

10Gb Ethernet Back-To-Back tests

Glenn Hisdal

June - August 2003

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 2

Table of Contents

1 INTRODUCTION...3

2 HARDWARE..4

2.1 IA64 HARDWARE ... 4
2.2 IA32 HARDWARE ... 5
2.3 PCI-X.. 6

3 SOFTWARE...7

3.1 OPERATING SYSTEM... 7
3.2 BENCHMARK SOFTWARE ... 7

4 TEST RESULTS...9

4.1 LINUX64 TO LINUX64 TESTS.. 9
4.1.1 Original results (Linux64 -> Linux64) ..9
4.1.2 LINUX64 -> LINUX64.. 10
4.1.3 LINUX64 <-> LINUX64... 12

4.2 LINUX64 <-> LINUX32 TESTS...14
4.2.1 LINUX32 -> LINUX64.. 14
4.2.2 LINUX64 -> LINUX32.. 15
4.2.3 LINUX32 <-> LINUX64... 17

5 PROBLEMS ... 19

5.1 LINUX64 PROBLEMS ...19
5.2 LINUX32 PROBLEMS ...19

6 CONCLUSION .. 20

APPENDIX A - BENCHMARK PROGRAM... 21

APPENDIX B - NORMAL SETTINGS (SET_NORMAL) ..2423

APPENDIX C - KERNEL TUNING (SET_KTUNED)...2524

APPENDIX D - FULL TUNING (SET_IMPROVED) ...2625

APPENDIX E - FULL TUNING, LINUX32...2726

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 3

 1 1 Introduction
This document describes the 10Gb Ethernet back-to-back test done as part of the
Opencluster project summer 2003. This document starts by describing the hardware and
software systems used in the test, and then continues with the results from the various tests.
The last section identifies some of the issues that appeared while these tests were done.

The goal of this project was to measure the throughput of a 10Gb Ethernet connection
between two IA64 computers and between an IA32 computer and an IA64 computer, all
of which were running Linux. In this document I refer to the systems as “Linux32” and
“Linux64” respectively. I wanted to get as close to the limit of the PCI-X system as
possible. The bandwidth of the PCI-X bus is about 1GB/s. The hope was to get to at least
80% of this speed for the Linux64 to Linux64 transfer, which was the practical limit
according to system specialists. I also wanted to see if a Linux32 system is capable of
getting the same speed as the Linux64 systems.

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 4

 2 2 Hardware
The hardware used in these test were two IA64 computers and one IA32 computer.

 2.1 2.1 IA64 Hardware
The IA64 computers used are HP RX2600 servers. The specification for these systems can
be found at HP's web page1. The systems in use here are each configured with two Intel
Itanium2 CPUs running at 1.5GHz, 4GB of RAM and 73GB hard disks. An Intel
PRO/10GbE network card is connected to the fast (~1GB/s) PCI-X slot. The system use
asymmetric IO, i.e. all interrupts goes to one CPU.

1 http://www.hp.com/products1/servers/integrity/entry_level/rx2600/index.html

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 5

 2.2 2.2 IA32 Hardware
The IA32 computer in use is an Intel Server Board SE7501WV2 based system. It has two
Intel Xeon CPUs running at 2.8 GHz. The system is equipped with 1GB RAM, 73GB disk
space and an Intel 10Gb network card. This card is the same as used in the IA64
computers. Below is a simple block diagram over the server board.

More information about this system can be found at Intel's homepage 2. A more detailed
block diagram is included in the Technical Product Specification3 document which can be
found in the Technical Information section of the same page.

2 http://www.intel.com/design/servers/SE7501WV2/
3 http://support.intel.com/support/motherboards/server/se7501wv2/tps.htm

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 6

 2.3 2.3 PCI-X
The PCI-X protocol is a high-performance extension to the existing PCI Local Bus. It is a
64bit bus running at up to 133MHz. PCI-X is compatible with the old PCI standard. It is
possible to use PCI-X cards on a PCI bus. The cards will then run at the speed of the bus
(33 or 66MHz). You can also use PCI cards on a PCI-X bus, but this will force the bus to
lower its speed to the speed of the PCI card. If one mixes PCI and PCI-X cards on the
same bus, the bus will operate at the same speed as the slowest card.

A good introduction to PCI-X can be found on this site:
http://h18000.www1.hp.com/products/servers/technology/pci-x-enablement.html

Being 64 bit and with a speed of 133MHz, the PCI-X bus has a bandwidth of 8512Mb/s,
or 1064MB/s.

The PCI-X bus in the IA32 computer used in these tests runs at 100MHz, giving it a
bandwidth of 800MB/s.

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 7

 3 3 Software
This section will give an overview of the software used when performing the tests. I start
with the Operating System, and then try to explain how the benchmark software works.

 3.1 3.1 Operating System
The operating system in use is GNU/Linux4, an open source OS available for a number of
architectures. The IA64 systems run the Red Hat5 2.1 AW (Advanced Workstation) beta
distribution. The deployed Linux kernel is version 2.5.72. During the testing period kernel
version 2.5.70 was also used.

The IA32 system runs the Red Hat 8.0 distribution, and kernel 2.6.0-test2. Kernel versions
2.5.70, 2.5.72 and 2.6.0-test1 were also used. See the section about problems to see why
so many kernels were tried.

 3.2 3.2 Benchmark Software
For doing the benchmarking, CERN's GenSink software was used. This does memory-to-
memory data transfer over TCP/IP. The software is made up of two parts: The generator
and the sink. On the destination (sink) machine, you run the program "sink4". After starting
this, you can start the program "gen4" on the other machine. This will now start sending data
to the sink machine.

While running, GenSink will print the measured throughput to screen at regular intervals. The
printout also contains information on the amount of data transferred, time usage and average
throughput. The output will look something like this:

When starting gen4 and sink4, you have to specify a number of arguments:

#./sink4

Usage: ./sink4 hostname server_port record_length setsockopt

The hostname and server port should be set to the hostname/IP-Address and port of the
sink machine for both "sink4" and "gen4". The other two arguments should also match. That
is, use the same parameters for both "gen4" and "sink4". The record_length argument sets

4 http://www.linux.org
5 http://www.redhat.com

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 8

the number of bytes the program sends to the TCP/IP stack in one go. TCP may have to
split this into smaller packages to transfer over the network. The setsockopt argument is
used to specify the socket send/receive buffer size to be used.

Unless stated otherwise, I use the value 65536 for the record_length argument and 262144
for the setsockopt argument. These numbers was found, by experimenting, to give the best
throughput.

It is possible to start multiple copies of sink4 and gen4 on each machine, thus being able to
run multiple streams of data. To get the total throughput, the results for all the streams have
to be added up. This was at first done by redirecting the output to file and run a shell script
to find the overall throughput. This required that each output file had a large number of
entries to be able to get accurate measurements.

To make it easier to calculate the bandwidth, and speed up the testing, a small program was
written to calculate the throughput without having to go through the output generated by
GenSink. This program uses the values in /proc/net/dev to calculate the throughput. This
way, no special care has to be taken when multiple streams are running. The program that
calculates the throughput has to be run while GenSink is running. You can find the source
code for the program in Appendix A.

As well as measuring the throughput, I have in some tests used "top" to find the CPU usage
while the tests are running.

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 9

 4 4 Test Results
This section contains the results of my tests. The scripts used to switch between different
settings can be found in Appendix B-E. I use the notation A -> B to indicate that system A
sends data to system B. A <-> B means that traffic runs in both directions. (Both systems
send and receive data , i.e. a pair of GenSinks per stream).

The data transfer was done memory-to-memory over TCP/IP. The machines were directly
connected to each other. There were no switches or other network hardware between the
machines.

Some tests were done more than once. I only include one set of results for each test in this
report.

 4.1 4.1 Linux64 to Linux64 Tests
Here are the test results for the Linux64 to Linux64 tests.

 4.1.1 4.1.1 Original results (Linux64 -> Linux64)
This test was done prior to my work here. My hope was to be able to bypass these
numbers, and get closer to the PCI-X limit.

Table 1: Original Results

In later tests, 20 streams were tested as well.

No Tuning
MTU 1 Stream 4 Streams 12 Streams

1500B 127 375 523
9000B 173 364 698

+ Kernel Tuning
MTU 1 Stream 4 Streams 12 Streams

1500B 203 415 497
9000B 329 604 662

+ Driver Tuning
MTU 1 Stream 4 Streams 12 Streams

1500B 275 331 295
9000B 693 685 643
16114B 755 749 698

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 10

 4.1.2 4.1.2 Linux64 -> Linux64
My results for the Linux64 to Linux64 throughput are in some cases lower than the original
results. This can have two reasons: First of all, I use my own program to calculate the
throughput. This should be more accurate than having to add up a lot of numbers produced
by GenSink. Secondly, the GenSink program was changed to print the measured bandwidth
more often, so this could cause some speed loss, since the program has to do more work. I
reach a maximum throughput of 744MB/s. This is about 70% of the theoretical PCI-X limit.
The following table shows my full results.

No Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 170 388 460 398
9000B 182 355 632 694

+ Kernel Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 325 497 470 440
9000B 352 585 672 668

+ Driver Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 366 429 408 421
9000B 686 684 666 658
16114B 744 742 733 717

Table 2: Linux64 -> Linux64 results

We see that for the standard settings and the kernel tuning settings, adding more streams will
give higher throughput, up to a certain limit. With an MTU of 1500 bytes, the throughput
drops after 12 streams, while with a 9000 bytes MTU the throughput is unchanged or even
better with 20 streams. When all tuning parameters are on, only an MTU of 1500 bytes
gives higher throughput when adding more streams. 9000 and 16114 bytes MTUs are best
with only one stream. The charts below illustrate this.

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 11

Illustration 1: IA64 -> IA64, Full tuning

1 Stream
12 Streams

0

100

200

300

400

500

600

700

800

1500B
9000B

Full Tuning

1500B

9000B

16114B

Streams
T

hr
ou

gh
pu

t

MTU

Only the charts for No Tuning and Full Tuning are shown. The chart for kernel tuning will be
similar to the No Tuning chart, but with different values, of course. As you can see, the
throughput with full tuning and an MTU of 1500B goes down with 12 streams, and then up
again with 20. This is a bit strange. Maybe something was affecting the system when the 12
stream test was run.

When more streams are added, the CPU will have to do more work managing the streams,
thus having less computing power left to handle the network traffic. When enough streams
are added, the overhead of managing the streams will be so high that the data rate will drop
because the CPU can not keep up.

Illustration 1: IA64->IA64, No tuning

1 Stream
12 Streams

0

100
150
200
250
300
350
400
450
500
550
600
650
700

1500B

9000B

No Tuning

1500B

9000B

Streams

T
hr

ou
gh

pu
t

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 12

 4.1.3 4.1.3 Linux64 <-> Linux64
This test ran traffic in both directions. This should give a bit better throughput than running
only in one direction. When data is received, an interrupt is sent to one of the CPUs. The
other CPU is still free to send data. Note that the number of streams listed in the table is the
number of streams in each direction. So, 12 streams means that a total of 24 streams are
running (12 in each direction). Before doing this test, I did some experimenting with the
GenSink arguments. It looked like setting the record length to 262144 would give better
results in some cases. I therefore use that value here. The full results of this test are given in
the table below.

No Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 199 408 491 493
9000B 298 467 540 557

+ Kernel Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 368 563 512 486
9000B 460 544 745 761

+ Driver Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 457 594 535 516
9000B 699 739 719 712
16114B 774 770 751 745

Table 3: Linux64 <-> Linux64 results

The highest value I get here is 774 MB/s, which is bout 73% of the PCI-X limit.

Looking at this chart, we see that with no
tuning, the throughput increases when
adding more streams for both MTU
values. There is not a big improvement
going from 12 to 20 streams. Adding even
more streams would most likely make the
throughput drop again.

Illustration 1: IA64 <-> IA64, No tuning

1 Stream

12 Streams
20 Streams

0

50

100

150

200

250

300

350

400

450

500

550

600

1500B

9000B

No Tuning

1500B

9000B

Streams

T
hr

ou
gh

pu
t

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 13

Turning on kernel tuning, the curve for an MTU
of 9000B is quite similar to the one given for no
tuning. However, the one for a 1500B MTU is
quite different. We see here that the throughput
clearly drops after 4 streams, while without any
tuning it kept improving when adding more
streams. The maximum throughput is still higher
when the tuning is applied though.

With all tuning parameters applied, the
throughput drops after 4 streams. The
exception is for an MTU of 16114B where
the best throughput is measured when there
is only one stream in each direction.

Illustration 0: IA64 <-> IA64, Kernel tuning

1 Stream

12 Streams

0
50

100

150
200
250
300
350

400
450
500
550
600

650
700

750
800

1500B

9000B

Kernel Tuning

1500B

9000B

Streams

T
hr

ou
gh

pu
t

MTU

Illustration 0: IA64 <-> IA64, Full tuning

1 Stream

12 Streams

0

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

1500B

9000B
16114B

Full Tuning

1500B

9000B
16114B

Streams

Th
ro

ug
hp

ut

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 14

 4.2 4.2 Linux64 <-> Linux32 Tests
After completing a number of Linux64 to Linux64 tests, I started looking at Linux64 to
Linux32. I wanted to know if the Linux32 system can give the same data rate as the Linux64
system.

 4.2.1 4.2.1 Linux32 -> Linux64
In this test, data was transferred from the Linux32 system to the Linux64 system. I
experienced several problems with the Linux32 system when sending data. I tried a lot of
different kernels, and also tried experimenting with the parameters given to GenSink without
luck. For some reason the data transfer would just stop completely from time to time.
Sometimes it just paused a long time, while other times it actually stops. The reason for it
stopping, seems to be that the Linux network component dies. Since the network stack was
so unreliable, getting proper measurements was very hard. Close to the end of my work
here, I found that the Linux32 system worked fine when it was running in single user mode. I
was therefore able to complete an Linux32 to Linux64 test. The results are given below.
(Linux32 in single user mode)

No Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 110 157 176 172
9000B 131 178 233 262

+ Kernel Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 152 211 204 198
9000B 201 236 262 261

+ Driver Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 160 184 182 181
9000B 223 244 252 252
16114B 236 283 278 277

Table 4: Linux32 -> Linux64 results

The charts below show how the throughput changes as the number of streams and MTU is
changed.

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 15

Illustration 1: IA32 -> IA64, Full tuning

1 Stream
12 Streams

0
25
50
75

100
125
150
175
200
225
250
275

300

1500B
9000B

Full tuning

1500B

9000B

16114B

Streams
T

h
ro

u
g

h
p

u
t

MTU

As seen, the curves for full tuning are much flatter than for no tuning. This means that adding
more streams has less effect with all tuning parameters applied. But, the maximum
throughput is higher when tuning is applied. The curves for kernel tuning would be
somewhere in between the curves shown here.

 4.2.2 4.2.2 Linux64 -> Linux32
When the Linux32 system were used as sink (receiving data), the network stack was much
more reliable. Once in a while the transfer would stop completely, but most of the time it
worked. The results given here should be quite accurate. There was no need to run the
Linux32 system in single user mode for this test.

No Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 133 298 313 312
9000B 166 384 416 415

+ Kernel Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 153 295 297 296
9000B 254 407 415 413

+ Driver Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 242 242 248 249
9000B 409 418 416 412
16114B 435 438 444 444

Table 5: Linux64 -> Linux32 results

As seen, transferring from Linux64 to Linux32 gives much higher throughput than the other

Illustration 1: IA32 -> IA64, No tuning

1 Stream
12 Streams

0

25

50

75

100

125

150

175

200

225

250

275

1500B

9000B

No Tuning

1500B
9000B

Streams

T
hr

ou
gh

pu
t

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 16

way around.

The charts for kernel tuning and no tuning are almost identical. For that reason, only Kernel
tuning is included here. The chart for kernel tuning is slightly flatter than the one for no tuning.
Looking at the charts for full tuning, you can see that the curves are nearly completely flat.
This means that the throughput is almost constant.

Illustration 1: IA64 -> IA32, Full tuning

1 Stream
12 Streams

0

50

100

150

200

250

300

350

400

450

1500B
9000B

16114B

Full Tuning

1500B

9000B

16114B

Streams
T

hr
ou

gh
pu

t
MTU

Illustration 1IA64 -> IA32, Kernel tuning

1 Stream
12 Streams

0

50

100

150

200

250

300

350

400

450

1500B

9000B

Kernel Tuning

1500B

9000B

Streams

Th
ro

ug
hp

ut

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 17

Illustration 1: IA32<->IA64, Full tuning

1 Stream

20 Streams

0

50

100

150

200

250

300

350

400

450

1500B

16114B

Full tuning

1500B

9000B

16114B

Streams

T
hr

ou
gh

pu
t

MTU

 4.2.3 4.2.3 Linux32 <-> Linux64
This test ran traffic in both directions. As with the Linux64 <-> Linux64 test, the number of
streams given in the table is the number of streams in each direction. Since sending from
Linux32 did not work unless the Linux32 system was in single user mode, this was the mode
deployed while performing this test.

No Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 168 224 220 218
9000B 214 290 346 378

+ Kernel Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 192 273 245 245
9000B 262 314 353 323

+ Driver Tuning
MTU 1 Stream 4 Streams 12 Streams 20 Streams

1500B 179 205 203 203
9000B 343 363 375 373
16114B 408 415 378 377

Table 6: Linux32 <-> Linux64 results

As you can see, the results here are higher than Linux32 to Linux64, but the maximum
throughput is somewhat lower than what I got for Linux64 to Linux32. This was a bit
disappointing. I was expecting to get higher results when I ran data in both directions, like I
did with the Linux64 <-> Linux64 measurements. The reason that it is actually lower, is
probably that the Linux32 system was working so hard when sending in one direction that
the overhead in adding more streams made it slow down. When running in both directions,
twice as many streams are running.

Illustration 1: IA32<->IA64, Kernel tuning

1 Stream
12 Streams

0

50

100

150

200

250

300

350

400

1500B

9000B

Kernel tuning

1500B

9000B

Streams

T
h

ro
u

g
h

p
u

t

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 18

These charts show the throughput with kernel tuning and full tuning. When all tuning
parameters are turned on, the throughput is almost constant when adding more streams.
With only kernel tuning, we have a clear peak at 4 streams for the 1500B MTU and 12

streams for the 9000B MTU.

With the standard settings, we see that
with a 1500B MTU, the throughput
increases up to 4 streams, and then
start to drop. The system is almost
capable of keeping up with the added
streams, so the drop in throughput is
low. Changing the MTU to 9000B, the
throughput keep on increasing even
when running 20 streams.

Illustration 0: IA32<->IA64, No tuning

1 Stream
12 Streams

0

50

100

150

200

250

300

350

400

1500B

9000B

No tuning

1500B

9000B

Streams

T
hr

ou
gh

pu
t

MTU

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 19

 5 5 Problems
Here, I try to describe the problems encountered while performing these tests.

 5.1 5.1 Linux64 Problems
There were not many problems with the Linux64 systems. Most of the time they worked as
expected. At one point, the reported bandwidth was very high. I got values of up to
950MB/s. It looks like this was caused by a bug in the Linux kernel. After a kernel upgrade,
the results were back to normal. The bug appeared when trying to set the record length
argument for GenSink to 262144. It looked as though that value would give higher
throughput, but this may have been due to the kernel bug.

 5.2 5.2 Linux32 Problems
I experienced several problems with the Linux32 system. In this section I try to give an
overview of these problems, as well as the steps taken to try to remove them.

1. Low throughput

The first tests done with the Linux32 system gave surprisingly poor results. The maximum
bandwidth measured was 256MB/s. After a while the reason was found to be a RAID
card connected to the PCI-X bus. This card did not operate at full speed, thus forcing
every other PCI-X card to go into low-speed mode. Removing the RAID card solved
this problem.

2. Unreliable network stack

After the removal of the RAID card, a new problem was discovered. The network stack
was very unreliable, especially when sending data from the Linux32 system to the
Linux64 system. From time to time the network stack would just stop functioning,
making it impossible to get proper benchmarks. The solution to this problem has not yet
been found. I have tried several versions of the Linux kernel, from version 2.5.70 to
2.6.0-test2. This did not help .

After further investigations I discovered that running the Linux32 system in single user
mode makes it more reliable. This could mean that some tasks are interfering with the
network driver for the 10Gb card. I was not able to locate the exact reason for the
problem. In this mode, it was possible to complete a set of tests without any problems.

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 20

 6 6 Conclusion
After performing these tests, I can say that performance is quite good, but not as good as
we had hoped. The goal of 80% of PCI-X speed was not reached. My Linux64 to Linux64
tests maxed out at 744MB/s (70%) for traffic in one direction and 774 (73%) for bi-
directional traffic. These are nevertheless very respectable numbers.

When a Linux32 system was used, the results were much lower. The maximum throughput
was 444 MB/s when transferring from Linux64 to Linux32. When changing directions, the
maximum throughput was only 283MB/s. The PCI-X bus in the 32-bit computer was only
running at 100MHz, but this should still give a bandwidth of 800MB/s. I only got about 56%
of this, so I do not expect the PCI-X bus to be the limiting factor.

The Linux32 system had some trouble sending data. I was not able to find the exact cause
of this, but running the computer in single user mode worked, so there has to be something
running that interferes with the network component for some reason. In any case the
Linux32 system was not able to perform as well as the Linux64 systems.

The CERN openlab team will try to investigate the Linux32 problem further. These
investigations might also help discover what is needed to get the performance of the Linux32
system closer to the Linux64 performance

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 21

Appendix A - Benchmark program.
This is the code for the program used to calculate the average throughput.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <time.h>

#include <unistd.h>

#include <sys/time.h>

#define DEF_RUNTIME 60

#define INTERFACE "eth2"

struct timeval getBytes(unsigned long *recv, unsigned long *trans) {

 FILE *f;

 char interface[100];

 char *bytePtr;

 struct timeval tv;

 int i;

 char c;

 /* open file */

 gettimeofday(&tv, 0); /* get the current time */

 if(!(f = fopen("/proc/net/dev", "r"))) {

 printf("An error occured while reading data...\n");

 exit(EXIT_FAILURE);

 }

 /* skip header */

 for(i=0; i<2; i++) {

 do {

 c = fgetc(f);

 }

 while(c != '\n');

 }

 /* find the correct interface */

 do {

 fscanf(f, "%s", interface);

 if(strstr(interface, INTERFACE)) {

 /* get the number of transmitted bytes */

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 22

 fscanf(f, "%*s %*s %*s %*s %*s %*s %*s %ld", trans);

 bytePtr = strstr(interface, ":")+1;

 sscanf(bytePtr, "%ld", recv);

 fclose(f);

 return tv;

 }

 }

 while(!strstr(interface, INTERFACE) && fgetc(f) != EOF);

 /* If we get here, something went wrong */

 fclose(f);

 printf("Could not find the interface %s.\n", INTERFACE);

 exit(EXIT_FAILURE);

}

int main(int argc, char **argv) {

 unsigned long recv_1, recv_2, trans_1, trans_2; /* number of bytes
received/transmitted */

 double av_recv, av_trans, av_total;

 double time_1, time_2;

 struct timeval t1, t2;

 int runtime;

 /* find the desired run time. Use default if not provided */

 if(argc == 2)runtime = atoi(argv[1]);

 else runtime = DEF_RUNTIME;

 /* get the numbers */

 t1 = getBytes(&recv_1, &trans_1);

 sleep(runtime);

 t2 = getBytes(&recv_2, &trans_2);

 time_1 = t1.tv_sec + t1.tv_usec*0.000001;

 time_2 = t2.tv_sec + t2.tv_usec*0.000001;

 av_recv = (recv_2-recv_1) / (time_2-time_1);

 av_trans = (trans_2-trans_1) / (time_2-time_1);

 av_total = av_recv + av_trans;

 printf("Bytes received : %ld B\n", (recv_2-recv_1));

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 23

 printf("Bytes transmitted: %ld B\n", (trans_2-trans_1));

 printf("Elapsed time : %.2lf s\n", (time_2-time_1));

 printf("Average Bandwidth:\n");

 printf("\tReceive : %.2lf KB/s\n", av_recv/1000);

 printf("\tTransmit: %.2lf KB/s\n", av_trans/1000);

 printf("\tTotal : %.2lf KB/s\n", av_total/1000);

 return EXIT_SUCCESS;

}

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 24

Appendix B - Normal Settings (set_normal)
This is the script used to turn off all tunings (kernel + driver).

#! /bin/tcsh

sysctl -w net.ipv4.tcp_rmem="4096 87380 174760"

sysctl -w net.ipv4.tcp_wmem="4096 16384 131072"

sysctl -w net.ipv4.tcp_mem="97280 97792 98304"

sysctl -w net.core.netdev_max_backlog=300

sysctl -w net.core.rmem_default=65535

sysctl -w net.core.wmem_default=65535

sysctl -w net.core.rmem_max=65535

sysctl -w net.core.wmem_max=65535

sysctl -w net.core.optmem_max=20480

sysctl -w net.ipv4.tcp_sack=1

sysctl -w net.ipv4.tcp_timestamps=1

sysctl -w net.ipv4.tcp_tw_recycle=0

sysctl -w net.ipv4.tcp_tw_reuse=0

ifconfig eth2 down;rmmod ixgb

modprobe ixgb

ifup /etc/sysconfig/network-scripts/ifcfg-eth2 boot

ifconfig eth2 up

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 25

Appendix C - Kernel Tuning (set_ktuned)
This is the script used to turn on the kernel tuning. Note that if you want to go from full
tuning to only kernel tuning, you have to apply the set_normal script first, and then add the
kernel tuning.

#! /bin/tcsh

sysctl -w net.ipv4.tcp_sack=0

sysctl -w net.ipv4.tcp_timestamps=0

sysctl -w net.core.rmem_default=524287

sysctl -w net.core.wmem_default=524287

sysctl -w net.core.rmem_max=524287

sysctl -w net.core.wmem_max=524287

sysctl -w net.core.optmem_max=524287

sysctl -w net.core.netdev_max_backlog=300000

sysctl -w net.ipv4.tcp_rmem="10000000 10000000 10000000"

sysctl -w net.ipv4.tcp_wmem="10000000 10000000 10000000"

sysctl -w net.ipv4.tcp_mem="10000000 10000000 10000000"

sysctl -w net.ipv4.tcp_tw_recycle=1

sysctl -w net.ipv4.tcp_tw_reuse=1

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 26

Appendix D - Full tuning (set_improved)
This script will turn on all tunings. Both kernel and driver. It also sets the MTU to 16114B
which is the highest value supported by the network.

#! /bin/tcsh

sysctl -w net.ipv4.tcp_sack=0

sysctl -w net.ipv4.tcp_timestamps=0

sysctl -w net.core.rmem_default=524287

sysctl -w net.core.wmem_default=524287

sysctl -w net.core.rmem_max=524287

sysctl -w net.core.wmem_max=524287

sysctl -w net.core.optmem_max=524287

sysctl -w net.core.netdev_max_backlog=300000

sysctl -w net.ipv4.tcp_rmem="10000000 10000000 10000000"

sysctl -w net.ipv4.tcp_wmem="10000000 10000000 10000000"

sysctl -w net.ipv4.tcp_mem="10000000 10000000 10000000"

sysctl -w net.ipv4.tcp_tw_recycle=1

sysctl -w net.ipv4.tcp_tw_reuse=1

ifconfig eth2 down;rmmod ixgb

modprobe ixgb RxIntDelay=0 RxDescriptors=2048 TxDescriptors=2048 XsumRX=1
XsumTX=1

ifup /etc/sysconfig/network-scripts/ifcfg-eth2 boot

ifconfig eth2 mtu 16114;ifconfig eth2 up

Openlab Student Programme Opencluster 10GbE Back-To-Back

Openlab-2003 Glenn Hisdal 27

Appendix E - Full tuning, Linux32
The Linux32 system uses different values for the tuning. I show the script used to turn on all
tunings. The kernel tuning is the first part of this script.

#! /bin/tcsh

sysctl -w net.ipv4.tcp_sack=0

sysctl -w net.ipv4.tcp_timestamps=0

sysctl -w net.core.rmem_default=524287

sysctl -w net.core.wmem_default=524287

sysctl -w net.core.rmem_max=524287

sysctl -w net.core.wmem_max=524287

sysctl -w net.core.optmem_max=81920

sysctl -w net.core.netdev_max_backlog=30000

sysctl -w net.ipv4.tcp_rmem="409600 873800 1747600"

sysctl -w net.ipv4.tcp_wmem="409600 163840 1310720"

sysctl -w net.ipv4.tcp_mem="972800 977920 983040"

sysctl -w net.ipv4.tcp_tw_recycle=1

sysctl -w net.ipv4.tcp_tw_reuse=1

ifconfig eth2 down;rmmod ixgb

modprobe ixgb RxIntDelay=0 RxDescriptors=2048 TxDescriptors=2048 XsumRX=1
XsumTX=1

ifup /etc/sysconfig/network-scripts/ifcfg-eth2 boot

ifconfig eth2 mtu 16114;ifconfig eth2 up

