRECISION:SSE2_INTEGER:X871,575,366,970,218 1,586,961,523,213 1,700,465,553,887 1,682,060,359,137

LAST_LEVEL_CACHE_REFERENCES 50,751,412,949 54,862,008,449 56,556,806,451 56,353,328,966

LAST_LEVEL_CACHE_MISSES 198,371,677 1,404,742,204 1,782,851,673 2,083,906,954

MEM_INST_RETIRED:LOADS 3,589,203,769,579 3,590,008,034,175 3,733,673,893,035 3,662,895,569,352

MEM_INST_RETIRED:STORES 1,650,380,514,908 1,650,892,319,610 1,709,370,483,966 1,681,048,197,467

perfmon-output-simd1

UNHALTED_CORE_CYCLES 10,339,108,319,085 11,045,279,436,747 10,936,918,271,294 10,967,990,165,379

INSTRUCTIONS_RETIRED 9,699,493,208,065 9,753,595,884,049 9,791,668,928,776 9,978,120,009,627

FP_COMP_OPS_EXE:SSE_DOUBLE_PRECISION 1,246,009,490,069 1,264,191,517,236 1,285,527,289,369 1,343,438,935,500

FP_COMP_OPS_EXE:SSE_SINGLE_PRECISION 92,331,654,149 92,301,249,046 92,088,870,771 92,009,356,186

FP_COMP_OPS_EXE:SSE_FP_PACKED 30,263,034,411 30,244,845,754 30,246,517,814 30,190,289,839

FP_COMP_OPS_EXE:SSE_FP_SCALAR 1,308,078,109,807 1,326,247,920,527 1,347,369,642,326 1,405,258,001,847

FP_COMP_OPS_EXE:SSE_FP 1,336,672,709,112 1,356,576,077,099 1,379,311,792,752 1,433,535,811,702

FP_COMP_OPS_EXE:SSE2_INTEGER 36,371,729 56,343,985 65,013,119 68,308,008

FP_COMP_OPS_EXE:MMX 0 0 0 0

FP_COMP_OPS_EXE:X87 269,412,440,329 270,974,544,992 271,519,561,986 276,797,525,264

1 2 4 8

perfmon-output-simd2

UNHALTED_CORE_CYCLES 10,362,643,320,857 11,092,081,861,550 10,811,328,472,557 10,939,119,803,666

INSTRUCTIONS_RETIRED 9,695,592,279,168 9,742,085,390,002 9,714,985,348,299 9,942,722,010,126

SSEX_UOPS_RETIRED:PACKED_DOUBLE 39,201,571 40,754,190 42,291,803 46,559,098

SSEX_UOPS_RETIRED:PACKED_SINGLE 4,416,563 4,756,743 5,097,929 5,848,791

SSEX_UOPS_RETIRED:SCALAR_DOUBLE 2,357,232,891,942 2,384,624,057,313 2,397,727,062,952 2,485,604,645,665

SSEX_UOPS_RETIRED:SCALAR_SINGLE 248,834,934,654 248,565,998,154 246,145,152,314 247,347,012,645

SSEX_UOPS_RETIRED:VECTOR_INTEGER 14,176,659,139 14,671,608,433 15,045,412,620 16,210,914,212

SSEX_UOPS_RETIRED:PACKED_DOUBLE:PACKED_SINGLE:SCALAR_DOUBLE:SCALAR_SINGLE:VECTOR_INTEGER2,606,571,678,217 2,633,699,858,938 2,644,373,080,563 2,733,516,460,205

FP_COMP_OPS_EXE:SSE_FP 1,336,511,731,950 1,355,378,118,644 1,369,542,959,613 1,431,922,332,486

FP_COMP_OPS_EXE:SSE2_INTEGER 58,621,921 71,884,547 69,386,706 56,957,873

FP_COMP_OPS_EXE:MMX 0 0 0 0

FP_COMP_OPS_EXE:X87 269,694,230,947 270,612,273,162 270,174,789,805 276,066,509,918

perfmon-output-stalls

UNHALTED_CORE_CYCLES 10,453,676,685,546 10,629,690,245,761 10,917,389,327,810 10,921,950,376,361

INSTRUCTIONS_RETIRED 9,700,072,406,288 9,726,368,886,352 9,764,081,522,816 9,980,163,625,141

RESOURCE_STALLS:LOAD 232,398,398,286 299,949,197,511 299,257,375,151 339,177,545,291

RESOURCE_STALLS:STORE 101,939,051,147 146,134,420,183 191,971,366,243 246,655,760,082

RESOURCE_STALLS:RS_FULL 1,842,035,624,263 1,879,731,950,183 1,939,560,314,920 2,097,212,836,749

RESOURCE_STALLS:ROB_FULL 123,091,058,200 174,953,208,420 178,850,512,498 187,807,055,095

RESOURCE_STALLS:FPCW 0 0 0 0

RESOURCE_STALLS:MXCSR 0 0 0 0

RESOURCE_STALLS:OTHER 0 0 0 0

RESOURCE_STALLS:ANY 2,273,537,842,017 2,464,929,777,778 2,591,861,813,113 2,835,172,546,253

FP_COMP_OPS_EXE:SSE_FP 1,338,848,000,433 1,352,279,132,076 1,374,156,533,298 1,440,059,925,931

FP_COMP_OPS_EXE:SSE2_INTEGER 64,480,511 40,815,413 92,376,209 46,603,807

FP_COMP_OPS_EXE:MMX 0 0 0 0

FP_COMP_OPS_EXE:X87 269,404,306,095 270,503,209,951 271,233,018,152 278,028,343,691

