

CERN openlab

Page 1 of 16

oTN-2009-01 openlab Summer Student Report

Development of a Security Tool for Oracle
Databases

Jimenez, Raul
Girone, Maria & Canali, Luca

26 of August 2009
Version 1

Distribution:: Public

 Abstract.. 1

1 Auditing Tool ... 2

1.1 Auditing is necessary .. 2
1.2 Components .. 2

2 Extraction Process ... 3

2.1 Auditing Extraction procedure ... 3
2.2 Structure of the Main Procedure – AuditExtraction .. 4
2.3 Problems during the development process ... 5
2.4 Integration process ... 5

3 Monitoring Tool ... 6

3.1 Previous Considerations ... 6
3.2 Interface Requirements ... 6
3.3 Operations .. 7
3.4 Using Design Patterns .. 8
3.5 Client Side .. 9
3.6 Server Side ... 9
3.7 Views .. 9
3.8 Ajax Queries ... 10

4 Conclusion ... 11

5 Possible Improvements .. 11

6 Bibliography .. 12

7 Appendix .. 13

7.1 Appendix A: List of Functions and Components .. 13
7.2 Appendix B: How to add new features .. 14
7.3 Appendix C: SQL queries examples for testing ... 15

Abstract

The goal of this openlab summer student project was to increase the security of the CERN physics
Oracle databases. The way to achieve this is via a tool to automatically perform various security
tests on the databases. The proposed way is focused in Oracle Databases Auditing. The tool will
collect auditing information along databases. The auditing trails will be analyzed to obtain a
response about what is happening into the databases.

Auditing Process

 Page 2 of 16

1 Auditing Tool

1.1 Auditing is necessary

Auditing is a necessary activity that has to be performed in any Oracle security project because it is
the most effective tools in fight intrusions and wrongdoing. An audit trail is very effective to help
administrators not only to stop people from doing wrong things but to alert then on suspicious
activity and for doing an investigation to find out what went wrong in critical process.

Today’s organizations have increasingly become dependent on IT applications that allow users to
access confidential information. Critical functions are dependent of this IT applications as well as
there is exponential increase in vulnerabilities. As everybody knows, CERN is under permanent
attack, and new vulnerabilities are discovered frequently. In this context, to secure and audit
physics databases is a necessary practice.

1.2 Components

The Auditing tool has been designed in three different parts. Those parts are the extraction
process, the Auditing Engine and the Monitoring tool. The Auditmon Engine is part of the project
but has been developed by CERN staff.

 Extraction Process.
Auditmon is a new component which is responsible of extracting audit information from
the system tables. The auditing process is formed by three different procedures written
in a PL/SQL for simplicity and maintenance reasons.

 Auditmon Engine.

It is an Oracle Package loaded on a dedicated Database. It is a rule based module
running after data collection to discover improper actions or irregularities in DB access.
This module is part of the Auditing Tool and it was developed by other workmate.
(Katarzyna Dziedziniewicz). In case of simple rules each predefined rule is executed on
data from one or more databases and when the result is above the threshold defined it
is recorded in the result tables with the severity level: info, warning, alert. The
aggregate/complex rules are applied to discover irregularities over time or repeating in
data from different DBs (failed logons over time, access from unknown network to
different DBs).

 Monitoring Tool.
Last task consisted in preparing a Monitoring Tool to present the information generated
by the Audit Engine. This software use the auditmon schema to present several reports
about the security problems found by the Auditing Engine.

These three components must be integrated. The components will run independently but using the
Auditmon schema.

CERN OpenLab Summer Student Report

 Page 3 of 16

2 Extraction Process

2.1 Auditing Extraction Procedure

Three different processes have been prepared to transfer the Audit trails from oracle databases.

 AuditExtration
 AuditTabPartitioner
 dblinkLoop

The auditing process is a stored procedure written in a PL/SQL, which offers several distinct
advantages like allowing good maintenance. By running the procedure on a dedicated database it
extracts audit information from the system tables. Another procedure (AuditTabPartitioner)
prepares the table partitions with a specific name format. The last one (dblinkLoop) checks the
databases list, and it runs the main procedure each time on a different ddbb.

The extraction process will create different tables (one per database) to insert the data into
the destination database. The procedure connects to the other databases via dblink that should be
available during the extraction process. So finally there is a dedicated database which contains the
auditing procedure, the dblinks connections and the auditing destination tables to hold the
information.

There are many auditing options to collect on each database depending on the audit policy,
but only the following data is recorded on the destination tables.

Source Destination Description
spare1 OS_USERNAME Operating system login username of the user whose actions were audited.
userid USERNAME Name (not ID number) of the user whose actions were audited.

userhost USERHOST Client host machine name.
terminal TERMINAL Identifier of the user's terminal.

ntimestamp# TIMESTAMP
Date and time of the creation of the audit trail entry (date and time of user login
for entries created by AUDIT SESSION) in the local database session time
zone.

act.name ACTION_NAME
Name of the action type corresponding to the numeric code in the ACTION
column.

Logoff$time LOGOFF_TIME Date and time of user log off.
Logoff$lread LOGOFF_LREAD Logical reads for the session.
logoff$pread LOGOFF_PREAD Physical reads for the session.
logoff$lwrite LOGOFF_LWRITE Logical writes for the session.
Logoff$dead LOGOFF_DLOCK Deadlocks detected during the session.

sessionid SESSIONID Numeric ID for each Oracle session.
returncode RETURNCODE Oracle error code generated by the action.

clientid CLIENT_ID Client identifier in each Oracle session.
sessioncpu SESSION_CPU Amount of CPU time used by each Oracle session.

Proxy$sid PROXY_SESSIONID
Proxy session serial number, if an enterprise user has logged in through the
proxy mechanism.

User$guid GLOBAL_UID
Global user identifier for the user, if the user has logged in as an enterprise
user.

instance# INSTANCE_NUMBER
Instance number as specified by the INSTANCE_NUMBER initialization
parameter.

 process# OS_PROCESS Operating System process identifier of the Oracle process.

Auditing Process

 Page 4 of 16

Structure of the Main Procedure – Audit Extraction

Audit extraction procedure is in charge of extracting the audit information from a list a

databases. This procedure has two parameters which are used to build a query using different
dblink connections every time the procedure is invoked. The procedure checks if the destination
table exists and it tries to create partitions if it is needed.

Partitioning is the ability of the database to take

very large tables or indexes and physically break them
into smaller and more manageable pieces. Parallel
processing can be useful to break a large process into
smaller parts that can be processed independently.
Partitioning can also be used to break a very large table
in several parts that can be independently managed.

The destination tables are supposed to be large tables, and a big amount of data is going to

be transferred into it, so having a partitioned table will facilitate the operations. As the procedure is
used in parallel, this solution will potentially reduce the amount of time the operation takes. This
adopted solution (partitioning) also increases availability when datafile goes bad. Using partitioning
in separate tablespaces, only one partition would be affected.

At this point, the procedure is prepared to create

new partitions on demand each month. It means that
tables are partitioned by a timestamp field. A new
partition will be created every month and it will contain the
database audit trail for that month. It has been prepared
in this way because partitioning must be applied in such a
way as to solve a real problem, and tables should be
separated in a logical way to take advantage of the
performance improvement that partitioning brings. The
only problem is if somebody else tries to create the
partitions on a wrong date or to use a different name
format, then errors may appear.
To avoid this kind of error, it calls another procedure to
prepare partitions with a normalized name format. This
procedure prepares the table to hold information for the
next two years.

It is necessary to consult the databases table to

know about the availability of databases and dblinks
connections. The database names are used as
parameters on the main procedure. So for this reason
there is a procedure that is in charge of looping into the
databases list. A cursor is prepared to loop into the list
and an instance of the main procedure is called to extract
the audit data every time.

Set configuration

Check existance

Create table

Create Partitions

Check the last insertion date

Prepare Extraction From the Last TimePrepare Extraction from the Begining

Perform insertion

It exists It doesn´t
exists

There are
records

There are
no records

CERN OpenLab Summer Student Report

 Page 5 of 16

2.2 Problems during the development process Performance

One of the problems encountered during the development process was related to the
Databases Time Zone configuration. The main procedure is prepared to extract information from
databases using a timestamp field. The last insertion date is checked before performing the
extraction, and then it is used to extract information from that date to the current date. The time
zone configuration of Test1 ddbb is different from the rest of databases, and the number of records
transferred was wrong during the test period.
To be exact, the time zone of “Test1” database is two hours less than the rest. Every time the
procedure ran more records than intended were transferred.
The date transferred is exactly the same date as in the source database. The problem consists in
how oracle interprets the timestamps using the local time zone representation. This timestamp is
necessary to compare and to extract recent records.

Several different methods were tried to fix this problem. Many functions were used to avoid
the internal timestamp conversion, and finally the solution resides in using the UTC time function.
Thanks to this function, it was possible to perform a successful comparison and to finish the
extraction procedure.

2.3 Integration process

The last step consists on integrating the extraction procedure with the Auditing Engine to
make them work together. As it was described above, a Scheduled procedure launches the
extraction job and to record information into the partitioned tables. The engine also counts with a
scheduled procedure that reads the schema and starts the analysis process. Both jobs have been
scheduled to run every hour with a difference of half an hour to avoid overlapping the extractions.
The scheduled procedure was modified to carry out a set of insertions in a new table. This table
holds information about the executed jobs. The same idea could be extended to the Auditmon
Engine in order to know the processes status. As additional work, this information could be
displayed on the monitoring tool to let know the user when was the last execution and if the
information is up to date.

Extraction Process Rule-Based Engine Monitoring Tool

Results SchemaAudit Trail Copies
Oracle Databases

for Fisics

Auditing Process

 Page 6 of 16

3 Monitoring Tool.

3.1 Previous Considerations

After finishing the Auditing process, the next task consisted in preparing a Monitoring Tool to
present the information generated by the Audit Engine.

Many options were taken into consideration:

 Integrate the results schema into the Racmon Interface.
 Look for Monitoring Software to present results.
 Start a new development project in a known technology to properly integrate into the

project.

First, the Racmon interface was considered as an alternative to continue the development
and to add new features to present the auditing results. This option was ruled out because the
code was not documented enough and it would take more time to understand the code than start a
new web application.

Another option was to research available monitoring tools. A powerful tool was tested for
automatic reports generation (Jasper Report Software). It was discarded because it needs a
complicated deployment and this tool is not customizable at all.

The adopted solution was to start a new project as a web interface using PHP. Using PHP
language was a maintenance decision and this language was also used to build other monitoring
tools to present security information. Furthermore, using web interfaces makes the integration
between them easier. Just by using link tags on the views it can be simply integrated.

3.2 Interface Requirements.

The information recovered from the Auditmon Schema must be presented in different ways
to allow the user to easily find the information he needs. A basic set of requirements that the
interface must achieve were described. After implementing the basic requirements, it was easy to
add many other features because of the very organized web architecture.

List of the main operations:

 Show a global report about events on the systems.

 Show a global report about the severity of the events.

 Show a more detailed report about events in each database.

 Prepare the view to sort it by Severity.

CERN OpenLab Summer Student Report

 Page 7 of 16

Uses cases diagrams explain the interface requirements:

3.3 Operations

The information that the application must present is stored in the Auditmon schema. Those
operations are directly translated to SQL queries. The database schema is as follows:

A set of SQL queries describes what the view has to show. Those SQL queries are also used
for testing the application.

Auditing Process

 Page 8 of 16

3.4 Using Designs Patterns.

Many designs patterns have been adapted in order to build a maintainable application and to
allow the programmer to add new features.

Dispatcher

The Dispatcher design pattern introduces an intermediate layer between clients and
servers, the dispatcher component. It provides transparency of a name service, and hides the
details of the establishment of the communication connection between clients and servers.
Dispatcher Component allows adds a new empty view just by typing a new line in a “switch case”.

Model-View-Controller

The Model-View-Controller (MVC) pattern divides an application into three components.

Input --> Processing --> Output
Controller --> Model --> View

 The model contains the core functionality and data. It is
independent of specific output representations or input
behaviour.

 The view displays information to the user. A view obtains data
from the model. There can be multiple views of the model.

 The controller handles user input.

 NOTE: In this application the model concept refers to the html tables and the information
displayed but not to specifics data types. The application use sets of data retrieved directly
from the database.

Next picture show a brief idea of design:

Commands Distpacher

View Model Query

Controller

«uses»«uses»

«interfaz»
HMLT Template

«uses» «uses»

Client Server

CERN OpenLab Summer Student Report

 Page 9 of 16

3.5 Client Side

The user can find many options on the interface to retrieve the Auditing Information. When
the URL is accessed, a set of JavaScript functions are loaded to support the user operations. The
functionalities of those functions are multiple. As it was mentioned in the design section, the
application follows the Command / Dispatcher Pattern by including a JavaScript function which
sets some hidden input variables. Those input variables are sent to the server side to decide what
operation the user wants to execute. The same URL is accessed each time the user clicks on a
link, and the Dispatcher switches the requested action to pass the control to the rest of the
components.

3.6 Server Side

The main component is located on control.php. The hidden variables are read on the server
side to carry out the requested operation and to prepare the response. Those variables are sent
via POST by a JavaScript function called “redir2(<parameters>)”. Once the POST variables are
accessed, a large function redirects the request to the appropriate control code. In those sections
many operations are executed before displaying the view. Following a MVC schema-based, we
can find several database operations in the control sections, as well as several building-view
functions depending on what command was sent.

3.7 Views

As it was mentioned above, the application uses an html template which is filled depending
on the command. The main view is the index.php which contains the main html and many other
resources as the JavaScript’s. The controller component is included to display the information
generated by the command. It intends to separate the html from the PHP code to obtain a readable
code and to easily understand how the display was generated. For this reason there is another file
which contains a set of functions to prepare pieces of html code based on input parameters. It is in
the control section where the information is retrieved from the database and then passed to the
display functions. At the end of the execution a variable which contains all the html code gets ready
to be displayed.

In few cases it is necessary to retrieve information directly from the views functions because
some asynchronous operations need to connect to ddbb and to generate html code pieces without
following the dispatcher schema.

Auditing Process

 Page 10 of 16

Ajax Queries

Ajax is a group of web development techniques used on the client-side to retrieve data from
the server asynchronously in the background without interfering in the behaviour of the existing
page. Using Ajax methods allows the construction of dynamic interfaces.
The tool has been designed not only to show a short report about the security status but to directly
retrieve detailed information about the events that has occurred on the selected dates.

Thanks to an Ajax component, it is possible to extend the information to the screen without
refreshing the view. This component is an open source engine that automatically generates a set
of JavaScript functions on the client side, which allows the application to perform asynchronous
operations on the server side. A PHP module is in charge of receiving the requests. This module is
ready to invoke functions and it must to be previously registered on the system. Each function
performs the appropriate operations as the control sections do to return a new piece of html code.

The view must be prepared previously to receive the information by Ajax methods.

Additional information is transferred on demand when required. This solution also produces a light
interface allowing the user to expand the information when it is necessary.

Steps to integrate the Ajax library (xajax 0.5)

1) The xajax library must be included on the code.

require_once("ajax/xajax_core/xajax.inc.php");

Index.php

2) Instantiate the object:
$xajax = new xajax();

Index.php

3) Redirect requests:
$xajax->setRequestURI("request_actions.php");

Index.php

4) Register Functions:
$xajax->registerFunction("db_rule_results_details") ;
$xajax->registerFunction("db_severity_details") ;

Index.php

5) Create the response:
 function db_rule_results_details($div_id, $datefrom, $dateto, $database, $ruleid)
 {
 // OUTPUT:
 $newContent = single_detail_table($datefrom, $dateto, $database, $ruleid);

 // Instantiate the xajaxResponse object
 $objResponse = new xajaxResponse();

 $objResponse->assign($div_id, "innerHTML", $newContent);

 //return the xajaxResponse object
 return $objResponse;
 }
Request_action.php

6) Generate JavaScript functions:
 <?php $xajax->printJavascript(); ?>

Index.php

CERN OpenLab Summer Student Report

 Page 11 of 16

4. Conclusions

The result of this work is a tool that allows administrators to conduct a follow-up of

databases using the reports generated by the Monitoring tool. The proposed tasks have been
accomplished including additional features that make it easy to be managed. The collection of the
auditing trails also means that new features could be implemented to look for new risks.

Thanks to the team atmosphere and the group work of the IT-DM section is was easy to
manage my work as an OpenLab summer student. It has been an excellent experience learning
best practices of Oracle Databases under the supervision of CERN experts.

5. Possible Improvements

 The process responsible for running the Extraction procedure also records its status in a
table. The software administrator can check the results to know how the transfer process
was performed. This feature could be also implemented into the Engine Package to make
aware administrators that the task has been performed.

 Additional view on the monitoring tool to display the status of the jobs, so the user would
know when the information is updated.

 The Monitoring tool can be prepared to run and modify the Engine and process parameters
in order to make a customizable system.

Auditing Process

 Page 12 of 16

6. Bibliography

[1] Effective Oracle by Design (Osborne ORACLE Press Series).

[2] Oracle Documentation. Oracle Database 11g Release 1 (11.1) Documentation.

[3] Design Patterns – A personal perspective By Tony Marston.

http://www.tonymarston.net/php-mysql/design-patterns.html

[4] www.Javascriptkit.com. - Date Time Picker

[5] http://www.php.net/

[6] The Apache Software Foundation.

http://www.apache.org/

[7] xajax PHP Class Library- The easiest way to develop asynchronous Ajax applications.
 http://xajaxproject.org/

CERN OpenLab Summer Student Report

 Page 13 of 16

7. Appendix

7.1 Appendix A: List of functions and components

 index.php
o Html template.
o CSS.

 Cern.css
 Table.css

o JavaScript functions.
 function redir2(request_, view_, selection_, time_)
 function moreinfo(element)
 function moreinfobyid(id)
 function selecttoday(id_1, id_2, date_from, date_to)

 controller.php
o Dispatcher.

 function switcher($req)

 connexion.php
o OCI driver.

 function load_sql()
 function connection()
 function extraction($conn, $sql)
 function matrix_extraction($conn, $sql)

o Database Queries.
 function prepare_db_menu()
 function single_db_rules($database)
 function global_db_info_rules($from, $to)
 function global_db_severity_info($from, $to)
 function single_db_severity_info($database, $infoid, $from , $to)
 function db_results_details($from, $to, $database, $ruleid)
 function db_results($from, $to, $database)

o Other functions
 function parse_date($date)

 models.php
o Html data models.

 function single_db_view($db, $table1, $table2)
 function show_more_info_from_rule($name, $component_id, $database, ...)
 function show_severity_info($name, $component_id, $database, $infoid, $from , $to)
 function print_test_table($title, $head, $content, $foot)
 function print_link_table($title, $content, $from, $to)
 function single_detail_table($from, $to, $database, $rule)
 function print_db_menu($title)
 function global_information_view($data, $title, $from, $to)
 function global_information_by_severity_view($data,$title, $from, $to)
 function calendar_view($id)
 function calendar_panel_view($id_from, $id_to, $message, $goto, $selection)

o Other functions.
 function more_info_table($component_id)
 function LastWeek()
 function image_($image)
 function space_($n)
 function separator_()

 request_actions.php
o Ajax queries.

 function db_rule_results_details($div_id, $datefrom, $dateto, $database, $ruleid)
 function db_severity_details($div_id, $datefrom, $dateto, $database, $infoid)

 External Components
o Ajax library.
o Calendar component. (JavaScript).

Auditing Process

 Page 14 of 16

7.2 Appendix B: How to add new features

1) Add a new case in the main function (dispatcher) in “control.php”.

function switcher($req) {
...
 case 'showsingledb': break;

Controller.php

2) Add an html link using the function “Redir2” as action to send the request.

 ...

Index.php

3) Create a query function in “Connection.php”.

function single_db_rules($database){
 $db = connection();
 $query = " SELECT r.DESCRIPTION Event ,
 COALESCE(amounts.n, 0) Occurrences
 FROM rules r
...

Connection.php

4) Prepare a view function in “models.php” or use an existing function that loops into the

results.
function print_test_table($title, $head, $content, $foot) {
...
 foreach ($content as $key => $val) {
 $document.= " <td height=15 style='border-left: 1px solid #DDDDDD; border-right: 1px solid ...

Models.php

5) Prepare the “Case clause” of the controller procedure to retrieve the information and print

the view.
case 'global':
// OUTPUT:
print calendar_panel_view('INPUT_FROM', 'INPUT_TO', $message, 'global', null); // prepare the date input components.

$data = global_db_info_rules($date_from, $date_to); // retrieve information from the database.

// OUTPUT:
print global_information_view($data, "Events", $date_from, $date_to); // prepare the view.
break;

Models.php

CERN OpenLab Summer Student Report

 Page 15 of 16

7.3 Appendix C: SQL queries for testing.

/**/
/* The next query is executed when a single database report is requested. */
/* Single database view sort by events. */
/**/

SELECT d.dbname database,
 r.ruleid ,
 r.DESCRIPTION Event ,
 COALESCE(amounts.n, 0) Occurrences
FROM rules r
 CROSS JOIN
 databases d
 LEFT JOIN
 (
 SELECT re.dbid dbid ,
 re.ruleid ruleid ,
 count (*) n
 FROM results re
 WHERE re.OBTAINED
 BETWEEN to_timestamp('24-Aug-2009 00:00:00', 'DD-MM-YYYY HH24:MI:SS')
 AND to_timestamp('24-Aug-2009 12:8:25', 'DD-MM-YYYY HH24:MI:SS')
 GROUP BY re.dbid ,
 re.ruleid
) amounts ON r.ruleid = amounts.ruleid
 AND d.dbid = amounts.dbid
WHERE d.dbname = 'TEST2'
ORDER BY d.dbname, r.description;

/* **/
/* The next query is executed to show results sorted by severity. */
/* Both queries must return exactly the same number of registers. */
/* **/

SELECT d.dbname Database,
 r.INFO Info ,
 COALESCE(amounts.n, 0) Ocurrences
FROM info_type r
 CROSS JOIN
 databases d
 LEFT JOIN
 (
 SELECT re.dbid dbid ,
 re.infoid infoid ,
 count (*) n
 FROM results re
 WHERE re.OBTAINED
 BETWEEN to_timestamp('24-Aug-2009 00:00:00', 'DD-MM-YYYY HH24:MI:SS')
 AND to_timestamp('24-Aug-2009 12:8:25', 'DD-MM-YYYY HH24:MI:SS')
 GROUP BY re.dbid ,
 re.infoid
) amounts ON r.infoid = amounts.infoid
 AND d.dbid = amounts.dbid
WHERE (1 = 1)
 AND d.dbname = 'TEST2'
ORDER BY d.dbname, r.INFO

Auditing Process

 Page 16 of 16

/**/
/* The ajax querie to look for details of the main table. */
/* In this case the number of results could be not the same because the */
/* multiplicity of those tables are one to many. One result contain many */
/* details */
/**/
select d.dbname Database,
 r.OBTAINED Obtained,
 rc."content" Content ,
 info.info Info
FROM results r
 JOIN
 databases d ON r.dbid = d.dbid
 JOIN
 rules rul ON r.ruleid = rul.ruleid
 JOIN
 info_type info ON r.infoid = info.infoid
 LEFT JOIN
 result_cont rc ON r.resultid = rc.resultid
WHERE rul.ruleid = 2
 and d.dbname = 'TEST2'
 and r.OBTAINED
 BETWEEN to_timestamp('24-Aug-2009 00:00:00', 'DD-MM-YYYY HH24:MI:SS')
 AND to_timestamp('24-Aug-2009 12:8:25', 'DD-MM-YYYY HH24:MI:SS')
ORDER BY d.dbname, r.OBTAINED

/* **/
/* The next query is to retrieve the full report sorted by events. */
/* **/
select r.description event ,
 r.ruleid ruleid,
 COALESCE(amounts.n, 0) N
from rules r
 LEFT JOIN
 (
 SELECT count(*) n,
 res.ruleid ruleid
 FROM results res
 WHERE res.OBTAINED
 BETWEEN to_timestamp('23-Aug-2009 01:08:07', 'DD-MM-YYYY HH24:MI:SS')
 AND to_timestamp('24-Aug-2009 01:08:07', 'DD-MM-YYYY HH24:MI:SS')
 GROUP BY (res.ruleid)
) amounts
 ON r.ruleid = amounts.ruleid

/* **/
/* The next query is to retrieve the full report sorted by Severity */
/* **/
select i.info SEVERITY ,
 i.infoid INFOID ,
 COALESCE(amounts.n,0) N
from info_type i
 LEFT JOIN
 (
 SELECT count(*) n,
 res.infoid infoid
 FROM results res
 WHERE res.OBTAINED
 BETWEEN to_timestamp('23-Aug-2009 01:08:07', 'DD-MM-YYYY HH24:MI:SS')
 AND to_timestamp('24-Aug-2009 01:08:07', 'DD-MM-YYYY HH24:MI:SS')
 GROUP BY (res.infoid)
) amounts
 ON i.infoid = amounts.infoid

