A Graphical Visualizer for Benchmark Data

Author: Francisco Pinto Supervisor: Andrzej Nowak

CERN openlab, September 2012

Contents
Abstract 2
Introduction 2
Implementation 4
Visualizer 4
Structure 5
Additional features 6
Benchmark 7
Modifications 7
Performance and scalability 8
Running the program 8
Conclusion 9
Appendix 9
Configuration 9
Section Connection 10
Section Histogram 10
References 14

Abstract

The aim of this document is to describe an openlab Summer Student Program
project consisting of building a generic graphical visualizer for benchmark data.

Introduction

CERN openlab, through the various collaborations it has with leading industry
partners, often encounters the task of analyzing, testing and benchmarking
bleeding edge hardware. Some of the benchmarks employed make use of toolkits
used in real High Energy Physics applications, such as the Geant! suite, used in
simulations of the passage of particles through matter. The goal of this project
was to investigate Geant’s interfaces and structure and, with the information
gathered, build a tool capable of interpreting the output of a benchmark built
with Geant and visualizing it in a visually attractive way.

The visualizer’s job is to parse the output produced by the benchmark and then
display visual output on a histogram. It also has the ability of displaying some
related statistics (e.g. event count, frames per second, etc.).

The program is implemented in the Python’? programming language, using
pygame®, a library for Python game development and PyOpenGL*, OpenGL
bindings for Python.

Provisions were made to make the resulting program easily configurable and
modifiable:

e Aesthetic configurations (e.g. colors, margins, typefaces) can be made by
editing a configuration file.

e Data related configuration (e.g. adding or removing statistical information
from the sidebar) can be made by modifying the source code itself.

The program was built taking into account that it should have a minimal amount
of dependencies, be cross-platform and be modular enough to be extensible to
other benchmarks. Since maintainers are likely to have little or no OpenGL
knowledge, the code should be well documented and contain some examples on
how to extend it to do common tasks (e.g. render a 3D scene, capture user input,
etc.).

Thttps://geant4.web.cern.ch/
2http://www.python.org/
Shttp://www.pygame.org/
4http://pyopengl.sourceforge.net/

https://geant4.web.cern.ch/
http://www.python.org/
http://www.pygame.org/
http://pyopengl.sourceforge.net/

1This is a centered, wrapped, antialiased, Uficgbé title

0]

PARTICLE

z 4226
2
|||III| A

pPoptp opopop popop GeRN

openlab

Figure 1: The visualizer running. Title (1), Display area, showing the histogram
(2), Sidebar, displaying some stats and the logo (3)

Implementation

Visualizer

A class named Histogram (Histogram.py) concerns itself with windowing and
displaying data. The data collection is made by a single function located in
main.py.

The data collection and display code are modular and separate. The flow of
information is roughly as follows:

4) a)

Remote Local
Machine SSH Machine
r Visualizer \
< Command <
\toexecute Display thread
AN J
N -
) w
Output Input-lfﬁlecking
Benchmark {stdout) thread

'
.) y

Figure 2: The architecture of the program

1. A connection is established from the local to the remote machine over SSH.

2. A command is sent over the wire for the remote machine to execute. The
benchmark starts running.

3. The benchmark outputs some data.
4. A thread checking for input collects, interprets and stores it.

5. After a time-interval elapses, all samples collected in that time interval are
sent to the Histogram instance.

6. The Histogram instance, which checks every frame for updates to the

dataset, receives the updated data and displays it accordingly.

Initially, a prototype of the visualizer was implemented in C++, using GLFW?
for windowing. However, Unicode support proved to be rather quirky and

Shttp://www.glfw.org/

http://www.glfw.org/

inconsistent across platforms. This and general portability concerns led to a
Python port of the existing codebase. This decision made some tasks much
easier (e.g. the configuration file parsing was done using a Python standard
library module) as well as generally increasing productivity due to the greater
expressiveness of Python and faster development cycle as compared to C++. The
switch to Python initially caused some performance concerns due to the overhead
introduced by the Python runtime. After testing, however, the visualizer’s
performance was proved to be more than adequate for the task at hand.

Structure

What follows is an enumeration of the most relevant functions and methods,
together with a short explanation of their relevance to the overall structure of
the program. The functions/methods are organized by the file they are in. Refer
to the source code’s documentation for additional clarifications.

main.py

update_histogram_real_data(histogram) This function:

e Connects via ssh to a remote machine;
e Executes a command remotely;
e Receives and parses output from that command;

e Sends data collected to the Histogram instance passed as an argument.

update_histogram_fake_data(histogram) This function is similar to the
above, except it generates random data to to update the histogram with. Useful
for testing.

Histogram.py

run This is the display loop, where the graphics context is, at first, set up. The
elements composing the visualizer are then periodically rendered and any user
input handled.

setup_* Methods prefixed by setup_ generally execute simple operations that
are rarely (if ever) repeated. setup_ortho, for example, prepares the graphics
environment for 2D drawing.

render_* Methods prefixed by render_ do the actual drawing of geometry to
the window.

load_* Methods prefixed by load_ concern themselves with filesystem I/0O
operations. Currently, this only means texture loading.

calculate_*x These methods calculate the position of a given element inside
the viewport. These are generally called once at startup and again when the
viewport is resized.

handle_* These methods process events, such as user input (handle_user_actions)
or a window resize (handle_resize).

build_* Methods prefixed by build_ generally process data to make it usable
in the visualization.

An important case is build_stats. This is the method that should be modified
in order to change which data appears on the sidebar. build_stats collects the
values to be shown on the sidebar in a list. These values are then rendered as
text to a texture. The textures are only rebuilt if the values change.

Additional features

There were a few features that were added to serve mostly as examples for future
development.

Image monitoring The visualizer can monitor an image for changes and
render it. It operates by reloading the image on a periodic interval. Both the
image’s path and the duration of the interval can be set using the configuration
file (see the appendix for further info).

3D scene rendering An interactive 3D scene can be rendered. At the moment,
the scene is a simple flat-shaded sphere. It can be zoomed, panned and rotated
by using the mouse. The mouse input handling itself serves as an example of
handling mouse input such as dragging, button presses/releases, etc.

Speedometer A simple speedometer was added. It can represent a single
value on a dial (currently, the maximum value on the histogram). Configuration
should be done using the configuration file (see the appendix for further info).

Benchmark

The benchmark used was a parallelized version of Geant’s test40, commonly
refered to as test40p. This parallelization was achieved thanks to the work
Gene Cooperman and Xin Dong (Northeastern University) did in collaboration
with CERN openlab [1].

It is important to note that test40 is a toy benchmark; One of the final objectives
of this work is to visualize CMS data.

Modifications

test40 was slightly modified to print relevant data after Geant’s verbosity
switches proved insufficient:

e /run/verbose produced nothing of interest
e /event/verbose produced nothing of interest

e /tracking/verbose produced track information. An histogram of the
particles observed can be produced by looking at track data. However, the
amount of data produced was far too large (around 400MB for 400 events)
for this to be a viable solution.

The PrimaryGeneratorAction: :GeneratePrimaries method was modified to
allow operation in 3 different modes, which differ in the method of choice of
particle to be fired from the particle gun:

e RANDOM_FROM_TABLE - a particle from Geant’s G4ParticleTable is pseudo-
randomly chosen.

e RANDOM_FROM_LIST - a particle from a predefined list of particles is pseudo-
randomly chosen. The list contains only particles which make for a CPU
intensive benchmark.

e ELECTRON - only electrons. This is the original, pre-modification, operating
mode.

The choice is governed by a #define macro located in PrimaryGeneratorAction.cc,
for example:

#define CHOICE RANDOM_FROM_LIST

This method is called every time an event occurs. Output printed is the name
of the chosen particle in the following format:

Name: e-

In this case, a single electron was fired from the particle gun.

Note that other benchmarks can be made compatible with the visualizer by
applying the changes described above.

Performance and scalability

Modifying the benchmark to print data to stdout raises some performance
concerns:

e Printing is a relatively expensive operation. Since printing isn’t that
frequent, this is unlikely to be a problem.

e In a parallel environment, having multiple writers to stdout may cause
writers to wait for the lock’s release. Since every thread only prints every
few tens of milliseconds, printing is unlikely to be a bottleneck unless the
number of threads is significantly high.

The maximum number of threads the benchmark was tested with was 16 on a
dual Xeon L5520 workstation (total of 8 cores, 2 threads per core). Using this
machine, the benchmark was run 10 times on mode ELECTRON, with an input file
specifying 400 events. The time of experiments was then measured with output
enabled and then disabled.

Output enabled Output disabled
15.647 sec. 15.697 sec.

Table 1: Averaged time of experiments
over 10 runs

From these figures, we can conclude that for this specific setup, the overhead
introduced by having the program output to stdout is negligible.

Running the program
The visualizer’s dependencies are:

e Python 2.6
e pygame 1.7.1
e PyOpenGL 3.0.1-1

The version numbers represent the earliest version the program was tested with
— it might run on earlier versions or break with newer ones.

The program can be run by running main.py. Do note that before running the
program, you should configure section Connection of the config file. See the
appendix for instructions on how to do so.

Conclusion

The result of this work is a cross-platform visualizer for benchmark data. Python
proved to be an adequate implementation language for simple scientific visualiza-
tion when coupled with pygame and PyOpenGL. Even though pygame is meant
for videogame development, the library was very useful and easy to develop with,
since the two fields heavily rely on computer graphics and share characteristics.

Future development of the visualizer is likely to benefit from a switch to an
object oriented paradigm. Even though the current codebase was built with
modifiability in mind, to have the visualizer’s elements as objects would be useful
if future users would like to have, for example, two histograms. Adding new
kinds of elements would also be cleaner.

From what was learned about Geant4, it is safe to conclude that it is not ready
for this sort of visualization: Geant4’s output tends to be utilitarian. Indeed,
the manual mentions this limitation [2]. It might have been possible to do
this kind of work using only Geant4-provided tools, but it would likely not be
straightforwards. On top of this, using parallel benchmarks such as test40p
would have been much harder, since Geant4 has no support for multithreaded
graphics.

Appendix

Configuration

A file named config.cfg is included with the visualizer. This file follows the
INT informal standard. An INI file contains properties, organized into sections.
A property looks like this:

name = value

A section declaration looks like this:

[ExampleSection]

The following is an overview of the available properties organized by their
respective section.

Section Connection

COMMAND = cd ~/test40/ && ./test40 test40.in.1 2

This specifies command that shall be executed upon connection to the remote
machine.

HOST = example.com

The remote host’s name.

USERNAME = someusername

The username that will be used for login on the remote machine.

PASSWORD = somepassword

The password respective to the username above.

Section Histogram

WINDOW_WIDTH = 1000
WINDOW_HEIGHT = 750

These two properties govern the initial window size in pixels.
FRAMES_PER_SECOND = 60

The maximum frames per second the visualizer will render. This is an approxi-
mation; for a value of 60 the actual number of frames rendered per is around 61
or 62.

START_FULLSCREEN = 0

Boolean switch to make the visualizer start in fullscreen mode. 1 means “true”,
0 means “false”.

HISTOGRAM_VISIBLE = 1
TARGET _IMAGE_VISIBLE = 0
SPEEDOMETER_VISIBLE = 0O
SPHERE_VISIBLE = 0O

10

Boolean switches that govern which elements are visible when the visualizer
starts.

FONTS_DIR = fonts/
LABELS_DIR = labels/
LOGOS_DIR = logos/

Paths for the directories containing fonts, labels for the histogram and the logo.
Can be absolute or relative.

TEXTURE_EXTENSION = .png
The extension for all textures (labels, logos).
LOGO_PATH = cernplusopenlab

The filename for the logo (minus the extension), which should be placed inside
the directory specified by LOGOS_DIR.

LOGO_HEIGHT PERCENT = 60
The ratio, in percentage, of the logo’s height to the logo’s width.

SIDE_MARGIN_PERCENT =
BOTTOM_MARGIN_PERCENT
TOP_MARGIN_PERCENT = 2

5
=7

The margins for the histogram expressed as a percentage.
DIVIDER_LOCATION_PERCENT = 75

The divider’s position, expressed as a percentage of the window width, counting
from the left.

CAPTION_MARGIN = 3
STAT_MARGIN = 120

The margins, in pixels, for the captions and values in the sidebar. STAT_MARGIN
is the distance, in pixels, between a caption/value pair and CAPTION_MARGIN is
the distance, in pixels, from the caption to the value it refers to.

STATS_TOP_MARGIN_PERCENT = 25

11

The distance, expressed as a percentage of the window’s height, from the top of
the viewport to the first caption/value pair in the sidebar.

TITLE_MARGIN_PERCENT = 7
The padding around the title expressed as a percentage of the window’s height.
BAR_WIDTH_PERCENT = 90

The margin around each bar on the histogram. Taking 90% as an example value,
the bar occupies 90% of the total width possible for a bar (i.e. it has 5% margin
on each side). Values greater than 100% are possible and would make the bars
overlap.

ANIMATION_DURATION = 0.5
The duration, in seconds, for the animation.

BAR_COLOR_RED =
BAR_COLOR_GREEN
BAR_COLOR_BLUE = 1
BAR_COLOR_ALPHA = 1

0.3
= 0.3

BACKGROUND_COLOR_RED =
BACKGROUND_COLOR_GREEN
BACKGROUND_COLOR_BLUE = 1
BACKGROUND_COLOR_ALPHA = 1

1
=1

DIVIDER_COLOR_RED =
DIVIDER_COLOR_GREEN
DIVIDER_COLOR_BLUE = 0O

DIVIDER_COLOR_ALPHA = 0.3

0
=0

CAPTION_FONT_COLOR_RED =
CAPTION_FONT_COLOR_GREEN
CAPTION_FONT_COLOR_BLUE = 0
CAPTION_FONT_COLOR_ALPHA = 1

0
=0

VALUE_FONT_COLOR_RED =
VALUE_FONT_COLOR_GREEN
VALUE_FONT_COLOR_BLUE = 0
VALUE_FONT_COLOR_ALPHA = 1

0
=0

TITLE_COLOR_RED = 0

12

TITLE_COLOR_GREEN = 0
TITLE_COLOR_BLUE = 0
TITLE_COLOR_ALPHA = 1

Colors for, respectively:

e Bars in the histogram;

e Background,;

Divider (i.e. the bar between the histogram and sidebar);

Captions (the text under each value in the sidebar);

Values (the values in the sidebar);

Title.

Every value should be in the [0, 1] interval.

WINDOW_TITLE = Histogramming!

The window’s title.

TITLE_TEXT = This is a centered, wrapped, antialiased, ufiiggbé title
The title that should appear at the top of the viewport.

TITLE_FONT_PATH
TITLE_FONT_SIZE = 32

VALUE_FONT_PATH = DejaVuSans-Extralight.ttf
VALUE_FONT_SIZE = 72

CAPTION_FONT_PATH = DejaVuSans-Extralight.ttf
CAPTION_FONT_SIZE = 16

DejaVuSans-Extralight.ttf

Paths for the typefaces for the title, values and captions, respectively. These
should be placed in the directory specified as FONTS_DIR.

TARGET_IMAGE_PATH = test_images/target.png
TARGET_IMAGE_CHECKING_INTERVAL = 3 ; Seconds

These two properties are related to the monitored, or “target”, image. You must
specify which image you want to monitor (PATH) and the maximum interval
between checks (CHECKING_INTERVAL).

13

SPEEDOMETER_DIAL_PATH = speedometer/speedometer.png
SPEEDOMETER_NEEDLE_PATH = speedometer/needle.png

These two properties specify the path to the images that shall be used to represent
the speedometer’s two components: the dial and the needle.

SPEEDOMETER_QOFFSET = 20 ; px

The vertical offset to the speedometer’s axis.
NEEDLE_OFFSET = -15 ; px

The vertical offset to the needle’s axis.

SPEEDOMETER_START_ANGLE = 270
SPEEDOMETER_END_ANGLE = 90
SPEEDOMETER_MAX_VALUE = 5000

These three properties are related to the way the needle moves. The origin is 12
o’clock and the angles are measured clockwise. In this case, the needle starts
at 270 degrees, ends at 90 degrees (moving clockwise, as previously noted) and
spans a measurement interval of 0 to 5000 units.

References

[1] X. Dong and G. Cooperman, “Thread Parallelism for Geant4,” 13th Geant/,
Collaboration Kobe Workshop, 2008.

[2] Geant4Collaboration, “Geant4d User’s Guide for Application Developers,
Appendix 2: Histogramming,” 2012.

14

	Abstract
	Introduction
	Implementation
	Visualizer
	Structure
	Additional features

	Benchmark
	Modifications
	Performance and scalability

	Running the program
	Conclusion
	Appendix
	Configuration
	Section Connection
	Section Histogram

	References

