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With the startup of the LHC experiments at CERN, the involvedcommunity is now focusing on

the analysis of the collected data. The complexity of the data analyses will be a key factor for find-

ing eventual new phenomena. For such a reason many data analysis tools have been developed in

the last several years, which implement several data analysis techniques. Goal of these techniques

is the possibility of discriminating events of interest andmeasuring parameters on a given input

sample of events, which are themselves defined by several variables. Also particularly important

is the possibility of repeating the determination of the parameters by applying the procedure on

several simulated samples, which are generated using MonteCarlo techniques and the knowledge

of the probability density functions of the input variables. This procedure achieves a better es-

timation of the results. Depending on the number of variables, complexity of their probability

density functions, number of events, and number of sample togenerate, the whole procedure can

be high CPU-time consuming. In this paper we show how the Monte Carlo generation of the

events for each simulated sample can be parallelized using OpenMP to scale over multi-cores in

a single computational node.
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1. Introduction

In the last years many complex techniques have been used in the High Energy Physics (HEP)
community, such as maximum likelihood, neural networks, and boosted decision trees [1, 2]. These
techniques are used to analyze the huge amount of data collected by the experiments. Data are a
collection of independentevents, an event being the measurement of a set ofvariables(energies,
masses, spatial and angular variables...) recorded in a brief span of time bythe physics detectors.
The events can be classified in differentspecies, which are generally denoted withsignals, for
the events of interest for physics phenomena, andbackgrounds, for the rest. The discrimination
between the different species is obtained using particular variables (discriminating variables), or
more in general combination of these variables, which have different characteristics for signal and
background events. These techniques have several advantages withrespect to the simplecut and
countanalysis method1 as better discrimination between signals and backgrounds, the possibility
to take in account errors with a better precision and correlations between the discriminating vari-
ables used in the analysis. However, they require long CPU-time execution.An important role
in the determination of the results is played by the possibility of repeating the evaluation of the
parameters on several distinct simulated samples of data, doing the so calledpseudo-experiments.
The samples are generated using Monte Carlo techniques and the knowledge of the probability
density functions (PDFs) of the input variables [4]. This procedure achieves a better estimation of
the results. Also in this case it can require long CPU-time execution, depending on:

• number of events and variables to generate;

• number of data samples to generate (usually on the order of thousands);

• complexity of the models.

Pseudo-experiments are used in statistical techniques based on frequentist inference, such as the
determinations of confidence intervals and significance tests of the parameters. In this case the
number of pseudo-experiments can be greatly high (5σ statistical significance test requires more
than one million of pseudo-experiments for an accurate estimation). Assuming this, we can con-
clude that it is particularly important to speed-up the generation of the simulated samples. An easy
solution is to parallelize the events generations, taking benefit from the new multi-core CPUs. In
the last years, vendors like Intel and AMD have not incremented the performance of single com-
putational unit as in the past, but they are working on multi-core CPU. Currently we have up to
12 cores implemented on one single chip. This fact represents a possible revolution in the devel-
opment of new programs. Indeed we can parallelize the code using a shared memory paradigm
obtaining great benefits from new multi-core architectures. So we have to reformulate some algo-
rithms generally used for HEP data analyses. These techniques of High Performance Computing
are well established in other fields, like computational chemistry and astrophysics. In HEP com-
munity there is not such a large use, but in the future it can be an elegant solution in all the cases
where the data analyses will get more and more complicated.

An implementation for the parallelization of the maximum likelihood procedure is described in
the Ref. [3]. In the work described in this paper we focus on the parallelization of events generation

1Set of independent cuts on the input variables.
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for pseudo-experiments. The parallelization is based on OpenMP, therefore using a shared memory
paradigm. We will describe the implementation and we will show the results of scalability for an
application used as benchmark.

2. Parallelization of Monte Carlo events generation

The Monte Carlo method is a numerical technique for calculating probabilities and related
quantities by using sequences of random numbers [1]. The key factor isthe generation of ran-
dom numbers, or more properlypseudo-randomnumbers, using specific algorithms which are
implemented in pseudo-random number generators (PRNGs) [4]. These generators produce long
sequences of apparently random results (streams), which are in fact completely determined by a
initial value, known asseed. Another important characteristic of the PRNGs is their periodicity:
the maximum length of the sequence before they begin to repeat, so broken the randomness of the
sequences. Generally PRNGs have long period (usual> 1010), which allows the possibility to use
them in most Monte Carlo applications without particular worries.

It is possible to generate numbers which follow simple PDFs, such as Gaussian and uniform
distributions. There are a couple of methods to generate numbers from anygeneric PDF [4]. These
methods involve transforming an uniform random number in some way. The most used in HEP is
theaccept-rejectmethod. Given a generic PDFf , it involves several steps:

1. extraction of a random numberx with a uniform distribution (ord random numbers in case
of a PDF ofd dimension) in the variable range of validity;

2. extraction of another random numbery with uniform distribution in the range between 0 and
the maximum value off ;

3. testing whetherf (x) is greater than they value. If it is, thex value is accepted. Otherwise,
thex value is rejected and the algorithm tries again.

Clearly the number of extractions from the uniform distribution needed to generate a valid random
number fromf is not predictable a priori. Highly-non-uniform multidimensional distributions can
require several random number extraction before accepting a value. Instead, the minimum number
of extractions is given by the dimension of the PDFs plus the extraction ofy.

The usual adopted procedure in HEP for the generation of different samples for the pseudo-
experiments is based on extracting different streams from the same PRNG, each stream with a
different seed for each pseudo-experiment. The values of the seedsare saved for allowing the
regeneration of the same events of a specific pseudo-experiment, independently from the other
pseudo-experiments. Note that we are extracting different streams whichare not guaranteed to be
independent. The hope is that they will be non-overlapping and uncorrelated streams of the original
PRNG. This is generally valid when there is a proper determination of the seedvalues in case of
PRNG with large periodicity [5]. This hope, however, has no theoretical foundation. Consequence
of that is the impossibility to be sure whether a PRNG is affected by correlations[6]. This pro-
cedure of events generation allows the possibility for parallelizing on the pseudo-experiments as
entire entities, dividing them in different processes. The clear limitation is when we want to have a
finer parallelization for the generations inside each pseudo-experiment. For such a case we require
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appropriate parallel pseudo-random generators [7]. These generators provide methods for extract-
ing sub-streamsfrom a main stream (with an unique seed). Therefore the different sub-streams
can be used for the parallel generation inside each pseudo-experiment.For the implementation
described in this paper we use a PRNG provided by Tina’s Random NumberGenerator library
(TRNG) [8]. TRNG is a state-of-the-art C++ pseudo-random number generator library for sequen-
tial and parallel Monte Carlo simulations. It provides optimized PRNGs and methods for usage
in parallel applications. We choose theyarn5 PRNG which has a period of about 4.57×1046.
This PRNG implements a method forblock splitting. Let mi be the maximum number of calls to a
PRNG by each processori and letp be the number of processes (i = 1, ..., p), we can split the main
stream of random number so that each processi will get a sub-stream withmi random numbers.
This method works only if we knowmi in advance or can at least safely estimate his value. To apply
block splitting it is necessary to jump from thenth random number to the(n+∑i−1

j=1mj)th number
for the processi without calculating all the numbers in between. A methodjump is provided in
theyarn5 PRNG for doing that.

2.1 Implementation of the algorithm

In this section we describe the implementation of the algorithm for events generation in case of
pseudo-experiments. The implementation is based on theyarn5 PRNG, using thejump method,
coded in C++ language and OpenMP.

At this point a crucial consideration must be made: the generated sample mustnot depend on
the number of processes. This applies either for the values and the orderof the generated events.
It is mandatory for debugging, especially in parallel environments where the number of parallel
processes varies from run to run, but also guarantees that the quality of a PRNG with respect to an
application does not depend on the degree of parallelization.

Let’s consider the simple case of a generation of a single variable with an uniform distribution.
In this case we do not need the accept-reject method, but we can directly extract from the corre-
sponding distribution. Assuming that we want generate a sample withN events and we havep pro-
cesses, we can easily calculate the number of eventsni to generate by each process:ni = (N DIV p)
plus 1 if i ≤ (N % p) 2. In this case we havemi = ni (i. e., one to one correspondence between calls
to the PRNG and events), so that the parallelization of the generation is straightforward: the pro-
cessi does the generation ofni events, which are stored in a local (to the process) data structure
(such as a C++std::vector); then, at the end of the parallel generation, each process copies
his local generated data in the final global data structure. This algorithm satisfies the condition of
independence from the number of processes and it can be easily implemented using OpenMP.

Now we consider the case of generation of variables using accept-reject method from a single
complex PDF ofd dimension. As we said above, in this case we cannot predict a priori the value
of mi . However, we can calculate the lower limit on this value:mi ≥ (d+1)×ni . If we consider
(d+ 1)×ni as the maximum number of random numbers available for the processi, we end up
with gi events generated by each process and stored in the local data structures. If we consider that
all events are accepted at the first extraction of the corresponding random numbers, thengi = ni .
Since this is normally not valid, we can conclude thatgi < ni . Giving the characteristic of the

2DIV is the integer division and % is the module of the integer division as in the C++ definition.
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jump method to split the main stream in continuous sub-streams for each process, we have that the
(gi +1)th event will be generated by processi+1 (and so on for the remaining events). This means
that consideringmi = (d+1)×ni , we will generate the first∑p

i=1gi events of the global final sample
(copying together all local data structures in the global data structure, following the order ranki
of the processes). Then we can iterate the procedure of parallel generation considering now the
remainingN−∑p

i=1gi events for the generation. This requires corresponding jumps in the PRNG
for each process, which introduces some overheads in the parallelization(the complexity of jump
grows logarithmically in its argument). Other overheads are introduced by thehandling of the data
containers. To reduce these effects, the parallel generation is stoppedwhen the remaining number
of events to generate is less that 1% of total request events, with the remaining events generated by
only one process up to the completion of the global sample. Also this procedure guarantees that
this sample will be the same independently by the number of parallel processes.

The last case we consider is the generation of events with variables from different PDFs, which
is the usual case in the pseudo-experiments. The solution adopted in this case is the generation from
each single PDF, one at a time, which basically leads to the above discussed cases. This is the only
procedure we found for guaranteeing that the generated samples will not depend by the number
of parallel processes. The side effect is an further overhead whenmerging all the values of the
variables in the final dataset.

3. Benchmark example

As tests of the implemented parallel algorithm, we want to generate a data sample from the
following PDFs (in parenthesis we report thed dimension of the PDFs):

• uniform (d = 1);

• truncated normal distribution(d = 1);

• 2nd order polynomial(d = 1);

• neutrino oscillation distribution [9]:

P(νµ → νe) = sin2(2θ)sin2
(

1.27∆m2L
E

)

, (3.1)

whereP is the probability for aνµ to transform into aνe , L is the distance in km between the
creation of the neutrino from meson decay and its interaction in the detector,E is the neutrino
energy in GeV, and∆m2 andθ are two parameters which characterize the oscillation. In this
formula the two variables to generate areL andE (d = 2).

So in total our sample is composed by 5 variables. Note that for the last two PDFs the generation
is done using the accept-reject method. Plots of the PDFs used in our tests and an example of
corresponding generated data distributions are shown in figures 1 and 2.

We ran the tests on an Intel Westmere-EP server which is available as test machine at
CERN/Openlab. It is a dual-socket machine, where each CPU is an Intel Westmere-EP X5670,
with 6 cores (2 hardware threads per core) running at 2.93 GHz (so a total of 12 cores and 24
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Figure 1: Plots of the unidimensional PDFs used in the benchmark test (blue line). Points with errors
are an example of generated data distributions (10,000 events). Note that the curves are just rescaled and
superimposed to the points.
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Figure 2: Plot of the neutrino oscillation model used in the benchmarktest (top left plot). An example of
generated data distribution (10,000 events) is shown in the2D histogram (top right plot). In the two bottom
plots we show the projections on the two corresponding generated variables. Note that the curves are just
rescaled and superimposed to the points.
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hardware threads). The Turbo Mode of the CPU is switched off. The processes were pinned to the
cores running them. The system allows hardware threading and it was used during the tests. Thus,
if there were no more physical cores available, the jobs would be pinned to hardware threads, still
maximizing the amount of physical cores used. The system is running Scientific Linux CERN 5.4
(SLC5), based on Red Hat Enterprise Linux 5 (Server). We compile the code with GCC 4.1.2 in
64 bit, the standard compiler available with SLC5.

We do the average of the runtime (wall-clock time) by running 10 times each test. The wall-
clock time spent by the generation of a single sample (i. e. one pseudo-experiment) with 10,000
events is 30.4 seconds when running in sequential. This time increases linearlywith the number
of events and with the number of pseudo-experiments. Note that in this work we are focusing on
the parallelization of a single pseudo-experiment, but we should consider that usually the number
of pseudo-experiments is in the order of thousands for a data analysis application, which means a
significant amount of total time for executing the application.

We consider two cases in our tests:

• Weak scaling tests. These tests focus on the scalability, which is defined as throughput.
We increase the number of events to generate proportionally to the number ofprocesses
involved in the parallelization. In an ideal case, as more processes with morework are
added, one would expect the throughput to grow proportionally to the added resources. We
take as reference the generation of a sample with 10,000 events. Results ofthe efficiency
of the parallelization are shown in figure 3. The efficiency is defined as thescaling of the
software relative to the sequential runtime, confronted with ideal scaling determined by the
core count. In cases where multiple hardware threads are being used, perfect scaling is
defined by the maximum core count of the system (12). From the plot we observe a good
scaling up to 6 processes (99.0% with 6 processes). The small decreasein the efficiency is
consistent with the overhead introduced by the parallelization. Over 6 processes we observe
a drop in the efficiency (90.9% with 12 processes), which is not attributableto the overhead
of the parallelization. We think that the reason for this drop is the data accesswhen the
application is running on the 2 CPUs (note that 6 is the number of cores per CPU). The
efficiency curve surpasses 100%, since for thread counts higher than 12, expected scalability
is fixed to 12x. Thus a final value of 108.3% indicates that the system loadedwith 24 threads
of the benchmark yields 8.3% more throughput than a perfectly scaled serial version on 12
physical cores. One should note that this extra 8.3% of performance is traded in for a penalty
in memory usage, as the number of software processes is double the one in the case of 12
cores.

• Strong scaling tests: In this case we are interested to see the speed-up of the application for
a fixed number of generated events. For this reason we do not use the hardware threading.
Results are shown in figure 4. We observe a excellent scaling. The small penalty is due
two factors: the overhead introduced by the parallelization, and the non-parallelizable part
of the application (mainly the data handling), which represents less than 0.5% of the total
sequential execution time.
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Figure 3: Efficiency in case of weak scaling test (see text for details).
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Figure 4: Speed-up in case of strong scaling test (see text for details). We perform 3 tests with 10,000,
50,000, and 100,000 generated events. Black line represents the ideal speed-up, which corresponds to the
number of processes used in the parallelization.

4. Conclusion

The algorithm adopted for parallelization gives good results for the tests performed. It satisfies
the requisite to obtain the same generated events (same values in the same order) independently by
the number of parallel processes. The implementation will be made available inside the RooFit
package (as part of ROOT framework) [10] in the new releases, providing a general interface for
the parallel generation of sample for pseudo-experiments.
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