
Testbed
Configuration
and
Management

Georgi Zlatkov

CERN openlab
5th August 2011

http://www.cern.ch/openlab

oTN­2011­01 openlab Summer Student Report

Testbed configuration and management
Student: Georgi Zlatkov
Supervisors: Andrew Elwell & Tomasz Wolak
5th August 2011
Version 1

Distribution: Public

Table of Contents

Abstract..3

Introduction..4

1 System configuration with Puppet...5

1.1 What is Puppet?...4

1.2 How Puppet work?...1

1.3 Deploying Puppet..1

1.4 Basics of Puppet's Language...1

1.5 Advanced Configuration with Puppet..1

2 Using Puppet at CERN...4

2.1 Puppet for configuration and management of testbeds..1

2.2 Sample module..1

2.3 Resources..1

Summary..1

Bibliography...1

Page 2 from 17

Abstract

The aim of this openlab summer student project was to evaluate and deploy the IT

system management tool “Puppet” in a test environment, which could be used for

large-scale system configuration and management at CERN and on the WLCG1. The

use of this tool would allow centralized and automated configuration and

management of production systems and testbeds alike, improved reliability, cross-

platform support and better compliance with CERN's policies such as security.

Page 3 from 17

Introduction

In this report an introduction to the IT systems management tool “Puppet” will be

given, a brief explanation of its features and ideas on how could be used to manage

testbeds at CERN and on the WLCG. The first chapter explains Puppet functionalities,

how it works and how to deploy a basic Puppet's system. The second part discusses

how and why Puppet would be useful to CERN, a sample iptables module I wrote for

CERN and a list of module repositories.

1 http://lcg.web.cern.ch/LCG/public/overview.htm

Page 4 from 17

http://lcg.web.cern.ch/LCG/public/overview.htm

1 Puppet

Configuration and management of a large number of systems often comes with a lot

of repetitive tasks such as installing the same packages, configuring services to etc.

on every machine. Apart from that a system administrator is required regularly

ensure that systems stick to the defined configurations and changes are applied in

controlled manner. This is not only time consuming but usually hard to achieve. A tool

to automate this process is needed.

1.1 What is Puppet?

The official description of Puppet states that “Puppet is an open-source next-

generation server automation tool. It is composed of a declarative language for

expressing system configuration, a client and server for distributing it, and a library

for realizing the configuration.”[1] Puppet combines both the ability to apply a specific

host configurations and to ensure that they will be persistent. It is written in Ruby and

released under Apache 2.0 license after version 2.7.0. Released for a first time in

2005 it continues to evolve rapidly with last stable release from 22th July 2011 (2.7.1).

Puppet is design to be a cross-platform product. Currently it supports a wide variety of

operating systems including most Linux distributions, Unix, Unix-like systems, and

after version 2.6 a basic support of Microsoft Windows with the idea to improve and

extend it during 2011.[3]

1.2 How Puppet works?

What makes Puppet a powerful system automation tool is its simplicity of adding new

configuration policies, applying client specific instructions and making sure that a

system complies with the defined end state. A system managed with Puppet is

divided into two parts: central server called puppetmaster and the clients called

Page 5 from 17

puppets or nodes. A puppet master can also be a node. The puppetmaster stores the

configuration policies and is responsible for applying them and to ensure the end

state of the nodes.[1]

System managed with Puppet
Fig. 1

A system administrator describes the desired end state of a system into manifests

which are written in Puppet's own declarative language or in Ruby DSL1.[3] The idea

behind the language used for manifests is to be as human readable as possible,

without loss of functionality:

class sudo {

 file { "/etc/sudoers":

 ensure => present,

 owner => "root",

 group => "root",

 mode => 440,

 }

}

1 http://projects.puppetlabs.com/projects/1/wiki/Ruby_Dsl

Page 6 from 17

http://projects.puppetlabs.com/projects/1/wiki/Ruby_Dsl

This sample code when applied will ensure that the file is present on the client

machine, its owner and group are “root” and its permissions are set to “440”.

On a regular basis the Puppet daemon on the

client system will try to connect to its

puppetmaster and download a catalog of the

current active manifests. The catalog is compared

to the system's configuration and the system is

reconfigured to match the desired end state.

1.3 Deploying Puppet

Deploying Puppet on a system is a fast and

straightforward process. Most of the operating

systems offer Puppet in their package repositories

but installation from source is also possible1.

Once installed, Puppet needs to be configured

before manifests can be applied.

 Defined state of a client

 Fig. 2

First identity verification between the master and node machine needs to be

performed. An identity verification in Puppet is performed using SSL certificates. Thus

each client needs to request a personal certificate issued by the puppetmaster:

puppet agent --test --server puppet.example.com --waitforcert 10

Back on the puppetmaster we check for certificate request using “puppetca”, which is

shipped with the Puppet package and is responsible for certificate management

Page 7 from 17

puppetca –list

and accept the request.

puppetca --sign client.example.com

This gives us a server and a client which have mutually trusted connection based on

Puppet's own certificate authority. The last step is to start Puppet's client daemon

“puppetd” on the client

/usr/sbin/puppetd

and it will report to the master on a regular basis.[4]

1.4 Basics of Puppet's language

Puppet's system configuration includes a collection of manifests written in Puppet's

own declarative language. This language is based on a resource abstraction layer

(RAL) which is used by Puppet to read and modify the state of resources on a client

system in the following order: (1) Puppet checks what state a resource should be in,

(2) compares it to the current state and (3) makes any necessary changes to reach

the described state.[5]

Each resource has a name and a list of attributes which hold information about its

state. In the example from the previous chapter “/etc/sudoers” was the resource's

name and from its attributes we used “ensure”, “owner”, “group” and “mode”. Most

of the resources have one attribute whose value defaults to its name, in our case that

is the “path” attribute. More information about Puppet's built-on resources and the

available attributes can be found in the reference section of the PuppetLab's webite1

or on the Puppet core types cheat sheet2.

1 http://docs.puppetlabs.com/references/2.7.0/type.html
2 http://projects.puppetlabs.com/projects/puppet/wiki/Core_Types_Cheat_Sheet/

Page 8 from 17

http://projects.puppetlabs.com/projects/puppet/wiki/Core_Types_Cheat_Sheet/
http://docs.puppetlabs.com/references/2.7.0/type.html

Applying a configuration on a system must be done in a specific order. For example

before starting a service it first needs to be installed and configured. In Puppet's

manifests we need to specify a relation between two resources so they can be

executed in a logical order. To do this we use the “before” and “require” attributes for

ordering and “notify” and “subscribe” when we need a resource to react to a change

in another resource. In such a case “before” is used in the earlier resource and

“require” in the later. The same dependency applies for “notify” and “subscribe”. An

example is a simple manifest to configure SSH on a client system[4]:

package { 'openssh':

ensure => present,

}

file { '/etc/ssh/sshd_config':

ensure => file,

source => '/etc/puppet/files/sshd_config',

require => Package['openssh'],

}

service { 'sshd':

ensure => running,

subscribe => File['/etc/ssh/sshd_config'],

}

Puppet's language also consists of variable declaration and if-else and case

statements which are similar to the one used in any other programming languages.

More information about them could be found on PuppetLab's website1.

Another important feature of Puppet is the stash of pre-assigned variables with host

specific information by Facter which could be extended with custom facts1 if needed.

The custom facts are written in Ruby and added as plugins to Puppet.

1 http://docs.puppetlabs.com/guides/language_guide.html

Page 9 from 17

http://docs.puppetlabs.com/guides/language_guide.html

1.5 Advanced configuration with Puppet

Classes1

A class is a collection of resources which are applied together and could be specific to

a host or operating system.[1]

Modules1

A module is a directory which combines classes and any additional files that may be

needed. Modules help us to collect configurations for a single application in a tree

structure and later implement them as one.[1]

Parameterized classes2

Parameterized classes are declared the same way as the classical classes but a list of

parameters is pasted to them when called. This allows us to change the behavior of a

class depending on its use.[1]

File serving capability3

Quite frequently we will need to transfer static files to the client system. For that

purpose Puppet has a file serving capability which allows us to use “puppet:///” as a

prefix in the source attribute of a resource to tell the client to retrieve a file from its

master's file server. By default the file server path is set to “/etc/puppet/module/” but

could be changed if needed.[1]

1 http://docs.puppetlabs.com/learning/modules1.html
2 http://docs.puppetlabs.com/guides/parameterized_classes.html
3 http://docs.puppetlabs.com/guides/file_serving.html

Page 10 from 17

http://docs.puppetlabs.com/guides/file_serving.html
http://docs.puppetlabs.com/guides/parameterized_classes.html
http://docs.puppetlabs.com/learning/modules1.html

Templates1

Templates allow us to manage files when their content depend on an external factor

like the host or operating system. They offer a convenient way to create files with

host specific information.[1]

Virtual Resources2

A Virtual Resource is not by default sent and executed on the client but it needs to be

called instead. It is marked as virtual by adding “@” infront of its specification. This is

useful when we need to realize a resource more than one time which is not allowed

when using classical resources.[1]

Puppet Version Control3

A good practice is to use a version control system to store manifests and other

configuration files.[1]

1 http://docs.puppetlabs.com/guides/templating.html
2 http://docs.puppetlabs.com/guides/virtual_resources.html
3 http://projects.puppetlabs.com/projects/1/wiki/Puppet_Version_Control

Page 11 from 17

http://projects.puppetlabs.com/projects/1/wiki/Puppet_Version_Control
http://docs.puppetlabs.com/guides/virtual_resources.html
http://docs.puppetlabs.com/guides/templating.html

2 Using Puppet at CERN

2.1 Puppet for configuration and management of testbeds

The standard CERN tool (Quattor) for hosting and managing testbeds lacks the ability

to manage different operating systems than SLC. On the other hand Puppet is build

around the idea of cross-platform compatability. Equipped with its own declarative

programming language and the ability to configure and manage a large number of

hosts it corresponds to the needs of CERN.

2.2 Sample module

This is a sample module I wrote as part of my project on request from my supervisor.

Its purpose is to configure the “iptables” service on a client hosts by combining

chunks of iptables rules and applying the configuration on the host.

The first part of the manifest is

class iptables($iptables_rules) {

 case $operatingsystem {

 "Scientific","Fedora": { class { "iptables::redhat": iptables_rules =>
$iptables_rules, } }

 "Debian","Ubuntu": { class { "iptables::debian": iptables_rules =>
$iptables_rules, } }

 default: { notify { "Unrecognised distribution": } }

 }

}

I define a parameterized class which takes as a parameter list of files containing the

iptables rules. Then depending on the host's operating system another class is called

and the parameters are transferred to it.

Page 12 from 17

In case the pre-assigned variable “$operatingsystem” is equivalent to Scientific or

Fedora the “iptables::redhat” class is called. After ensuring that the “iptables”

package is installed it define a service resource. Because “iptables” is a “no running”

process we need to trick Puppet that the service is always running so when a change

on the configuration file occurs it will apply it right away.

service { "iptables":

 require => Package["iptables"],

 hasstatus => true,

 status => "true",

 hasrestart => false,

 }

Last we need to write the configuration file. The chucks of iptables rules are

transmitted to the template which write them on the file “/etc/sysconfig/iptables” and

notifies the service.

file { "/etc/sysconfig/iptables":

 ensure => present,

 owner => "root",

 group => "root",

 mode => "0640",

 content =>
template("/etc/puppet/modules/iptables/templates/iptables.erb"),

 require => Package["iptables"],

 notify => Service["iptables"],

 }

Page 13 from 17

In case the pre-assigned variable “$operatingsystem” is equivalent to Debian or

Ubuntu we again ensure that the “iptables” package is installed and write the

“iptables” instructions to “/etc/default/iptables”. Debian based systems apply the

“iptables” rules using the command “/sbin/iptables-restore” so we define an “exec”

resource which execute the command

exec { "iptables_apply":

 command => "/sbin/iptables-restore < /etc/default/iptables",

 }

2.3 Resources

Combining multiple files which are related to a single application in modules is a good

practice. There are many repositories where one find modules written by skillful

Puppet users. These are some of them.

Puppet Forge: http://forge.puppetlabs.com/

This is the official repository of PuppetLabs called PuppetForge. It consists of all types

of modules which are separated into categories for easy searching.

Ricardo Brito Da Rocha's github repository: https://github.com/rochaporto/repositories

A lot of useful CERN specific modules written by a member of the IT-GT group at

CERN.

David Schmitt's git repository: http://git.black.co.at/

David Schmitt's repository offers webhosting automation modules.

Eshao: https://github.com/eshao/puppet

Eshao is a github repository for modules for FreeBSD. Its main idea is for writing

manifests in a simple and clean way.

Page 14 from 17

https://github.com/eshao/puppet
http://git.black.co.at/
https://github.com/rochaporto/repositories
http://forge.puppetlabs.com/

Example42: http://www.example42.com/

Dedicated to Puppet documentation, tools, tutorials and sample instructions, it also

consists of a large number of modules including the “puppi” tool for deployment

automation.

Page 15 from 17

http://www.example42.com/

Summary

The IT-GT group is responsible for hosting and managing testbeds for internal users and

EMI. The need of a cross-platform automating system administration tasks system suggests

the use of tool like Puppet. It has a large developer base, a language specifically designed

for configuration of servers, good documentation, multiple platform support and a fast

evolving product. For the needs of the IT-GT group Puppet could be extended with CERN

specific modules which to replace the current system.

Page 16 from 17

Bibliography

[1] “Puppet Documentation”, Puppet Labs, 13 May 2011,

<http://downloads.puppetlabs.com/puppet/puppet.pdf> [accessed 4 August 2011]

[2] “Puppet versus Chef: 10 reasons why Puppet wins”, John Arundel, 1 December

2010,

<http://bitfieldconsulting.com/puppet-vs-chef> [accessed 4 August 2011]

[3] “Puppet (software)”, Wikipedia, The Free Encyclopedia, 8 July 2011,

<http://en.wikipedia.org/wiki/Puppet_%28software%29>

[accessed 4 August 2011]

[4] “Automate System Administration Tasks with Puppet”, Sean Walberg, 1 December

2008,

<http://www.linuxjournal.com/magazine/automate-system-administration-tasks-

puppet?page=0,0> [accessed 4 August 2011]

[5] “Zero to puppet in one day”,

<http://finninday.net/wiki/index.php/Zero_to_puppet_in_one_day>

[accessed 4 August 2011]

Page 17 from 17

http://finninday.net/wiki/index.php/Zero_to_puppet_in_one_day
http://www.linuxjournal.com/magazine/automate-system-administration-tasks-puppet?page=0,0
http://www.linuxjournal.com/magazine/automate-system-administration-tasks-puppet?page=0,0
http://en.wikipedia.org/wiki/Puppet_(software)
http://bitfieldconsulting.com/puppet-vs-chef
http://downloads.puppetlabs.com/puppet/puppet.pdf

	Abstract
	Introduction
	class sudo {
	file { "/etc/sudoers":
	ensure => present,
	owner => "root",
	group => "root",
	mode => 440,
	}
	}

	1.3 Deploying Puppet
	puppet agent --test --server puppet.example.com --waitforcert 10
	puppetca –list
	puppetca --sign client.example.com
	/usr/sbin/puppetd
	package { 'openssh':
	ensure => present,
	}
	file { '/etc/ssh/sshd_config':
	ensure => file,
	source => '/etc/puppet/files/sshd_config',
	require => Package['openssh'],
	}
	service { 'sshd':
	ensure => running,
	subscribe => File['/etc/ssh/sshd_config'],
	}
	class iptables($iptables_rules) {
	case $operatingsystem {
	"Scientific","Fedora": { class { "iptables::redhat": iptables_rules => $iptables_rules, } }
	"Debian","Ubuntu": { class { "iptables::debian": iptables_rules => $iptables_rules, } }
	default: { notify { "Unrecognised distribution": } }
	}
	}
	service { "iptables":
	require => Package["iptables"],
	hasstatus => true,
	status => "true",
	hasrestart => false,
	}
	file { "/etc/sysconfig/iptables":
	ensure => present,
	owner => "root",
	group => "root",
	mode => "0640",
	content => template("/etc/puppet/modules/iptables/templates/iptables.erb"),
	require => Package["iptables"],
	notify => Service["iptables"],
	}
	exec { "iptables_apply":
	command => "/sbin/iptables-restore < /etc/default/iptables",
	}

