
All modern commodity processors support 
performing basic operations on vectors, as opposed 
to single elements. As an example on 256-bit AVX, 4 
64-bit double additions can be performed in parallel 
using a single instruction – no need to loop through 
all elements and add them individually. 

What is vectorization? 

The introduction of AVX in Intel “Sandy Bridge” has 
brought a vector size of 256 bits, soon to increase to 
512 bits in a future Xeon microarchitecture. 
 
This will effectively double the number of elements 
we can process in parallel. What used to be a 2x – 
4x potential performance gap will soon grow to 8x – 
the benefits of vectorization are becoming harder 
and harder to ignore!  
 
The following picture shows how the size of the 
vector registers is evolving over time.  

The ever-increasing vector size 

The goal is to build a high-performance toolkit that 
exploits all the capabilities a modern processor has to 
offer – including high core counts and vectorization. 
 
Particles residing in the same logical volume are 
grouped together into baskets, which are then 
processed in parallel. 

Geant-V 
A new particle simulation toolkit being built 

Our implementation with SIMD has showed good 
performance gains in the geometry navigation. The 
benchmark is based on a toy detector using 4 boxes, 
3 tubes and 2 cones and is in comparison to 
ROOT/5.34.17. Double floating-point precision is 
used. Further improvements except from 
vectorization (caching, template specialization) lets us 
reach speedups exceeding the maximum predicted 
from SIMD alone, in some cases. 

Performance gains 

Currently there are a few appealing options: 
• Letting the compiler autovectorize the loops in the 

code 
• Using Intel® Cilk™ Plus language extensions 
• Using an external SIMD library such as Vc, 

VectorType or Boost::SIMD 
 
Simple loops are easily vectorizable... 
 
for(int i = 0; i < N; i++) { 
    c[i] = a[i] + b[i] 
} 
 
…but the compiler could have trouble with more 
complicated ones, in which case an external library 
might be preferable. 
 
Cilk+ introduces new array notations which extend 
the syntax of C/C++, helping the compiler figure out 
how to vectorize even in more complicated cases. 
 
c[0:N] = a[0:N] + b[0:N] 

How to use? 

Geant-V is a broad collaboration with participation 
from CERN, Fermilab, University of Catania, BARC, 
India, CERN openlab and Intel. 
 
Some material in this poster courtesy of Sandro 
Wenzel (CERN). 

Participants 

Vectorized geometry transport 
A large percentage of CPU time is spent transporting 
particles, calculating their trajectory in the presence of 
a magnetic field and deciding which parts of the 
detector are hit. 
 
A typical task is to find the next hitting boundary and 
get distance to it – using vectorized geometry kernels 
we can perform this operation for multiple particles at 
a time. 

How can HEP applications benefit from vectorization? 
an example from the Geant-V prototype 
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Computational geometry is notorious for having many 
special cases – different arithmetic calculations 
depending on the positions of the shapes and the 
particles. 
 
As an example, a particle hitting the top face of a 
tube requires different treatment than a particle hitting 
the main cylinder sideways. 
 
This poses a challenge in applying vectorization – not 
all particles in a vector will fall under the same case! 
We need to use vector masks to track which 
calculations each particle requires. 

Challenges in the geometry 

Whether it’s predicting how a new proposed particle 
detector will behave, calculating cosmic ray induced 
doses for electronics used in space missions, or 
estimating radiation doses of cancer treatments, 
particle simulation is an invaluable tool for many fields 
in science. 
 
The CPU-intensive nature of this process has 
triggered the search for increased efficiency – current 
state of the art software is multi-threaded but not yet 
vectorized. 

Particle simulation 
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