.“'-
CERN £ %

openlab for DataGrid applications

Developing Solutions for the Data-Intensive Science of the Large Hadron Collider

10Gb Ethernet Back-To-Back tests

Glenn Hisdal

June - August 2003

Openlab Student Programme Opencluster 10GbE Back- To-Back

Table of Contents

1 INTRODUGCTION.....c.citiireeeererrereescreeresesee e ssesssese e sesesssessesessssssssessassssessssssssesessesssssessesesassessssnssnes 3
2 HARDW ARE ... s e Sab bbbt bbb 4
21 TABA HARDWAREootiiiiiiiii bbb bbb 4
22 TAS2 HARDWARE ..ottt stsss e s s s e s es s s nessnemnenes 5
23 PCLX ettt e a s 6
3 SOFTWARE ...t 7
31 OPERATING SY STEM.......iuiiiiriteieteisieies e seesese ettt nenseen 7
32 BENCHMARK SOFTWARE ..ottt sesereesesesssess s ssssesesesessasesesssmsessssssesesnenns 7
4 TEST RESULTS....o ettt sees e 9
41 LINUXBA TO LINUXBA TESTS.....cccoiiiirieieieerereeseeeesesessse s sessss st sessnssnssnis

4.1.1 Original results (Linux64 -> Linux64)
41.2 LINUX64 -> LINUXBA........ccoveereereeceeremeeens
4.1.3 LINUX64 <-> LINUX64
42 LINUXB4 <> LINUXB2 TESTS.......covurerisiisesssnsssssssssssesessssssssssssssssssssssssssssessssssssssssssssssssssssessess
421 LINUX32 > LINUX64
422 LINUX64 -> LINUX32
423 LINUX3B2 <=3 LINUXBA ...ttt s s sssassssnsnsnsees

5 PROBLEMS ...ttt bbbt bbb 19

51 LINUX 64 PROBLEMS
52 LINUX 32 PROBLEMS

6 CONCLUSION ..ottt sesss st sss sttt s ssssssssssssssnans

APPENDIX A - BENCHMA RK PROGRAM ..ot s sissssssssssssssssssssssssssss s 21
APPENDIX B - NORMAL SETTINGS (SET_NORMALY)coriuiiemreeneererremeesseseesssssessssssessessssssessesseens 2423
APPENDIX C - KERNEL TUNING (SET_KTUNED)ccvtriireieieieieiereenssssssessessssssssssese e sssssessssessens 2524
APPENDIX D - FULL TUNING (SET_IMPROVED)cccvtririnirieisieessissseisssssssissse e ssssssssssssens 2625
APPENDIX E - FULL TUNING, LINUXSB2.......cooerriremriereens creeressesesssssssmssssssesens sesessessssssssssesessssssseses ses 2726

Openlab-2003 Glenn Hisdal 2

Openlab Student Programme Opencluster 10GbE Back- To-Back

41 Introduction

This document describes the 10Gb Ethernet back-to-back test done as pat of the
Openclugter project summer 2003. This document starts by describing the hardware and
software systems used in the test, and then continues with the results from the various tests.
Thelast section identifies some of the issues that appeared while these tests were done.

The god of this project was to measure the throughput of a 10Gb Ethernet connection
between two |A64 computers and between an 1A32 computer and an |A64 computer, al
of which were running Linux. In this document | refer to the systems as “Linux32” and
“Linux64” respectively. | wanted to get as close to the limit of the PCI-X system as
possible. The bandwidth of the PCI-X busis about 1GB/s. The hope wasto get to at least
80% of this speed for the Linux64 to Linux64 transfer, which was the practica limit
according to system specidids. | dso wanted to see if a Linux32 system is capable of
getting the same speed asthe Linux64 sysems.

Openlab-2003 Glenn Hisddl 3

Openlab Student Programme Opencluster 10GbE Back- To-Back

22 Hardware
The hardware used in these test were two |A64 computers and one |A32 computer.

21 2.1 |1A64 Hardware

ThelA64 computers used are HP RX 2600 servers. The specification for these systems can
be found at HP's web paget. The systems in use here are each configured with two Intel
[tanium2 CPUs running a 1.5GHz, 4GB of RAM and 73GB had disks. An Intel
PRO/10GDbE network card is connected to the fast (~1GB/s) PCI-X dot. The system use
asymmetric 10, i.e. dl interrupts goes to one CPU.

Cell 0

Core |/O
LA, IDE, USE, Audia

Core /O
LAM, SCEI

PCI-X 133 (512MB/s

I/O adapters

PCIX 132 (ST2MB/)

hp zx1
1/0 adapters

! http://www.hp.com/productsl/servers/integrity/entry_level/rx2600/index.html

Openlab-2003 Glenn Hisdal 4

Openlab Student Programme Opencluster 10GbE Back- To-Back

22- 2.2 |IA32 Hardware

ThelA32 computer in useisan Intel Server Board SE7501WV 2 based system. It has two
Inted Xeon CPUs running at 2.8 GHz. The system is equipped with 1GB RAM, 73GB disk
space and an Intel 10Gb network card. This card is the same as used in the 1A64
computers. Below isasmple block diagram over the server board.

Intel Server Board SE7501WV2 Block Diagram

Addr. Bus - 2% OO Hz

Data Bus — 4 x LOO™WIHz
2 % LOOWHZ - L&TH/ s
2 % LOOMHZ - L&THs I I I

S -

- —

PCL-X L00MHz

More information about this syssem can be found at Intel's homepage? A more detailed
block diagram is included in the Technica Product Specificatior? document which can be
found in the Technica Information section of the same page.

? http://www.intel .com/desi gn/servers/ SE7501WV 2/
% http://support.intel.com/support/motherboards/server/se7501wv2/tps.htm

Openlab-2003 Glenn Hisddl 5

Openlab Student Programme Opencluster 10GbE Back- To-Back

23-2.3 PCI-X

The PCI-X protocal is a high-performance extension to the existing PCI Local Bus. It isa
64bit bus running a up to 133MHz. PCI-X is compatible with the old PCI standard. It is
possible to use PCI-X cards on a PCl bus. The cards will then run &t the speed of the bus
(33 or 66MHz). You can aso use PCI cards on a PCI-X bus, but thiswill force the busto
lower its speed to the speed of the PCI card. If one mixes PCl and PCI-X cards on the
same bus, the bus will operate at the same speed as the dowest card.

A good introduction to PCI-X can be found on this ste:
http://h18000.www1.hp.com/products/servers/technol ogy/pci- x- enablement.html

Being 64 hit and with a speed of 133MHz, the PCI-X bus has a bandwidth of 85612Mb/s,
or 1064MB/s.

The PCI-X bus in the IA32 computer used in these tests runs a 100MHz, giving it a
bandwidth of 800MB/s.

Openlab-2003 Glenn Hisdal 6

Openlab Student Programme Opencluster 10GbE Back- To-Back

3-3 Software

This section will give an overview of the software used when performing the tests. | start
with the Operating System, and then try to explain how the benchmark software works.

31 3.1 Operating System

The operating system in use is GNU/Linux“, an open source OS available for a number of

architectures. The 1A64 systems run the Red Hat® 2.1 AW (Advanced Workstation) beta
digtribution. The deployed Linux kernel is verson 2.5.72. During the testing period kernd

version 2.5.70 was a so used.

The 1A32 system runs the Red Hat 8.0 digtribution, and kerndl 2.6.0-test2. Kerndl versions
2.5.70, 2.5.72 and 2.6.0-test1 were aso used. See the section about problemsto see why
S0 many kernels were tried.

32 3.2 Benchmark Software

For doing the benchmarking, CERN's GenSink software was used. This does memory-to-
memory data transfer over TCP/IP. The software is made up of two parts: The generator
and the sink. On the destination (Snk) machine, you run the program "snk4". After darting
this, you can start the program "gend" on the other machine. This will now gtart sending data
to the Snk machine.

While running, GenSink will print the measured throughput to screen at regular intervas. The
printout aso contains information on the amount of data transferred, time usage and average
throughput. The output will look something like this

F 1360 19 o1 WEMIAS 0.3 DG b7
When garting g sink4, you have to pecify a number of arguments

#./sink4

Usage: ./sink4 hostnane server_port record_|l ength setsockopt

The hostname and server port should be set to the hosthame/IP- Address and port of the
snk machine for both "snk4" and "gend". The other two arguments should aso match. That
is use the same parameters for both "gend” and "sink4". The record length argument sets

* http://www.linux.org
® http://www.redhat.com

Openlab-2003 Glenn Hisdd 7

Openlab Student Programme Opencluster 10GbE Back- To-Back

the number of bytes the program sends to the TCP/IP stack in one go. TCP may have to
split this into smaller packages to transfer over the network. The setsockopt argumert is
used to specify the socket send/receive buffer size to be used.

Unless stated otherwise, | use the value 65536 for the record_|ength argument and 262144
for the setsockopt argument. These numbers was found, by experimenting, to give the best
throughpu.

It is possble to start multiple copies of snk4 and gend on each machine, thus being able to
run multiple streams of data. To get the total throughput, the results for dl the streams have
to be added up. This was at first done by redirecting the output to file and run ashell script
to find the overdl throughput. This required that each output file had a large number of
entriesto be able to get accurate measurements.

To makeit easer to calculate the bandwidth, and speed up the testing, a smal program was
written to caculate the throughput without having to go through the output generated by
GenSink. This program uses the vaues in /proc/net/dev to caculate the throughput. This
way, no specid care has to be taken when multiple streams are running. The program that
caculaes the throughput has to be run while GenSink is running. You can find the source
code for the program in Appendix A.

As well as measuring the throughput, | have in some tests used "top” to find the CPU usage
while the tests are running.

Openlab-2003 Glenn Hisddl 8

Openlab Student Programme Opencluster 10GbE Back- To-Back

44 Test Results

This section contains the results of my tests. The scripts used to switch between different
settings can be found in Appendix B-E. | use the notation A -> B to indicate that system A
sends data to system B. A <-> B means that traffic runs in both directions. (Both systems
send and recelve data, i.e. apar of GenSinks per stream).

The data transfer was done memory-to-memory over TCP/IP. The machines were directly
connected to each other. There were no switches or other network hardware between the
machines.

Some tests were done more than once. | only include one set of results for each test in this
report.

41-4.1 Linux64 toLinux64 Tests
Here are the test results for the Linux64 to Linux64 tests.

411 4.1.1 Original results (Linux64 -> Linux64)

This test was done prior to my work here. My hope was to be able to bypass these
numbers, and get closer to the PCI-X limit.

No Tuning

MTU 1 Stream 4 Streams 12 Streams
1500B 127 375 523
9000B 173 364 698
+ Kernel Tuning

MTU 1 Stream 4 Streams 12 Streams
1500B 203 415 497
9000B 329 604 662
+ Driver Tuning

MTU 1 Stream 4 Streams 12 Streams
1500B 275 331 295
9000B 693 685 643
16114B 755 749 698

Tablel: Original Results

In later tests, 20 streams were tested as well.

Openlab-2003

Glenn Hidd

Openlab Student Programme Opencluster 10GbE Back- To-Back

412 4.1.2 Linux64 -> Linux64

My results for the Linux64 to Linux64 throughput are in some cases lower than the origina
results. This can have two reasons. First of dl, | use my own program to cdculate the
throughput. This should be more accurate than having to add up alot of numbers produced
by GerSink. Secondly, the GenSink program was changed to print the measured bandwidth
more often, o this could cause some speed |oss, since the program has to do more work. |
reach a maximum throughput of 744MBJ/s. This is about 70% of the theoretica PCI- X limit.
Thefollowing table shows my full results.

No Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 170 388 460 398
9000B 182 355 632 694
+ Kernel Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 325 497 470 440
9000B 352 585 672 668
+ Driver Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 366 429 408 421
9000B 686 684 666 658
16114B 744 742 733 717

Table2: Linux64 ->Linux64 results

We see that for the standard settings and the kernd tuning settings, adding more streams will
give higher throughput, up to a certain limit. With an MTU of 1500 bytes, the throughput
drops after 12 streams, while with a 9000 bytes MTU the throughput is unchanged or even
better with 20 streams. When dl tuning parameters are on, only an MTU of 1500 bytes
gives higher throughput when adding more strears. 9000 and 16114 bytes MTUs are best
with only one stream. The chartsbeow illudtrate this.

Openlab-2003 Glenn Hisddl 10

Openlab Student Programme Opencluster 10GbE Back- To-Back

No Tuning Full Tuning

800

700 _-H-_____
[15008 [o D 15008
[90008 St [l 50008

161148

[o2]
o
o\

\

;

w
o
o
5"

Throughput
i \A\\ A
!

=N
s 8
*,
*,

b

N

12 Streams ==L £00R

12 Streams — —ea

Streams Streams

Only the chartsfor No Tuning and Full Tuning are shown. The chart for kernd tuning will be
dmilar to the No Tuning chart, but with different vaues, of caurse. As you can see, the
throughput with full tuning and an MTU of 1500B goes down with 12 streams, and then up
again with 20. Thisis a bit srange. Maybe something was affecting the system when the 12
Stream test was run.

When more streams are added, the CPU will have to do more work managing the streams,
thus having less computing power Ieft to handle the network traffic. When enough streams
are added, the overhead of managing the streams will be so high that the data rate will drop
because the CPU can not keep up.

Openlab-2003 Glenn Hisdal 11

Openlab Student Programme Opencluster 10GbE Back- To-Back

413-4.1.3 Linux64 <-> Linux64

This test ran traffic in both directions. This should give a bit better throughput than running
only in one direction. When data is received, an interrupt is sent to one of the CPUs. The
other CPU is Hill free to send data. Note that the number of streamslisted in the tableisthe
number of streams in each direction. So, 12 streams means that a total of 24 streams are
running (12 in each direction). Before doing this tegt, | did some experimenting with the
GenSink arguments. It looked like setting the record length to 262144 would give better
results in some cases. | therefore use that vaue here. The full results of thistest are givenin
the table below.

No Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 199 408 491 493
9000B 298 467 540 557
+ Kernel Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 368 563 512 486
9000B 460 544 745 761
+ Driver Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 457 594 535 516
9000B 699 739 719 712
16114B 774 770 751 745

Table3: Linux64 <-> Linux64 results
The highest vdue | get hereis 774 MB/s, which is bout 73% of the PCI- X limit.

No Tuning Looking a this chart, we see that with no
tuning, the throughput increases when
600 adding more dreams for both MTU
vaues. There is not a big improvement
going from 12 to 20 streams. Adding even
more streams would mogt likely make the
throughput drop again.

Throughput

-
12 Streams

20 Streams =2 MTU
Streams

Openlab-2003 Glenn Hisdal 12

Openlab Student Programme Opencluster 10GbE Back- To-Back

Kernel Tuning
Turning on kernd tuning, the curve for an MTU
of 9000B is quite Similar to the one given for no
tuning. However, the one for a 1500B MTU is
15008 quite different. We see here that the throughput
8 90008 clearly drops after 4 dreams, while without any
tuning it kept improving when adding more
greams. The maximum throughput is il higher
when the tuning is applied though.

Throughput

12 Streams

Streams

Full Tuning
With dl tuning parameters gpplied, the

throughput drops after 4 streams. The
750 e exception isfor an MTU of 16114B where
pso——— I ——— the best throughput is measured when there
e e————— = is only one stream in each direction.

550~ gy, TN [ooooB
—_ e
500 g 1" e, 161148

Throughput
S

- 61148
1 Streal

12 Streams 15008

Streams

Openlab-2003 Glenn Hisdd 13

Openlab Student Programme Opencluster 10GbE Back- To-Back

42-4.2 Linux64 <->Linux32 Tests

After completing a number of Linux64 to Linux64 tests, | started looking at Linux64 to
Linux32. | wanted to know if the Linux32 system can give the same data rate as the Linux64
system.

421 42.1 Linux32 -> Linux64

In this tedt, data was transferred from the Linux32 system to the Linux64 system. |
experienced severad problems with the Linux32 system when sending data. | tried alot of
different kernds, and aso tried experimenting with the parameters given to GenSink without
luck. For some reason the data transfer would just stop completely from time to time.
Sometimes it just paused a long time, while other times it actudly stops. The reason for it
stopping, seems to be that the Linux network component dies. Since the network stack was
so unreliable, getting proper measurements was very hard. Close to the end of my work
here, | found that the Linux32 system worked fine when it was running in Sngle user mode. |
was therefore able to complete an Linux32 to Linux64 test. The results are given below.
(Linux32 in Sngle user mode)

No Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 110 157 176 172
9000B 131 178 233 262
+ Kernel Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 152 211 204 198
9000B 201 236 262 261
+ Driver Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 160 184 182 181
9000B 223 244 252 252
16114B 236 283 278 277

Table4: Linux32 ->Linux64 results

The charts below show how the throughput changes as the number of streams and MTU is
changed.

Openlab-2003 Glenn Hisdd 14

Openlab Student Programme

Opencluster

10GbE Back-To-Back

No Tuning

.
1 Stream =il
12 Streams’ —==a

Streams

O 15008
[l 90008

MTU

Full tuning

12 Streams oo

Streams

[0 15008
[l 90008
[161148

As seen, the curves for full tuning are much flatter than for no tuning. This means thet adding
more sreams has less effect with dl tuning parameters applied. But, the maximum
throughput is higher when tuning is applied. The curves for kernd tuning would be
somewhere in between the curves shown here.

422-4.2.2

Linux64 > Linux32

When the Linux32 system were used as Sink (receiving data), the network stack wasmuch
more reliable. Once in a while the transfer would stop completely, but most of the time it
worked. The results given here should be quite accurate. There was no need to run the
Linux32 system in Single user mode for this test.

No Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 133 298 313 312
9000B 166 384 416 415
+ Kernel Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 153 295 297 296
9000B 254 407 415 413
+ Driver Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 242 242 248 249
9000B 409 418 416 412
16114B 435 438 444 444

Table5: Linux64 ->Linux32 results
As seen, trandferring from Linux64 to Linux32 gives much higher throughput than the other

Openlab-2003

Glenn Hidd

15

Openlab Student Programme Opencluster 10GbE Back- To-Back

way around.

Kernel Tuning Full Tuning

A ————
400——1
s
[15008 350—""" Dl 15008
[90008 300,,_##‘""——_————— [20008

R e 161148

Throughput

1 Stream

12 Streams

Streams

Streams

The charts for kernd tuning and no tuning are amogt identica. For that reason, only Kerndl
tuning isincluded here. The chart for kernd tuning is dightly flatter than the one for no tuning.
Looking at the charts for full tuning, you can see that the curves are nearly completely flat.
This means that the throughput is amost congtant.

Openlab-2003 Glenn Hisdd 16

Openlab Student Programme Opencluster 10GbE Back- To-Back

423 4.2.3 Linux32 <-> Linux64

This test ran traffic in both directions. As with the Linux64 <-> Linux64 test, the number of

dreams given in the table is the number of streams in each direction. Since sending from

Linux32 did not work unless the Linux32 system was in Sngle user mode, this was the mode
deployed while performing thistet.

No Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 168 224 220 218
9000B 214 290 346 378
+ Kernel Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 192 273 245 245
9000B 262 314 353 323
+ Driver Tuning

MTU 1 Stream 4 Streams 12 Streams 20 Streams
1500B 179 205 203 203
9000B 343 363 375 373
16114B 408 415 378 377

Table6: Linux32 <> Linux64 results

As you can see, the results here are higher than Linux32 to Linux64, but the maximum

throughput is somewhat lower than what | got for Linux64 to Linux32. This was a bit

disappointing. | was expecting to get higher results when | ran data in both directions, like |

did with the Linux64 <-> Linux64 messurements. The reason that it is actudly lower, is
probably that the Linux32 syslem was working so hard when sending in one direction that
the overhead in adding more streams made it dow down. When running in both directions,
twice as many streams are running.

Kernel tuning Full tuning

4 _—‘_——_____
S 15008 5 250*""”# 15008
Woooos| | | . et NN o000

=2 200, 2 - 161148

Throughput

i 507
Ay 3

o B
. - O=E5g
lStrSﬁ““*’w S 1 Stroam

12 Streams —eeeiy 15008 MTU

. 161148
e

i
20 Streams 15008 MTU
Streams Streams

Openlab-2003 Glenn Hisdal 17

Openlab Student Programme Opencluster 10GbE Back- To-Back

These chats show the throughput with kernd tuning and full tuning. When dl tuning
parameters are turned on, the throughput is dmost constant when adding more streams.

With only kernd tuning, we have a clear pesk a

No tuning

4 sreams for the 1500B MTU and 12
streams for the 9000B MTU.

With the standard settings, we see that
with a 1500B MTU, the throughput
increases up to 4 dreams, and then
dart to drop. The system is dmost
capable of keeping up with the added

% E;Z;’EE sreams, so the drop in throughput is
3 low. Changing the MTU to 9000B, the
= throughput keep on increasing even
_ when running 20 streams.
1 St — 90008
12 Streams = 15008\
Streams
Openlab-2003 Glenn Hisdd 18

Openlab Student Programme Opencluster 10GbE Back- To-Back

5-5 Problems
Here, | try to describe the problems encountered while performing these tests.

51 5.1 Linux64 Problems

There were not many problems with the Linux64 systems. Most of the time they worked as
expected. At one point, the reported bandwidth was very high. | got vaues of up to
950MBY/s. It looks like this was caused by abug in the Linux kerndl. After akerne upgrade,
the results were back to norma. The bug appeared when trying to set the record length
argument for GenSink to 262144. It looked as though thet value would give higher
throughput, but this may have been due to the kernd bug.

52 5.2 Linux32 Problems

| experienced severa problems with the Linux32 system. In this section | try to give an
overview of these problems, aswell asthe stepstaken to try to remove them.

1. Low throughput

Thefirg tests done with the Linux32 system gave surprisingly poor results. The maximum
banadwidth measured was 256MB/s. After a while the reason was found to be a RAID
card connected to the PCI-X bus. This card did not operate at full speed, thus forcing
every other PCI-X card to go into low-speed mode. Removing the RAID card solved
thisproblem.

2. Unrdiable network stack

After the removd of the RAID card, a new problem was discovered. The network stack
was very unrdigble, especidly when sending data from the Linux32 sysem to the
Linux64 system. From time to time the network stack would just sop functioning,
making it impossible to get proper benchmarks. The solution to this problem has not yet
been found. | have tried severd versions of the Linux kernd, from verson 25.70 to
2.6.0-test2. Thisdid not help.

After further investigations | discovered that running the Linux32 system in Sngle user
mode makes it more reliable. This could mean that some tasks are interfering with the
network driver for the 10Gb card. | was not able to locate the exact reason for the
problem. In this mode, it was possible to complete a set of tests without any problems.

Openlab-2003 Glenn Hisdal 19

Openlab Student Programme Opencluster 10GbE Back- To-Back

-6- 6 Conclusion

After performing these tests, | can say that performance is quite good, but not as good as
we had hoped. The goal of 80% of PCI-X speed was not reached. My Linux64 to Linux64
tests maxed out at 744MB/s (70%) for traffic in one direction and 774 (73%) for bk
directiond traffic. These are nevertheless very respectable numbers.

When a Linux32 system was used, the results were much lower. The maximum throughput
was 444 MB/s when trandferring from Linux64 to Linux32. When changing directions, the
maximum throughput was only 283MB/s. The PCI-X bus in the 32-bit computer was only
running at 100MHz, but this should gtill give abandwidth of 800MB/s. | only got about 56%
of this, so | do not expect the PCI- X busto be the limiting factor.

The Linux32 sysem had some trouble sending data. | was not able to find the exact cause
of this, but running the computer in single user mode worked, so there has to be something
running that interferes with the network component for some reason. In any case the
Linux32 systemwas not able to perform as well as the Linux64 systems.

The CERN openlab team will try to invedigate the Linux32 problem further. These
investigations might also help discover what is needed to get the performance of the Linux32
system closer to the Linux64 performance

Openlab-2003 Glenn Hisdal 20

Openlab Student Programme Opencluster

10GbE Back-To-Back

Appendix A - Benchmark program.
Thisisthe code for the program used to caculate the average throughput.

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <tinme. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/tine. h>

#def i ne DEF_RUNTI ME 60
#define | NTERFACE "et h2"

struct timeval getBytes(unsigned |long *recv,
FILE *f;
char interface[100];
char *bytePtr;
struct timeval tv;
int i;

char c;

/* open file */

getti meofday(&tv, 0); /* get the current ti

if('(f = fopen("/proc/net/dev", "r"))) {
printf("An error occured while reading da
exi t (EXI T_FAI LURE) ;

}

/* skip header */

for(i=0; i<2; i++) {

do {
c = fgetc(f);

}

while(c !'="\n");
}
/* find the correct interface */
do {

fscanf(f, "%", interface);

if(strstr(interface, |INTERFACE)) {

/* get the number of transmtted bytes

unsi gned | ong *trans) {

me */

ta...\n");

*/

Openlab-2003 Glenn Hisdal

21

Openlab Student Programme Opencluster 10GbE Back- To-Back

fscanf(f, "%Ws %Ws Ws Ws Ws Ws Ws WUd', trans);
bytePtr = strstr(interface, ":")+1;

sscanf (bytePtr, "% d", recv);

fclose(f);
return tv;
}
}
while(!strstr(interface, |NTERFACE) && fgetc(f) != EOF);

/* 1f we get here, something went wong */
fclose(f);
printf("Could not find the interface %s.\n", | NTERFACE);
exit (EXI T_FAI LURE) ;
}
int main(int argc, char **argv) {

unsigned long recv_1, recv_2, trans_1, trans_2; /* nunber of Dbytes
received/transmtted */

doubl e av_recv, av_trans, av_total;
double time_1, time_2;
struct timeval t1, t2;

int runtine;

/* find the desired run time. Use default if not provided */
if(argc == 2)runtime = atoi(argv[1]);

el se runtime = DEF_RUNTI ME;

/* get the numbers */
tl = getBytes(&ecv_1, &rans_1);
sl eep(runtime);

t2 = getBytes(&recv_2, &trans_2);

time_1 = tl.tv_sec + tl.tv_usec*0.000001;
time_2 = t2.tv_sec + t2.tv_usec*0.000001;

av_recv = (recv_2-recv_1) / (time_2-tine_1);
av_trans = (trans_2-trans_1) / (time_2-time_1);

av_total = av_recv + av_trans;

printf("Bytes received : %d Bn", (recv_2-recv_1));

Openlab-2003 Glenn Hisdal 22

Openlab Student Programme Opencluster 10GbE Back- To-Back

printf("Bytes transmtted: % d B n", (trans_2-trans_1));
printf("Elapsed tinme D %21 f s\n", (time_2-tinme_1));
printf("Average Bandw dth:\n");

printf("\tReceive : % 2lf KB/s\n", av_recv/1000);
printf("\tTransmt: %2l f KB/s\n", av_trans/1000);
printf("\tTotal : %2l f KB/s\n", av_total/1000);

return EXI T_SUCCESS;

Openlab-2003 Glenn Hisdal 23

Openlab Student Programme Opencluster 10GbE Back- To-Back

Appendix B - Normal Settings (set_normal)
Thisisthe script used to turn off dl tunings (kernd + driver).

#! /bin/tcsh

sysctl -w net.ipv4.tcp_rmem="4096 87380 174760"
sysctl -w net.ipv4.tcp_wmenr"4096 16384 131072"
sysctl -w net.ipv4.tcp_men="97280 97792 98304"
sysctl -w net.core.netdev_max_backl og=300

sysctl -w net.core.rnmem defaul t=65535
sysctl -w net.core. wrem defaul t=65535
sysctl -w net.core.rmem mx=65535
sysctl -w net.core. wrem max=65535
sysctl -w net.core.optnmem max=20480
sysctl -w net.ipv4.tcp_sack=1

sysctl -w net.ipvé4.tcp_tinmestanps=1
sysctl -w net.ipv4.tcp_tw recycle=0

sysctl -w net.ipv4.tcp_tw_reuse=0

ifconfig eth2 down; rmmod i xgb

nodpr obe i xgh

i fup /etc/sysconfig/network-scripts/ifcfg-eth2 boot
ifconfig eth2 up

Openlab-2003 Glenn Hisdal 24

Openlab Student Programme Opencluster 10GbE Back- To-Back

Appendix C - Kernel Tuning (set_ktuned)

This is the script used to turn on the kernd tuning. Note that if you want to go from full
tuning to only kernd tuning, you have to gpply the set normd script firgt, and then add the
kernd tuning.

#! /bin/tcsh

sysctl -w net.ipv4.tcp_sack=0

sysctl -w net.ipv4.tcp_timestanps=0

sysctl -w net.core.rnem.defaul t=524287

sysctl -w net.core.wem defaul t=524287

sysctl -w net.core.rmem mx=524287

sysctl -w net.core.wmem max=524287

sysctl -w net.core.optmem nax=524287

sysctl -w net.core. netdev_nax_backl og=300000

sysctl -w net.ipv4.tcp_rmem="10000000 10000000 10000000"
sysctl -w net.ipv4.tcp_wrem="10000000 10000000 10000000"
sysctl -w net.ipv4.tcp_men"10000000 10000000 10000000"
sysctl -w net.ipv4d.tcp_tw recycle=1

sysctl -w net.ipv4.tcp_tw reuse=1

Openlab-2003 Glenn Hisdal 25

Openlab Student Programme Opencluster

10GbE Back-To-Back

Appendix D - Full tuning (set_improved)

This script will turn on al tunings. Both kernel and driver. It dso sats the MTU to 161148
which isthe highest value supported by the network.

#! /bin/tcsh

sysctl -w net.ipv4.tcp_sack=0

sysctl -w net.ipv4.tcp_timestanps=0

sysctl -w net.core.rmem defaul t=524287

sysctl -w net.core.wrem defaul t=524287

sysctl -w net.core.rnmem mx=524287

sysctl -w net.core. wem max=524287

sysctl -w net.core.optnmem mx=524287

sysctl -w net.core. netdev_max_backl og=300000

sysctl -w net.ipv4.tcp_rmenr"10000000 10000000 10000000"
sysctl -w net.ipv4.tcp_wmenr"10000000 10000000 10000000"
sysctl -w net.ipv4.tcp_nmem="10000000 10000000 10000000"
sysctl -w net.ipv4d.tcp_tw recycle=1

sysctl -w net.ipvéd.tcp_tw reuse=1

ifconfig eth2 down; rmmod i xgb

nodprobe ixgb RxIntDelay=0 RxDescriptors=2048 TxDescriptors=2048 XsunRX=1
XsumrX=1

ifup /etc/sysconfig/ network-scripts/ifcfg-eth2 boot

ifconfig eth2 ntu 16114;ifconfig eth2 up

Openlab-2003 Glenn Hisdd 26

Openlab Student Programme Opencluster

10GbE Back-To-Back

Appendix E - Full tuning, Linux32

The Linux32 system uses different vaues for the tuning. | show the script used to turn on al
tunings. The kernd tuning isthe first part of this script.

#! /bin/tcsh

sysctl -w net
sysctl -w net
sysctl -w net
sysctl -w net
sysctl -w net
sysctl -w net.
sysctl -w net.
sysctl -w net
sysctl -w net
sysctl -w net
sysctl -w net
sysctl -w net
sysctl -w net

.ipva.tcp_sack=0

.ipv4.tcp_tinestanps=0
.core.rmem def aul t =524287

core. wrem def aul t =524287

core.rmem max=524287

core. wrem max=524287

core. optmem max=81920

core. netdev_nmax_backl 0g=30000
.ipv4.tcp_rmenr"409600 873800 1747600"
.ipv4. tcp_wnenr" 409600 163840 1310720"
.ipv4.tcp_nmenm="972800 977920 983040"
.ipvd.tcp_tw_recycle=1

.ipvd.tcp_tw reuse=1

ifconfig eth2 down; rmmod i xgb

nodprobe ixgb RxlntDelay=0 RxDescriptors=2048 TxDescriptors=2048 XsunRX=1
XsumrX=1

ifup /etc/sysconfig/ network-scripts/ifcfg-eth2 boot

ifconfig eth2 ntu 16114;ifconfig eth2 up

Openlab-2003 Glenn Hisdd 27

