
Central Data Warehouse

for Grid Monitoring

Author: Ioan Gabriel Bucur

Supervisor: Wojciech Lapka

CERN openlab Summer Student Report

9/9/2011

CONTENTS

Contents

1 Introduction 3

1.1 The LHC and the WLCG . 3

1.2 SAM . 3

2 SAM Architecture 5

2.1 Nagios . 5

2.1.1 Nagios probes . 5

2.1.2 The Nagios Configuration Generator . 7

2.1.3 The Nagios::Plugin Module . 8

2.2 The Metric Results Store . 9

3 Central Data Warehouse Tuning 10

3.1 Gathering Metric Results Store Statistics . 10

3.1.1 Use Statistics to Determine if Metric Data Should Be Loaded . 15

3.2 Automatically Reject Old Metrics . 15

3.3 Add Oracle Data Purging Mechanism . 16

4 Central Data Warehouse Monitoring 17

4.1 MrsCheckDBInserts Probe . 17

4.2 MrsCheckDBInsertsDetailed Probe . 18

4.3 Probe Configuration . 19

5 Conclusion 21

2

1 INTRODUCTION

Abstract

The purpose of this report is to describe the work performed at CERN during the openlab Summer Student

Programme 2011, as part of the IT-GT-TOM section. The main goal of the project was to improve the functionality

of the Central Data Warehouse at CERN by writing some stress tests to monitor its behaviour through a Nagios

system, detecting deficiencies (slow response, missing data, etc), notifying the service managers in an automated way

and implementing solutions to the detected deficiencies.

As a result of our work, new database structures and triggers have been created to compute the number of metric

inserts into the Central Data Warehouse. Two new Nagios probes have been developed to make use of these database

entities by detecting data flow anomalies and reporting them. In addition, by modifying an existing procedure to take

into consideration the number of metric inserts, a better metric data flow has been ensured.

As a by-product, a purging mechanism has been developed to ensure automated cleaning of stale data. Last but

not least, improvements made to Central Data Warehouse metric loading procedures have enabled a finer filtering of

incoming metrics.

1 Introduction

1.1 The LHC and the WLCG

The Large Hadron Collider (LHC) is the largest and most powerful particle accelerator in the world. It consists

of a ring of superconducting magnets, 27 kilometres in circumference, along with a number of particle accelerating

structures. The gargantuan construction resides in a tunnel spanning the border between Switzerland and France at

about 100 metres underground. [1] We can safely affirm that the LHC is home to some of the most important scientific

experiments of the decade. The LHC will (hopefully) change our understanding of the Universe by answering big

questions such as ’Why do particles have mass?’, ’Do extra dimensions of space really exist?’ or ’What is our Universe

made of?’ [2].

The LHC, through its six experiments (ATLAS, CMS, ALICE, LHCb, TOTEM and LHCf), generates somewhere

around 15 petabytes (PB) of data per year consisting of HEP (High-Energy Physics) events. Each event represents a

particle collision which consists of roughly 2MB of information. [3] Not only does all this data require an inordinate

amount of storage space, but also it must be reconstructed, filtered, processed, classified and analysed. After the needed

statistical quantities are extracted from the events, this real data must be in turn compared with expected data from

simulations. [9]

To meet the enormous computational and storage need of the LHC experiments, the Worldwide LHC Computing

Grid (WLCG) was launched in October 2008. This infrastructure was built by integrating thousands of computers and

storage systems from more than 140 data centres and grid initiatives in 35 countries around the world. The WLCG is

today the largest distributed or grid-based infrastructure, a collaborative computing environment on an unprecedented

scale. [4]

The WLCG is made up of four layers or ”tiers”, each providing a specific set of services. Tier-0 is the CERN

Computer Centre, which provides less than 20% of the computational capacity. However, all the information received

from the LHC passes through this central hub, undergoing initial processing and storage. The data are distributed to

eleven large Tier-1 sites with round-the-clock support for the grid and enough storage capacity for a large fraction of

the data. These sites are located in Canada, Germany, Spain, France, Italy, the Nordic countries, Netherlands, the

United Kingdom and the United States (two of them). The Tier-1 sites make data available to the over 160 Tier-2 sites,

which are typically universities or other scientific institutes. Tier-2 sites have sufficient storing capacity and provide

adequate computing resources for specific analysis tasks. Tier-3 sites represent individual scientists who access the

WLCG facilities through local computing resources such as a university local cluster or even an individual PC. [4]

1.2 SAM

The Service and Availability Monitoring framework (SAM) is a grid monitoring and reporting system for large-

scale production grids. It is built on top of open-source components such as Nagios, ActiveMQ and Django to provide

a scalable and reliable monitoring infrastructure. WLCG uses SAM to monitor the availability and reliability of all

resources provided by the computing centres collaborating in the project. [11]

SAM integrates many components, some off-the-shelf, some specifically designed for SAM, each with a well-defined

functionality. Nagios, the heart of SAM, is used to execute monitoring tests. Through Nagios, tests are scheduled and

3

http://public.web.cern.ch/public/en/LHC/ATLAS-en.html
http://public.web.cern.ch/public/en/LHC/CMS-en.html
http://public.web.cern.ch/public/en/LHC/ALICE-en.html
http://public.web.cern.ch/public/en/LHC/LHCb-en.html
http://public.web.cern.ch/public/en/LHC/TOTEM-en.html
http://public.web.cern.ch/public/en/LHC/LHCf-en.html
http://nagios.org/
https://activemq.apache.org/
https://www.djangoproject.com/

1 INTRODUCTION

Figure 1: WLCG Tier-0/1 Structure, connected by the LHC Optical Private Network

their results are sent (via the messaging system) to the components that need them, such as the central Metric Store

or the MyWLCG portal. Apache ActiveMQ is used as an integration framework, adding flexibility, reliability and

scalability to the distributed SAM monitoring system. ActiveMQ Messaging serves to transport test results between

components.

A set of databases is used for storing both configuration information - the Aggregate Topology Provider (ATP)

and the Metric Description Database (MDDB) - and the test results produced by Nagios - the Metric Result

Store (MRS). ATP aggregates the grid topology from all authoritative sources and provides it to other components.

Grid topology information includes projects (WLCG), grid infrastructures (EGI - European Grid Initiative, OSG - Open

Science Group, NDGF - Nordic DataGrid Facility), sites, services, Virtual Organisations (VOs) [15] and their groupings,

downtimes, as well as a history of all of the above. MDDB provides information concerning the metrics which are used

to test the grid infrastructure: definitions, their properties, their grouping into profiles. Profiles represent combinations

of metrics used for the computation of different availabilities and for the configuration of Nagios installations. Last but

not least, MRS keeps the metric results for service end-points for the grid infrastructure, as well as their status changes.

[13]

Another SAM component, the Availability Calculation Engine (ACE), is used to process the raw test results

into calculation metrics such as site and service availability and reliability. [8] Finally, the MyWLCG portal is the

main visualisation tool, providing visualisations for both the test results and the availability calculations. MyWLCG

presents a grid-aware view of the data collected by the Service Availability Monitoring framework.[11]

In Figure 3 we can observe a typical workflow scenario of the SAM framework. In the Configuration Phase, the

Nagios Configuration System (NCG), which we will examine more closely in Section 2, receives topology data from ATP

and profile data from MDDB. With this information, NCG builds the Nagios configuration in an automated way. After

Nagios is configured, the system proceeds with the Test Execution Phase. In this phase, Nagios schedules and executes

tasks against various grid services, either directly or through the Workload Management System (WMS). Test results

are sent to the Messaging System. The Storing Results Phase follows. Profile, topology and test result information

is all gathered in the Metric Results Store. This information is then forwarded to the MyWLCG portal for the final

phase, the Visualisation Phase. The MyWLCG portal provides views of both current and historical test data.

SAM falls under the supervision of the GT (Grid Technologies) group of the IT department, which is responsible for

maintaining and developing grid middleware: grid software components and the grid monitoring infrastructure. More

specifically, SAM is coordinated by the Tools for Operation and Monitoring section of the GT group (IT-GT-TOM).

The TOM section is responsible for designing, developing and running tools used by WLCG for the daily operation of

its production infrastructure. [10]

4

2 SAM ARCHITECTURE

Figure 2: Overview of the SAM framework

2 SAM Architecture

In this section we will focus mainly on the components of SAM strongly related to the work presented in this report,

namely the Nagios monitoring system and the central Metric Results Store. Whenever needed, further explications

about other components as well as the relationships between SAM components will be provided.

2.1 Nagios

Nagios is a popular and powerful open source IT infrastructure monitoring software application. Although primarily

a network monitoring system, Nagios can monitor any software element that has the ability to send collected data

via a network. Such software elements are called probes, plug-ins or checks in Nagios terminology. Unlike many other

monitoring tools, Nagios does not include any internal mechanisms for checking the status of hosts and services on your

network, but relies solely on probes to do the work.

2.1.1 Nagios probes

A Nagios probe is basically a normal computer program (compiled executable or script) of varying complexity that

that can be run from a command line and returns an integer value. Nagios will execute a probe whenever there is a need

to check the status of a service or host. The probe does something to perform the check and then simply returns the

results to Nagios. Nagios will process the results that it receives from the probe to determine the current status of hosts

and services on your system and then takes any necessary actions (running event handlers, sending out notifications,

etc). Theoretically, a Nagios probe could be written in any programming or scripting language. However, at CERN,

four languages are preferred for probe development: C, Python, Perl or Bash (or more generally, shell scripting). [12]

The probes act as an abstraction layer between the monitoring logic present in the Nagios daemon process and the

actual services and hosts that are being monitored. The upside is that you can monitor just about anything you can

think of. If you can automate the process of checking something, you can monitor it with Nagios. The downside is the

fact that Nagios has absolutely no idea what it is that you’re monitoring. Only the probes themselves know exactly

what they’re monitoring and how to perform the actual checks. [5]

The only two conditions a probe must always respect (at least) is to exit with one of several possible return values

and return at least one line of text output to STDOUT. Nagios allows four valid return codes for probes, each with its

specific meaning. The output text that accompanies the return code should try to explain as clearly as possible (and in

few lines if possible) what is the reason for the service returning that particular code. Starting with Nagios 3.x, probes

can optionally print even multiple lines of text output.[6]

5

2 SAM ARCHITECTURE

Figure 3: SAM Workflow Example

Return code Service Status Description

0 OK The plug-in was able to check the service and it is functioning

properly.

1 WARNING The plug-in was able to check the service, but it returns a warning,

usually because some metric or parameter is above or below a

”warning” threshold.

2 CRITICAL The plug-in was able to check the service, but it returns a critical

warning, usually because some measured metric or parameter is

above or below a ”critical” threshold.

3 UNKNOWN Invalid command line arguments were supplied to the plug-in or

low-level failures internal to the plug-in (such as unable to fork,

or open a tcp socket) prevented it from performing the specified

operation. Higher-level errors (such as name resolution errors,

socket timeouts, etc) are outside of the control of plug-ins and

should generally not be reported as UNKNOWN states.

Table 1: Nagios Probe Valid Return Codes

Under normal circumstances, the Nagios system will receive one of the four valid codes from the probe. For each

valid code, it displays the probe name, the return value coloured suggestively (OK = green, WARNING = yellow,

CRITICAL = red, UNKNOWN = orange), along with one or multiple lines (starting from Nagios version 3.x) of probe

text output from STDOUT. In unusual cases, when high-level errors occur, Nagios can receive other codes (such as 255

return by the Perl command ”die”). In this case, Nagios considers the status of the host/service as CRITICAL. We

can examine a sample Nagios display in Figure 4.

Probes may also return optional performance data that can be processed by external applications. If a probe returns

performance data in its output, it must separate the performance data from the other text output using a pipe (—) sym-

bol. Thus, the output format is: ”TEXT OUTPUT — OPTIONAL PERFDATA”. In order to be readable, the perfor-

mance data must be structured in a specific format. The expected format is: ’label’=value[UOM];[warn];[crit];[min];[max],

where the warn(ing) and crit(ical) thresholds, the minimum and maximum values and the unit of measurement (UOM)

6

2 SAM ARCHITECTURE

Figure 4: Nagios monitoring display example

are optional.

PNP4Nagios is an external application used at CERN for processing performance data. PNP4Nagios is a Nagios

add-on which analyses performance data and stores it automatically into Round Robin Databases (RRD). An example

of PNP4Nagios output is illustrated in Figure 5. In this particular example, the total number of Nagios services in the

last 4 hours is visualised. As we can see, in the last 4 hours, two new services were added.

Figure 5: PNP4 Nagios Performance Data Visualisation Example

2.1.2 The Nagios Configuration Generator

As we have already mentioned in Section 1, there are two sources of configuration data for Nagios. The Aggregate

Topology Provider provides the topology information, working out which sites and services should be tested, while the

Metric Description Database provides the profile information, deciding which tests should be used to check a particular

host. All this information is fed into the Nagios Configuration Generator (NCG), which creates the appropriate

Nagios configuration automatically. This is very useful since the configuration can be several thousand lines long. The

administrators have a lot of control over the exact configuration that NCG generates so that it works well with their

local setup.

NCG is a three phase configuration generator. The original target monitoring system for NCG was Nagios, but

NCG now has more general application through a modular, extensible design. The three phases of NCG are as follows:

1. Information about all hosts and grid services associated with a named site is gathered (topology information

gathering).

7

2 SAM ARCHITECTURE

2. The topology is merged with data defining the probes used for gathering metrics from each type of grid service.

After this merging a complete map of the site monitoring system is available.

3. The resulting output map is used to generate configuration files for a specific target monitoring tool (e.g. Nagios).

This is the only phase which is dependent on the target tool.

Three files should be considered first when configuring Nagios using NCG: Hash.pm, ncg.localdb and ncg.conf.

Hash.pm is where you configure the probes themselves. Here is an example configuration:

$WLCG SERVICE->{’ch.cern.demo probe’}->{native} = "Nagios";

$WLCG SERVICE->{’ch.cern.demo probe’}->{probe} = "demo/probe-example";

$WLCG SERVICE->{’ch.cern.demo probe’}->{metricset} = "probe example";

$WLCG SERVICE->{’ch.cern.demo probe’}->{config}->{path} = $NCG::NCG PROBES PATH GRIDMON;

$WLCG SERVICE->{’ch.cern.demo probe’}->{config}->{interval} = 5;

$WLCG SERVICE->{’ch.cern.demo probe’}->{config}->{timeout} = 30;

$WLCG SERVICE->{’ch.cern.demo probe’}->{config}->{retryInterval} = 3;

$WLCG SERVICE->{’ch.cern.demo probe’}->{config}->{maxCheckAttempts} = 3;

$WLCG SERVICE->{’ch.cern.demo probe’}->{flags}->NOHOSTNAME = 1;

$WLCG SERVICE->{’ch.cern.demo probe’}->{flags}->PNP = 1;

$WLCG SERVICE->{’ch.cern.demo probe’}->{parameter}->{’--warning} = 500;

$WLCG SERVICE->{’ch.cern.demo probe’}->{parameter}->{’--critical} = 200;

The variable $WLCG SERVICE holds the probes (also called metrics in NCG terminology) and their configuration.

The {config} values are very important since they define the way the probe is called by Nagios: how often, from which

path. The {config} -> {path} value concatenated with {probe} value form a string that represents the full path of the

probe (in this example it is ”$NCG::NCG PROBES PATH GRIDMON/demo/probe-example”). Through the {flags}
key you can enable for example PNP4Nagios support for the performance data. Finally, the probes parameters are

given arguments via the {parameter} key.

Every new probe must be added to a profile defined by a $WLCG NODETYPE key, for instance:

$WLCG NODETYPE->{roc}->{CE} = [’ch.cern.demo probe’, ...];

When we create a new profile for a probe such as $WLCG NODETYPE->{demo profile}->{’demo service’} = [’ch.cern.demo probe’];,

if the service name is not consistent with Grid Configuration Database (GOCDB) terminology, it must be explicitly

specified as belonging to certain hosts in ncg.localdb. [14] These type of configuration lines are called static file rules:

ADD HOST SERVICE!grid-monitoring-probes.cern.ch!dummy service

The new profile also needs to be added to the NCG configuration file (ncg.conf):

<NCG::LocalMetrics>

...

<Hash> PROFILE = demo profile </Hash>

...

</NCG::LocalMetrics>

After the configuration is written, the WLCG Nagios configuration generator, ncg.pl must be run. By default, the

output is stored as a set of Nagios configuration files in the directory /etc/nagios/wlcg.d. One must note that each

time the site configuration changes (e.g. new services are added, hosts are removed), it is necessary to rerun ncg.pl and

restart nagios (/etc/init.d/nagios restart or service nagios reload). Be aware that restarting the service might change

key output for backspace from normal behaviour to printing ^?. To remove that behaviour, execute command stty

erase ^?.

2.1.3 The Nagios::Plugin Module

Nagios::Plugin and its associated Nagios::Plugin::* modules are a family of Perl modules. The purpose of the col-

lection is to help developers create plugins that conform the Nagios Plugin guidelines [6]. The Nagios::Plugin modules

provides an object-oriented interface to the entire Nagios::Plugin::* collection, while Nagios::Plugin::Functions

8

2 SAM ARCHITECTURE

provides a simpler functional interface to a useful subset of the available functionality [7]. In combination with the

Nagios embedded Perl interpreter (ePN), the Nagios::Plugin makes Perl a very suitable scripting language for writing

Nagios probes.

A Nagios::Plugin object is created by means of the new method / constructor: Nagios::Plugin->new(usage =>

$usage string, version => $VERSION, blurb => $blurb, extra => $extra, url => $url, license => $license,

shortname => $shortname, plugin => basename $0, timeout => 15,);

Defining arguments for your probe becomes simple with the add arg method: $plugin->add arg(spec => "hello=s",

help => "Hello string", required => 1, default => "Hello, world!"); The spec argument is a regular Perl

Getopt::Long argument specification. It consists of a series of one or more argument names for this argument (separated

by ”—”), suffixed with an ”=¡type¿” indicator if the argument takes a value. Types include ”=s” for a string argument,

”=i” for an integer argument and ”-f” for a float argument. Appending an ”@” in the end indicates multiple such

arguments are accepted. The following are some examples: hello=s; hello|h=s; ports|port|p=i; exclude|X=s@;

verbose|v+.

The nagios exit(CODE, $message) method permits exit with return code CODE and a standard Nagios message

of the form ”SHORTNAME CODE - $message”, where shortname is defined in the Nagios::Plugin object constructor.

Nagios::Plugins exports the return code constants OK, WARNING, CRITICAL, UNKNOWN by default. Performance

data can be added easily via method add perfdata, which has the following signature: add perfdata(label => $label,

value => $value, uom => "kB", threshold => $threshold). The method may be called multiple times and it

includes the performance data in the standard plug-in output messages printed by the various exit methods.

2.2 The Metric Results Store

The Metric Results Store is a centralized data warehouse at CERN based on Oracle. It stores a copy of each met-

ric output from the EGI (European Grid Initiative) and OSG (Open Science Grid) services. This represents around

400 sites with 1,800 services being monitored and more than 600,000 metric results stored daily. The metric data

is loaded via the Messaging Infrastructure to table METRICDATA SPOOL. It then remains there for a number of

minutes (currently 10 minutes). This happens so that we can ensure that we received data from all Nagioses and that

the received data is ordered by test execution (column check time). Every 3 minutes, an Oracle DBMS scheduler job

called SAM MS LOADDATA is started. This job calls the procedure dataloader.loadmetricdata from the package DAT-

ALOADER, which loads data from METRICDATA SPOOL to the tables METRICDATA, METRICDATA LATEST

and STATUSCHANGE SERVICE PROFILE.

Figure 6: Metric Results Store Data Flow

9

3 CENTRAL DATA WAREHOUSE TUNING

3 Central Data Warehouse Tuning

Sometimes the metric data is ”blocked” on the messaging broker (e.g. data consumers were down). In this case MRS

will not receive any data from the message brokers for a period of time. We need to detect such a situation - data

has not been received in the last ”n” hours - and for this purpose we will use a Nagios probe. Also, there are certain

situations when MRS receives more data that normally (e.g. when a consumer that was down is restarted). In this

case, metric data loading should be delayed (Section 2.2 -> job SAM MS LOADDATA should wait) until the insertion

rate returns to normal values. In other words, the system should wait until all the messages piled up on the broker are

consumed.

3.1 Gathering Metric Results Store Statistics

In order to challenge the problem of abnormal data flow, we require supplementary procedures that can provide a

quantitative overview of this parameter. We also require associated data structures to store these new measurements.

Our proposed solution consists of computing the metric load (number of metrics inserted) into the table METRIC-

DATA SPOOL per hour and per minute. For this purpose, we implemented three new Oracle PL/SQL triggers called

on each insertion to METRICDATA SPOOL. Only the insertions of metrics that come from messaging are considered,

so we exclude those which are marked as MISSING or REMOVED. These triggers affect accordingly three new data

structures created in the MRS database. In this section, we will describe in details the new structures and triggers.

Table METRICSTORE CURR LOAD H contains the hourly number of metrics inserted in METRICDATA SPOOL.

A new row is inserted each hour, uniqueness being ensured by the UNIQUE key constraint (rec date, hour). Data is kept

in this table only for one month (30 days), after which it is purged (via trigger METRICDATA SPOOL INSERT H).

The table has the following columns (see Figure 7):

• id NUMBER : holds the row / record identification number; always use the associated sequence METRIC-

STORE CURR LOAD H SEQ when inserting to ensure that each new row has a unique ID

• rec date VARCHAR2 : a string keeping the date when the record was inserted in easy-to-read format DD-MON-

YYYY (DEFAULT is current UTC date)

• hour NUMBER : this column stores the hour when the record was inserted into the table (DEFAULT is current

UTC hour)

• timestamp TIMESTAMP : this columns stores the exact time of insertion in TIMESTAMP format (DEFAULT is

current UTC timestamp)

• number of records NUMBER : this is the column that keeps the measurements regarding metric load per hour

Figure 7: Table METRICSTORE CURR LOAD H

Trigger METRICDATA SPOOL INSERT H operates on METRICSTORE CURR LOAD H after each new

metric result is inserted into METRICDATA SPOOL. The trigger functions according the flowchart in Figure 8.

10

3 CENTRAL DATA WAREHOUSE TUNING

Figure 8: Trigger METRICDATA SPOOL INSERT H

Table METRICSTORE CURR LOAD H DET is simply a more detailed version of table METRICSTORE CURR LOAD H.

This table does not consider all metrics that are being inserted the same, but splits them into groups according to their

profile (e.g. ALICE CRITICAL, ATLAS CRITICAL, OSG), their service flavour (e.g. SRMv2, CE, CREAM-CE, gLite-

CE) and the name of the corresponding National Grid Initiative (NGI) from where they originate (e.g. NGI IT, NGI NL,

AsiaPacific). New rows are inserted into this table each hour for every (profile, service flavour, NGI) combination.

Uniqueness is ensured by the UNIQUE key constraint (rec date, hour, profile id, flavour id, ngi name). Data is kept in

this table only for one month (30 days), after which it is purged (via trigger METRICDATA SPOOL INSERT H DET).

The table has the following columns (see Figure 9):

• id NUMBER : holds the row / record identification number; always use the associated sequence METRIC-

STORE CURR LOAD H D SEQ when inserting to ensure that each new row has a unique ID

• rec date VARCHAR2 : a string keeping the date when the record was inserted in easy-to-read format DD-MON-

YYYY (DEFAULT is current UTC date)

• hour NUMBER : this column stores the hour when the record was inserted into the table (DEFAULT is current

UTC hour)

• timestamp TIMESTAMP : this columns stores the exact time of insertion in TIMESTAMP format (DEFAULT is

current UTC timestamp)

• number of records NUMBER : this is the column that keeps the measurements regarding metric load per hour

• profile id NUMBER : this is the metric’s profile; the same metric can belong to multiple profiles, or can have no

associated profile, in which case this column has the value NULL

• flavour id NUMBER : this is the metric’s service flavour; cannot be NULL

• ngi name VARCHAR2 : this is the name of the metric’s originating NGI; can be NULL

11

3 CENTRAL DATA WAREHOUSE TUNING

Figure 9: Table METRICSTORE CURR LOAD H DET

Trigger METRICDATA SPOOL INSERT H DET operates on METRICSTORE CURR LOAD H DET after

each new metric result is inserted into METRICDATA SPOOL. The trigger functions according to the flowchart in

Figure 10.

12

3 CENTRAL DATA WAREHOUSE TUNING

Figure 10: Trigger METRICDATA SPOOL INSERT H DET

Because of the three new added columns, ngi name, flavour id and profile id, after which the inserted metrics are

grouped, trigger METRICDATA SPOOL INSERT H DET is much more complex. In order to find out the values of

these three columns for each metric, we must use the existing associative tables (see Figure 9). We obtain the flavour id

simply by looking in table SERVICE for the flavour id corresponding to the inserted metric’s service id.

Obtaining the ngi name is a little more complicated. Starting from the service id in METRICDATA SPOOL,

we find the associated site id by looking in the associative table SERVICE SITE. Then, we look in the associative

table SITE GROUP to find the group id associated with the respective site id. Finally, using the group id we get the

groupname from table GROUPS, which is the ngi name that we are looking for (see Figure 9). All these operations are

performed by the stored function get roc name(service id IN NUMBER) RETURNS VARCHAR2.

Getting the metric’s corresponding profile id is difficult because a metric can be associated with multiple profiles

or with no profile whatsoever. Therefore, we must check for each existing profile if the association exists. To do this,

we start by getting the list of profiles (profile IDs) from table PROFILE via a cursor. For each profile, we check

for the association with the current inserted metric by looking in the associative table PROFILE METRIC MAP.

This verification is performed by the function checkIfCalculationNeeded(profileId INTEGER, serviceId INTEGER,

metricId INTEGER, voId INTEGER) RETURNS BOOLEAN. We simply pass the parameters service id, metric id and vo id

from the inserted metric row and every profile id from the list in a loop. Whenever the function returns true, it means

that the metric belongs to the respective profile. If no profile matches the inserted metric, we write NULL in the

corresponding column.

Table METRICSTORE CURR LOAD M contains the minutely number of metrics inserted in METRIC-

DATA SPOOL. A new row is inserted each minute, uniqueness being ensured by the UNIQUE key constraint (minute,

hour). Data is kept in this table only for one day, after which it is purged (via trigger METRICDATA SPOOL INSERT M).

The table has the following columns (see Figure 11):

13

3 CENTRAL DATA WAREHOUSE TUNING

• id NUMBER : holds the row / record identification number; always use the associated sequence METRIC-

STORE CURR LOAD M SEQ when inserting to ensure that each new row has a unique ID

• minute NUMBER : this column stores the minute when the record was inserted into the table (DEFAULT is

current UTC minute)

• hour NUMBER : this column stores the hour when the record was inserted into the table (DEFAULT is current

UTC hour)

• timestamp TIMESTAMP : this columns stores the exact time of insertion in TIMESTAMP format (DEFAULT is

current UTC timestamp)

• number of records NUMBER : this is the column that keeps the measurements regarding metric load per minute

Figure 11: Table METRICSTORE CURR LOAD M

Trigger METRICDATA SPOOL INSERT M operates on METRICSTORE CURR LOAD M after each new

metric result is inserted into METRICDATA SPOOL. The trigger functions according to the flowchart in Figure 12.

Figure 12: Trigger METRICDATA SPOOL INSERT M

The above tables and triggers were written both in Oracle, for the CERN central database, and in MySQL, for the

local NGI databases. During the migration from PL/SQL to MySQL code, some design-level modifications had to be

performed. The functionalities of the three Oracle triggers were amassed in a single trigger for MySQL because the

latter does not support multiple triggers with the same action time and event for one table. In addition, the sequences

used for generating table unique IDs in Oracle were replaced by the AUTOINCREMENT feature in MySQL.

14

3 CENTRAL DATA WAREHOUSE TUNING

3.1.1 Use Statistics to Determine if Metric Data Should Be Loaded

Like we mentioned in 2.2, the Oracle DBMS scheduler job SAM MS LOADDATA loads the metric data from the

MRS buffer (METRICDATA SPOOL) to the appropriate metric data storage tables every 3 minutes by calling dat-

aloader.loadmetricdata. However, this process should not occur when the number of metrics inserted in METRIC-

DATA SPOOL is too high, signalling an abnormal situation. Instead, the process should be delayed until the parameter

”number of metrics inserted” returns to normal values.

To solve this problem, we define a new startThreshold parameter for the procedure dataloader.loadmetricdata. Then,

using the data stored in METRICDATA CURR LOAD M, we can determine how many metrics have been inserted in

the previous minute in table METRICDATA SPOOL (we do not consider the number of metrics that is inserted

in METRICDATA SPOOL in the current minute, because that number keeps changing until the minute is over).

We compare this value with the startThreshold and if it is above the threshold, the procedure returns immediately

without affecting the database state in any way. By doing this, we simply delay the metric data loading because

SAM MS LOADDATA will call dataloader.loadmetricdata after 3 minutes. The number of inserted metrics per minute

will be checked again and if it returned to normal values (below startThreshold) the procedure can execute normally.

In Figure 13 we can see the execution flow of dataloader.loadmetricdata. New elements are emphasised by means of the

colour red.

Figure 13: Procedure dataloader.loadmetricdata

3.2 Automatically Reject Old Metrics

Not all metrics coming to the Metric Results Store via the ActiveMQ Messaging Infrastructure are inserted into

METRICDATA SPOOL. Some are filtered out before entering the buffer / spooler for various reasons: service id is

NULL or metric id is NULL or both. This filtering is done in procedure dataloader.loadmetricdatatospool for metrics

coming from the EGI and in procedure dataloader.loadmetricdatatospool OSG for metrics coming from the OSG.

From time to time, because of the inadvertent delays in the system, metrics are distributed to METRICDATA SPOOL

at a late time. These old metrics should be filtered out since the information they contain is not recent enough to be

considered relevant. Our solution was to improve the filtering process which already existed in the two aforementioned

procedures from the DATALOADER package. We added a new integer parameter called metric rejected age days

that clears up the definition of ”old metric”. If a metric is older than metric rejected age days (for this we compare

the metric’s insert time with the metric’s check time) it is inserted into METRICDATA REJECTED or METRIC-

DATA REJECTED OSG depending on its grid of origin.

The following flowchart shows the improvements made to dataloader.loadmetricdatatospool in red. As a side

note, METRICDATA REJECTED has a column that contains the reason for the rejection. Since ”metric id is

15

3 CENTRAL DATA WAREHOUSE TUNING

NULL and service id is NULL” is considered a different reason when compared to ”metric id is NULL” or ”ser-

vice id NULL”, it follows that there are separate control flow branches for all these reasons. The flowchart for dat-

aloader.loadmetricdatatospool OSG is identical except for adding OSG to the names, so we will not show it as well.

Figure 14: Procedure dataloader.loadmetricdatatospool

3.3 Add Oracle Data Purging Mechanism

Taking into consideration the huge amount of data that has to be kept in the SAM databases in general and in

the Central Data Warehouse in particular, it is clear that old or stale information should be removed from the

databases as soon as it is no longer required and in an automatic way if possible. We implemented the purgeMet-

ricstore procedure in package DATALOADER in order to provide a partial solution to this issue. We also created the

SAM MS PURGE METRICSTORE job, which calls dataloader.purgeMetricstore daily.

The MRS should keep data for a full 6 months in table METRICDATA, one month in table METRICDATA REJECTED

and table METRICDATA REJECTED OSG, 12 months in table STATUSCHANGE SERVICE PROFILE and 7 days

in LOGGER. For each table, there is a corresponding parameter in dataloader.purgeMetricstore that indicates how long

the data should be kept in the respective tables. These parameters are suggestively named: mdata full months kept,

mdata rej months kept, logger days kept and statuschange months kept. SAM MS PURGE METRICSTORE calls dat-

aloader.purgeMetricstore by assigning the values mentioned at the start of the paragraph to their respective parameters.

For computational ease, we consider a month to be a 31-day period. We must also explain what the meaning of ”full

months” is in this case. In table METRICDATA, data is guaranteed to be available for 6 full months. For instance, if

we are in October, it is guaranteed that table METRICDATA still contains all the data from each day of April, May,

June, July, August and September. This means that the data could be kept for more than 6 * 31 days, as long as it is

needed to get at least 6 full months.

The new procedure dataloader.purgeMetricstore takes into consideration aspects such as partitions or foreign key

dependencies when deleting data (Figure 15). Removing data from LOGGER, METRICDATA REJECTED or MET-

RICDATA REJECTED OSG requires a simple DELETE command. However, when deleting data from METRIC-

DATA REJECTED and METRICDATA REJECTED OSG, we noticed that it was too lengthy. We created the indexes

MDATA REJ CHECKTIME IDX and MDATA REJ OSG CHECKTIME IDX respectively so that this process would

run in a much shorter time. As a side note, the MDATA REJ CHECKTIME IDX index was also added to the MySQL

databases for the same purposes.

When a metric is removed from table METRICDATA, the metric must also be deleted from METRICDATA LATEST

together with its metric details from table METRICDETAILS. These extra operations are done via newly created trig-

ger DELETE METRICDATA DETAILS. Regarding table STATUSCHANGE SERVICE PROFILE, for each (profile,

service) UNIQUE combination, the newest record older than 12 months is not deleted but updated to be exactly 12

months old (more exactly, its timestamp column value is updated to ”current UTC time - 12 months”). This is done

16

4 CENTRAL DATA WAREHOUSE MONITORING

because we must always keep the last status change that occurred before the defined interval (12 months) for every

metric.

Figure 15: Procedure dataloader.purgeMetricstore

4 Central Data Warehouse Monitoring

As we have already mentioned in the introduction to Section 3, there are situations in which incoming metric output

data is ”blocked” on the messaging broker. We can detect this anomaly by examining manually the tables METRIC-

STORE CURR LOAD H or METRICSTORE CURR LOAD H DET (Section 3.1), but we wish to be notified of such

situations in an automated way. The underlying Nagios monitoring system provides an excellent means of achieving

just that. Using the information stored in the aforementioned tables, we can develop probes that will monitor these

particular anomalies.

4.1 MrsCheckDBInserts Probe

MrsCheckDBInserts is a probe which monitors if MRS is receiving metric results. It uses the data collected from

METRICSTORE CURR LOAD H: number of records inserted in MRS (METRICDATA SPOOL) per hour. In its

initial version, the probe would connect to the database and extract the data directly from the tables via SQL queries.

In the current version however, the probe gets its data indirectly via a specialised web service, both for security reasons

and to avoid unnecessary database connections in case multiple probes require the same data. The probe is written in

Perl and employs the highly useful Nagios::Plugin package.

MrsCheckDBInserts has the following input parameters:

• host url — default value: ”http://localhost/” — This is the URL of the server that hosts the service. Concatenated

with web service path, it forms the complete service URL.

• web service path — default value: ”myegi/sam-pi/metricstore current load per hour?” — This is the name/path

of the service from where the MRS load data is obtained. Concatenated with host url, it forms the complete

service URL.

• warning — default value: 3000 — If the number of metric results inserted per hour in METRICDATA SPOOL is

below this threshold, a simple warning is generated (return code 1).

• critical — default value: 1000 — If the number of metric results inserted per hour in METRICDATA SPOOL is

below this threshold, a critical warning is generated (return code 2).

The probe is divided into three phases: argument parsing, XML parsing and data interpretation. In Figure 16 we

can see these phases illustrated. This flowchart is general enough so that it can be applied to any monitoring probe

that gets its metric data via a web service that generates XML output. In our case, the flowchart applies to this probe

as well as to the MrsCheckDBInsertsDetailed probe in the next section.

17

4 CENTRAL DATA WAREHOUSE MONITORING

Figure 16: Probe flowchart

The initial phase is done using the Perl Nagios::Plugin module. Options are added with the add arg method.

Options are then parsed with the getopts() method. The Nagios::Plugin does some automatic command line argument

check-in: the number of arguments passed is correct, the type passed is correct, each options that requires an argument

gets an argument. The rest of the checking needs to be done manually in the Perl script. For all command line argument

errors, the Nagios UNKNOWN code is returned, as specified in the Nagios Plug-in Development Guidelines. [6] After

the configuration phase, the data needed is in raw XML format.

The MRS web service offers data in XML format, so the probe needs an XML parser. The XML::Parser module

offers an efficient and flexible solution. After the XML data is downloaded (using the LWP::Simple module), it is passed

to the manually configured parser. The parser has assigned four handler routines: Start (start of tag), End (end of tag),

Char (normal text) and Default (all other content). Each can be configured to reference any Perl subroutine. After the

XML parsing phase, the data is completely processed and stored in appropriate variables.

Adding performance data and returning the appropriate code to Nagios is simple when using the Nagios::Plugin

module. The performance data is added with the add perfdata method, while for code returning, the nagios exit

method is used. The final processed data is compared with the defined ”warning” and ”critical” thresholds in order

to determine which code the probe should return. Informative output is attached to the return code. In the case of

MrsCheckDBInserts the number of metrics inserted per hour is printed. The same number along with the number of

metrics inserted per day is added as performance data.

4.2 MrsCheckDBInsertsDetailed Probe

MrsCheckDBInsertsDetailed is a probe which monitors if MRS is receiving certain metric results, selected by profile,

service and NGI name. It uses the data collected from METRICSTORE CURR LOAD H DET: number of records

inserted in MRS (METRICDATA SPOOL) per hour, having a separate entry for each (profile id, service id, ngi name)

tuple. The probe, which is just a finer grained version of MrsCheckDBInserts gets its data indirectly via a specialised

web service. The probe is written in Perl and employs the highly useful Nagios::Plugin package.

MrsCheckDBInsertsDetailed has the following input parameters:

• host url — default value: ”http://localhost/” — This is the URL of the server that hosts the service. Concatenated

with web service path, it forms the complete service URL.

• web service path — default value: ”myegi/sam-pi/metricstore current load per hour detailed?” — This is the

name/path of the service from where the MRS load data is obtained. Concatenated with host url, it forms the

complete service URL.

• warning — default value: 0 — If the number of metric results inserted per hour in METRICDATA SPOOL is

below this threshold, a simple warning is generated (return code 1).

• critical — default value: 0 — If the number of metric results inserted per hour in METRICDATA SPOOL is

below this threshold, a critical warning is generated (return code 2).

18

4 CENTRAL DATA WAREHOUSE MONITORING

• profile — default value: WLCG CREAM LCGCE CRITICAL — This is the profile (group of metrics) we wish

to check.

• ngi — default value: all — This is the NGI name of the desired metrics. This option can receive singular NGI

name or a list of names separated by commas (,). The option can also be specified multiple times and all the lists

of arguments will be considered. If there is no NGI name mentioned, each service is considered by the probe for

all NGIs.

• service flavour — default value: all — This parameter holds the service flavour(s) that we are interested in. This

option can receive a singular service flavour or a list of flavours separated by commas (,). The option can also be

specified multiple times and all the lists of arguments will be considered. If there is no service flavour mentioned,

the probe checks all service flavours.

• hours — default value: 2 — Through this option, we parametrize the time period we are interested in. We can

evaluate how many metrics were inserted in the last ”n” hours, were ”n” is variable.

The probe is divided into three phases (argument parsing, XML parsing and data interpretation), just like MrsCheck-

DBInserts and follows the same flowchart (Figure 16). The only difference between this probe and the other is the

extra number of arguments, which add extra flexibility to the data examined. There are some remarks to make about

the new arguments.

The ngi and service flavour options can receive lists of arguments separated by commas. These options can also be

called multiple times and their lists will be concatenated. For example:

• ... --ngi NGI NL,NGI IT,AsiaPacific ... is the same thing as

• ... --ngi NGI IT --ngi AsiaPacific,NGI NL ... or

• ... --ngi NGI IT --ngi NGI NL --ngi AsiaPacific ...

The same option can be called multiple times even if interleaved by different options, like in these examples:

• ... --ngi NGI IT --service flavour CREAM-CE,CE,SRMv2 --ngi Russia,CERN ...

• ... --service flavour SRMv2 --ngi AsiaPacific --service flavour CE --ngi Russia,CERN,NGI NL

• ... --warning 0 --ngi NGI CZ --service flavour SITE BDII --hours 4 --ngi NGI UK --critical 0 ...

This probe provides much more detailed output. For each chosen service flavour via command line arguments, the

number of inserts in the last ”n” hours is written on a separate line. Also, the complete list of NGI names included as

valid points of origin for the desired service flavours is printed as output. Regarding return codes, it should be noted

that the number of hourly inserts for each service flavour in the argument list is tested against the given thresholds

and generates a return code. Thus, it is possible that we obtain multiple return codes (we are talking about OK,

WARNING and CRITICAL, i.e. normal execution return values; UNKNOWN is a separate situation), but it the end

we can return a singular value. To solve this problem, we combine the results obtained for each service flavour using

the star (*) operation described in the following table.

* OK WARNING CRITICAL

OK OK WARNING CRITICAL

WARNING WARNING WARNING CRITICAL.

CRITICAL CRITICAL CRITICAL CRITICAL

Table 2: Return codes composition (*) operation

4.3 Probe Configuration

The probes are configured according to the NCG specifications mentioned in Section 2.1.2. Here are some configuration

examples:

$SERVICE_TEMPL->{30}->{path} = $NCG::NCG_PROBES_PATH_GRIDMON;

$SERVICE_TEMPL->{30}->{interval} = 30;

$SERVICE_TEMPL->{30}->{timeout} = 30;

19

4 CENTRAL DATA WAREHOUSE MONITORING

$SERVICE_TEMPL->{30}->{retryInterval} = 5;

$SERVICE_TEMPL->{30}->{maxCheckAttempts} = 3;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{native} = ’Nagios’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{probe} = ’ch.cern.sam/MrsCheckDBInserts’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{metricset} = ’nagios’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{config} = {%{$SERVICE_TEMPL->{30}}};

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{flags}->{NOHOSTNAME} = 1;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{flags}->{PNP} = 1;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{parameter}->{’--warning’} = ’10000’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{parameter}->{’--critical’} = ’5000’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{parameter}->{’--host_url’} =

’http://grid-monitoring.cern.ch/’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInserts’}->{parameter}->{’--web_service_path’}

= ’myegi/sam-pi/metricstore_current_load_per_hour?’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{native} = ’Nagios’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{probe}

= ’ch.cern.sam/MrsCheckDBInsertsDetailed’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{metricset} = ’nagios’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{config} = {%{$SERVICE_TEMPL->{30}}};

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{flags}->{NOHOSTNAME} = 1;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{flags}->{PNP} = 1;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{parameter}->{’--warning’} = ’\0’;

0 threshold must be escaped

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{parameter}->{’--critical’} = ’\0’;

0 threshold must be escaped

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{parameter}->{’--host_url’}

= ’http://grid-monitoring.cern.ch/’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{parameter}->{’--web_service_path’}

= ’myegi/sam-pi/metricstore_current_load_per_hour_detailed?profile_name=’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{parameter}->{’--hours’} = ’2’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{attribute}->{NGI_NAME} = "--ngi";

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{attribute}->{PROFILE_NAME} = ’--profile’;

$WLCG_SERVICE->{’ch.cern.sam.MrsCheckDBInsertsDetailed’}->{attribute}->{SERVICE_FLAVOUR_NAME}

= ’--service_flavour’;

$WLCG_NODETYPE->{opsmonitor}->{’GridMon’} = [’ch.cern.sam.MrsCheckDBInserts’,

’ch.cern.sam.MrsCheckDBInsertsDetailed’,];

Some observations are in order. $SERVICE TEMPL is used as a template to provide configuration for multiple

Nagios probes. It provides certain common configuration parameters. Passing ”0” as an integer argument poses a

problem since in Perl it is considered a ”null” or ”false” value. Therefore, ”0” must be escaped as can be seen in the

previous code. Some arguments can be passed via a static file rule (Section 2.1.2) by using the {attribute} key instead

of the {parameter}. In this case, the given argument can be attributed only to a certain host or a certain service (group

of probes) in ncg.localdb. Of course, these parameter passing methods can be combined.

HOST_ATTRIBUTE!grid-monitoring.cern.ch!NGI_NAME!"CERN,NGI_IT,NGI_NL"

HOST_ATTRIBUTE!grid-monitoring-preprod.cern.ch!PROFILE_NAME!"WLCG_CREAM_LCGCE_CRITICAL"

SERVICE_ATTRIBUTE!GridMon!SERVICE_FLAVOUR_NAME!"SRMv2,SITE-BDII"

20

5 CONCLUSION

5 Conclusion

The new tables created in the Central Data Warehouse (METRICSTORE CURR LOAD H, METRICSTORE CURR LOAD M

and METRICSTORE CURR LOAD H DET) will provide a better overview of the hourly and minutely metric data

output. This overview will enable better control and monitoring over the loading of metric results into the Metric

Results Store. Already the two new probes MrsCheckDBInserts and MrsCheckDBInsertsDetailed, which make use of

the data stored in these tables, constitute an initial monitoring subsystem that alerts the human supervisors in case of

abnormal data flow. Moreover, the data gathered permits better control over the data flow in case of unusual situations

by delaying SAM MS LOADDATA.

The purging mechanism is another welcome addition to the MRS database. It ensures automatic cleaning of stale

data and it has determined the creation of new indexes that permit faster deletion. Least but not last, the modifications

brought to the procedures that load data into METRICDATA SPOOL will produce a better data filtering by not

allowing the insertion of metrics that might be considered too old.

21

REFERENCES

References

[1] CERN - The European Organisation for Nuclear Research

http://public.web.cern.ch/public/Welcome.html

[2] Science and Technology Facilities Council - The Large Hadron Collider

http://www.lhc.ac.uk/default.aspx

[3] Worldwide LHC Computing Grid Overview

https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_Documents/4_Presentations/Slides/

2011-list/Markus%20Schulz%20_OpenLabWLCG-2011.pdf

[4] Worlwide LHC Computing Grid

http://lcg.web.cern.ch/LCG/public/

[5] Nagios Core 3.x Documentation

http://nagios.sourceforge.net/docs/3_0/toc.html

[6] Nagios Plug-in Development Guidelines

http://nagiosplug.sourceforge.net/developer-guidelines.html

[7] Nagios::Plugin

http://search.cpan.org/dist/Nagios-Plugin/lib/Nagios/Plugin.pm

[8] Monitoring in GT (Grid Technologies)

http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=0&materialId=slides&confId=

127638

[9] Physics Computing at CERN

https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_Documents/4_Presentations/Slides/

2011-list/H.Meinhard-PhysicsComputing.pdf

[10] CERN - IT Department - Grid Technology

https://it-dep.web.cern.ch/it-dep/gt/

[11] SAM Public - Confluence

https://tomtools.cern.ch/confluence/display/SAMWEB/Home

[12] Probes Development Policy - SAM Documentation

https://tomtools.cern.ch/confluence/display/SAMDOC/Probes+Development+Policy

[13] Regional Grid Monitoring: Introduction and Database Components

http://indico.cern.ch/contributionDisplay.py?contribId=264&confId=55893

[14] White Areas - Monitoring of Grid Services in WLCG

http://indico.cern.ch/conferenceDisplay.py?confId=88718

[15] gLite 3.1 User Guide

https://espace.cern.ch/WLCG-document-repository/Technical%20Documents/gLite-3-UserGuide.pdf

22

http://public.web.cern.ch/public/Welcome.html
http://www.lhc.ac.uk/default.aspx
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_Documents/4_Presentations/Slides/2011-list/Markus%20Schulz%20_OpenLabWLCG-2011.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_Documents/4_Presentations/Slides/2011-list/Markus%20Schulz%20_OpenLabWLCG-2011.pdf
http://lcg.web.cern.ch/LCG/public/
http://nagios.sourceforge.net/docs/3_0/toc.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://search.cpan.org/dist/Nagios-Plugin/lib/Nagios/Plugin.pm
http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=0&materialId=slides&confId=127638
http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=0&materialId=slides&confId=127638
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_Documents/4_Presentations/Slides/2011-list/H.Meinhard-PhysicsComputing.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_Documents/4_Presentations/Slides/2011-list/H.Meinhard-PhysicsComputing.pdf
https://it-dep.web.cern.ch/it-dep/gt/
https://tomtools.cern.ch/confluence/display/SAMWEB/Home
https://tomtools.cern.ch/confluence/display/SAMDOC/Probes+Development+Policy
http://indico.cern.ch/contributionDisplay.py?contribId=264&confId=55893
http://indico.cern.ch/conferenceDisplay.py?confId=88718
https://espace.cern.ch/WLCG-document-repository/Technical%20Documents/gLite-3-UserGuide.pdf

	Introduction
	The LHC and the WLCG
	SAM

	SAM Architecture
	Nagios
	Nagios probes
	The Nagios Configuration Generator
	The Nagios::Plugin Module

	The Metric Results Store

	Central Data Warehouse Tuning
	Gathering Metric Results Store Statistics
	Use Statistics to Determine if Metric Data Should Be Loaded

	Automatically Reject Old Metrics
	Add Oracle Data Purging Mechanism

	Central Data Warehouse Monitoring
	MrsCheckDBInserts Probe
	MrsCheckDBInsertsDetailed Probe
	Probe Configuration

	Conclusion

