
All modern commodity processors support
performing basic operations on vectors, as opposed
to single elements. As an example on 256-bit AVX, 4
64-bit double additions can be performed in parallel
using a single instruction – no need to loop through
all elements and add them individually.

What is vectorization?

The introduction of AVX in Intel “Sandy Bridge” has
brought a vector size of 256 bits, soon to increase to
512 bits in a future Xeon microarchitecture.

This will effectively double the number of elements
we can process in parallel. What used to be a 2x –
4x potential performance gap will soon grow to 8x –
the benefits of vectorization are becoming harder
and harder to ignore!

The following picture shows how the size of the
vector registers is evolving over time.

The ever-increasing vector size

The goal is to build a high-performance toolkit that
exploits all the capabilities a modern processor has to
offer – including high core counts and vectorization.

Particles residing in the same logical volume are
grouped together into baskets, which are then
processed in parallel.

Geant-V
A new particle simulation toolkit being built

Our implementation with SIMD has showed good
performance gains in the geometry navigation. The
benchmark is based on a toy detector using 4 boxes,
3 tubes and 2 cones and is in comparison to
ROOT/5.34.17. Double floating-point precision is
used. Further improvements except from
vectorization (caching, template specialization) lets us
reach speedups exceeding the maximum predicted
from SIMD alone, in some cases.

Performance gains

Currently there are a few appealing options:
• Letting the compiler autovectorize the loops in the

code
• Using Intel® Cilk™ Plus language extensions
• Using an external SIMD library such as Vc,

VectorType or Boost::SIMD

Simple loops are easily vectorizable...

for(int i = 0; i < N; i++) {
 c[i] = a[i] + b[i]
}

…but the compiler could have trouble with more
complicated ones, in which case an external library
might be preferable.

Cilk+ introduces new array notations which extend
the syntax of C/C++, helping the compiler figure out
how to vectorize even in more complicated cases.

c[0:N] = a[0:N] + b[0:N]

How to use?

Geant-V is a broad collaboration with participation
from CERN, Fermilab, University of Catania, BARC,
India, CERN openlab and Intel.

Some material in this poster courtesy of Sandro
Wenzel (CERN).

Participants

Vectorized geometry transport
A large percentage of CPU time is spent transporting
particles, calculating their trajectory in the presence of
a magnetic field and deciding which parts of the
detector are hit.

A typical task is to find the next hitting boundary and
get distance to it – using vectorized geometry kernels
we can perform this operation for multiple particles at
a time.

How can HEP applications benefit from vectorization?
an example from the Geant-V prototype

by Georgios Bitzes
georgios.bitzes@cern.ch

www.cern.ch/openlab

Computational geometry is notorious for having many
special cases – different arithmetic calculations
depending on the positions of the shapes and the
particles.

As an example, a particle hitting the top face of a
tube requires different treatment than a particle hitting
the main cylinder sideways.

This poses a challenge in applying vectorization – not
all particles in a vector will fall under the same case!
We need to use vector masks to track which
calculations each particle requires.

Challenges in the geometry

Whether it’s predicting how a new proposed particle
detector will behave, calculating cosmic ray induced
doses for electronics used in space missions, or
estimating radiation doses of cancer treatments,
particle simulation is an invaluable tool for many fields
in science.

The CPU-intensive nature of this process has
triggered the search for increased efficiency – current
state of the art software is multi-threaded but not yet
vectorized.

Particle simulation

May 2014

™

	Slide Number 1

