

CERN openlab

Page 1 of 13

oTN-2008-01 openlab Technical Note

CERN PVSS tests on SAGE/Exadata
Anton Topurov, Eric Grancher

3 November 2008
Version 2

Distribution: Public

1 Introduction .. 1

1.1 PVSS Oracle Archiver .. 1
1.2 PVSS Oracle Archiver Workload ... 1

2 SAGE advantage .. 2
3 CERN test system .. 3

3.1 Setup ... 3
3.2 Test Results .. 4

4 SAGE test system .. 5
4.1 Setup ... 5
4.2 Test results (16th of September) .. 5
4.3 Test results (22-23 of October) ... 6

5 Conclusions .. 13

1 Introduction
PVSS is a commercial SCADA (Supervisory Control And Data Acquisition) system used for the supervision
and control of the LHC experiments and some systems of the accelerator itself. PVSS is a product of ETM
professional control GmbH, a Siemens Company. In general terms, PVSS is used to connect to hardware
devices to send commands and configuration data to them, to acquire the data they produce and use it for
their supervision and control, i.e. to monitor their behavior and initialize, configure and operate them.

1.1 PVSS Oracle Archiver
PVSS “Oracle Archiver” is the PVSS component, which takes care of storing and retrieving the real-
time monitoring and control data in Oracle Database.

1.2 PVSS Oracle Archiver Workload
The workload of Oracle Archiver is mainly bulk insert of data into the database. Occasional queries are
issued by the PVSS users. The LHC experiments have a requirement of insertion ratio of up to 150000
changes/s, which is unique case for SCADA applications usage.

Name of the note

 Page 2 of 13

Figure 1 Schematic of PVSS workload

Generally the data is produced by the LHC and experiments’ hardware, which is then acquired by PVSS
clients. Data is buffered in the clients, and once sufficient amount is collected, it is inserted into the database,
using Bulk Insert. There are several common-like schemas used to accumulate the data. Their structure is
identical and comprise of a temporary table called EVENTLASTVAL (oracle special temporary table type),
and permanent partitioned table called EVENTHISTORY_XXX (shortly EVENTHISTORY), where XXX is
an archive number.
The data from PVSS is inserted into EVENTLASTVAL table.
Then, PL/SQL procedure InsertHistory takes care of transferring the data from the EVENTLASTVAL to a
dedicated partition of the current active EVENTHISTORY table.
Once the tablespace, holding EVENTHISTORY table is almost full, a new tablespace is produced and new
tables and indexes are created. During the creation of the tablespace, PVSS clients buffer the data locally.
The total insertion performance (measured in changes/s) degrades. Moreover, depending on the total
workload and the tablespace creation time, the buffers sometimes are not sufficient to hold the data, which
leads to data loss.

2 SAGE advantage
SAGE is advertised as a smart storage, which can be used to offload some of the functionality of the
database. In case of PVSS, offloading tablespace creation to the SAGE cell could be of great benefit, thus
reducing the impact on PVSS clients loading and offloading the CPU / IO load from the database servers. If
the impact of tablespace creation is too large, it can lead to the impossibility to load the data in time.

Name of they note

 Page 3 of 13

Currently SAGE hardware is not yet available for testing at CERN site.
Since PVSS set-up is very difficult to reproduce on the Oracle Site, we have created a PVSS workload-like
benchmark, using Swingbench framework.

Figure 2 Swingbench PVSS benchmark

A CSV file with example data is read by our benchmark code, and the timestamp of the records is changed to
be close to the SYSTIMESTAMP. The actualized records form a bulk insert statement, which is executed
every second, thus simulating 1000 changes/s load. After each bulk insert our code calls the InsertHistory
procedure, which transfers the data to the needed table partition.
Every 7 minutes a job checks the size of the tablespaces, and once they are above a certain threshold, the
tablespace switch is initiated. In addition our code logs execution time of Bulk inserts into specific table,
which is used for detailed analysis of the benchmark results.

3 CERN test system

3.1 Setup
Two-instance RAC

• 2 CPU Intel(R) Xeon(R) 5140@2.33GHz (4 cores in total)
• 8 GB RAM (sga_target =6GB)
• NAS based storage.

Name of the note

 Page 4 of 13

3.2 Test Results

Figure 3 CERN test system results

1000 ms execution time is a buffering threshold, i.e. higher execution time means that the system can not
cope with the load and started buffering.
At 18:40 there was 15 sessions running on the instance 1 of the database (load 15 000 changes/s). Execution
times were below 1000ms, until the tablespace filled up and the tablespace switch started at 19:55. During
the tablespace creation the “buffering” was light and once the switch happened, the execution times
normalized.

At 19:00 additional 45 sessions were started, making the desired load of 60 000 changes/s. The graph shows,
that the system could not cope with the load and was buffering.

At around 19:36 multiple tablespace switch started – i.e. each of the 4 schemas were doing the switch. The
execution times were too high, indicating that such a load is not possible to cope with.
Once the switches finished, the execution times went back to around 2000 ms level.

Conclusion: Tablespace switch is too costly for the system.

15 000
changes/s

Tbs switch
started

Start of
3 more
loaders

Tbs switch
started in all
4 schemas

Tbs switch
finished

Tbs switch
finished in
all 4
schemas

Name of they note

 Page 5 of 13

4 SAGE test system

4.1 Setup
Four-instance RAC

• XXX CPU
• 16 GB RAM (sga_target =10GB)
• 4 SAGE cells storage

4.2 Test results (16th of September)

Figure 4 SAGE test system results

For simplicity of the analysis, we will use the graph of only two schemas.

Name of the note

 Page 6 of 13

Figure 5 SAGE test system results (two schemas)

The tests were started around 17:20 UK Time.
Since sga_target was 1GB, the execution time was increasing due to fill of cache (mainly indexes were
causing that).
As soon as tablespace switch happened, the new table and its respective index were created; execution times
were back to normal.
Around 18:30 the sga_target was set 10 GB, followed by restart of the instances at 18:41.Performance have
improved (the execution times stayed low for longer periods of time).
At 18:59 we started 4 more swingbench instances (SUSER05-08), which lead to slight decrease in
performance. This can visible in the very shaky part of the graphics. “Checkpoint not complete” was major
message in the alert logs, indicating that redo log files have not sufficient size for the load.

19:10 – we stopped the tests, since other testers were waiting for the machines.

4.3 Test results (22-23 of October)

Since the announcement at Oracle Open World of Oracle Exadata, the word Exadata will be used instead
of SAGE.

October 23rd Tests

System Parameters:
Sga_target = 10G

Tbs switch
started/
finished
SUSER02

SGA =10G,
Restart of the
instances

Tbs switch
started/
finished

Checkpoint
not
complete
warnings
started

Name of they note

 Page 7 of 13

Pga_aggregate_target=10G
Db_block_size=8K
Event Tablespaces = 3GB, 5M uniform size

Description: The test intended to find out if the system was able to cope with the 150 000 changes/s load.
The tablespaces size was set to 3GB, like in September tests. The setup of the system was done during the
first half of the day; the actual tests were started after 14:00. The load increase was done with 15 000
changes/s steps.

Figure 6 Execution time graph of the first day

Increasing the load from 0 to 120 000 went smoothly, and no buffering occurred. “Checkpoint not
complete” messages appeared in the alert.log, so we have added 2 more redo logs per instance, 4GB
each. Moving from 120 000 changes/s to 135 000 went ok.
Once we tried to reach 150 000/s (the green line starts exactly at that time), the execution times more
then tripled, crossing the buffering threshold of 1000 ms execution time.

Start of the
tests

Tbs
switches

“Check-
point not
complete

Adding
Redo
Logs

Start of
10th
Loader.
150000
ch/s area

3x
tablespaces
switch

“Check-
point not
complete

TBS
switches

Name of the note

 Page 8 of 13

Analysis of AWR and wait events showed contention on write on control files.
During this period any “Checkpoint not complete” or tablespace creation leaded to execution times,
which were greater then the “buffering” threshold.
We were not sure if the double and triple simultaneous tablespace creation was the trigger for the
instability, therefore we have decided to use 20GB tablespaces, which would give us ~2 hours of
“tablespace switch free” time for analysis.

October 24th Tests

System Parameters:
Sga_target = 10G
Pga_aggregate_target=10G
Db_block_size=8K
Event Tablespaces = 20GB, 5M uniform size, later 16MB uniform size

Description: During this day we tried to identify the maximum point of stability and try to achieve
150 000 changes/s using 20GB tablespaces. Changing uniform size of the tablespaces to 16MB was
suggested by Oracle as mean to improve performance.
In addition we tried to quantify the performance gain given by the fast file creation feature of Exadata, by
switching it off and on.

Name of they note

 Page 9 of 13

Figure 7 Execution time graph of the second day.

The graph is divided in 3 periods, which will be shown and analyzed separately in this report.

Period 1 Period 2 Period 3

Name of the note

 Page 10 of 13

Figure 8 Execution time graph, day 2, 1st Period

Test 1: This test uses 20GB tablespaces, so the tablespace switch occurs not that frequent as during the
previous day. At 11:45 we have achieved a stable load of 120 000 changes/s. Then we have started additional
30 000 changes/ s, totalling in 150 000 changes/s. This load showed very little instability in the beginning
(some of the exec times were bigger then 1000), and then recovered. After one hour, the execution times
became much higher, and no recovery appeared by itself.
At 13:10 we have stopped 3 of the loaders (removed 45 000 changes/s load), but this did not help.
The sum size of used extents in the tablespace was around 9G, while the automatic switch should appear
when sum extent size is higher then 15G. Therefore we forced manual switch of the tablespaces at 13:24.

Test 2: To double check the previous test, we left the system running at 105 000 changes/s for couple of
minutes, which was stable. Then we started back the 3 swingbench instances, which were stopped during the
previous test. This lead to execution times around and above the threshold of 1000 ms. Performance did not
recover, and after 1 hour we decided to stop it. This test confirmed the behavior of the Test 1.
Most of the peaks in the execution time graph correlated “Checkpoint not complete” message in the alert.log

Test 1

Test 2

“Check-
point not
complete

Stop
SUSER
2,3,4

Start:
Manual
Switch
All 10
schemas

Switch
completed

Start SUSER
2,3,4

“Check-
point not
complete

Name of they note

 Page 11 of 13

Figure 9 Execution time graph, day 2, 2nd Period

Test 3: The idea of the test was to find the maximum stable point.
We have started from 0 and reached 120 000 changes/s with no problem. Then we increased the load with
the step of 1000 and 2000 changes/s second. The execution time degrades at 145 000 changes/s, at around
15:36.

Next, with the limited time left, we wanted to quantify the effect of the fast_file_creation feature.
We put Cell_offload_processing = off, expecting that this will disable fast file creation as well, but this was
not the case, as 20GB tablespace was created in 17 seconds, as before. The big spike at 16:27 is due to too
big load put by mistake.

Test 3

Load of 135 000
changes/s

Load of 145 000
changes/s

Cell_offload_processing=False
Bounce the Database

Name of the note

 Page 12 of 13

Figure 10 Execution time graph, day 2, 3rd Period

Test 4: We have found an additional parameter _cell_fcre, which was supposed to disable only the fast file
creation. We have set back the cell_offload_processing to TRUE. There were problems during the bounce of
the database, but finally it recovered and we could continue with the next test.
150 000 load was problematic again, and we reduced the load to 135 000, to see the effect of tablespace
switch, when the fast file creation is disabled.

Indeed, during the creation of the new tablespace, there was a spike in the execution time. However, when
we did switch to other 9 tablespaces, we did not observe such strong spikes.

Test 5: During the last switch, we have created the tablespaces with 16MB uniform size, which was advised
by Oracle engineers. This gave a bit better result – but not sufficient to sustain for a long time.

Test 4

Test 5

Cell_offload_processing=True
_cell_fcre=False

150 000
changes/s

135 000
changes/s

Manual
TBS switch
Start

Manual
TBS
switch
Stop

Switch other
9
tablespaces

“Checkp not
Complete”

Name of they note

 Page 13 of 13

5 Conclusions

PVSS data loading to a database is a very important operation. The data loading performance suffers from
the necessary tablespace creation operations. These tablespace creation operations lead to degradation of
performance (i.e. buffering and potential data not being loaded and possibly lost).

In a test system we could sustain a load of 30 -35 000 changes/s, with insertion time going very high during
tablespace creation.

In Exadata environment, we measured much better results, thanks to the strong / balanced capacity of the
nodes and storage and the Exadata Storage Server fast file creation feature.

We could achieve a stable rate of 145 000 changes/s. Change from 5MB uniform size to 16MB uniform size
improved stability a bit, but could not totally solve the problem. The top wait event was “concurrent change
of control file”, which we could not eliminate. Oracle engineers suggested reducing the number of control
files, but there was no time left for this test.

Tablespace creation with “fast file creation” took approx 17 seconds for 20GB tablespace, compared with ~2
minutes with this feature switched off. This resulted in much smaller spikes in the execution times in
comparison with the spike while the feature was switched off. This establishes the proof of the benefit of the
feature in such a workload.

