
A
TL

-D
A

Q
-P

R
O

C
-2

01
5-

02
5

29
Ju

ly
20

15

A Lossless Switch for Data Acquisition Networks

Grzegorz Jereczek, Giovanna Lehmann Miotto

PH ATLAS DAQ and Trigger

CERN

Geneva, Switzerland

{grzegorz.jereczek|giovanna.lehmann}@cern.ch

David Malone

Hamilton Institute

Maynooth University

Maynooth, Ireland

david.malone@nuim.ie

Miroslaw Walukiewicz

Intel Corporation

Network Platforms Group

Gdansk, Poland

miroslaw.walukiewicz@intel.com

Abstract—The recent trends in software-defined networking
(SDN) and network function virtualization (NFV) are boosting
the advance of software-based packet processing and forwarding
on commodity servers. Although performance has traditionally
been the challenge of this approach, this situation changes with
modern server platforms. High performance load balancers,
proxies, virtual switches and other network functions can be
now implemented in software and not limited to specialized
commercial hardware, thus reducing cost and increasing the
flexibility. In this paper we design a lossless software-based switch
for high bandwidth data acquisition (DAQ) networks, using the
ATLAS experiment at CERN as a case study. We prove that
it can effectively solve the incast pathology arising from the
many-to-one communication pattern present in DAQ networks by
providing extremely high buffering capabilities. We evaluate this
on a commodity server equipped with twelve 10 Gbps Ethernet
interfaces providing a total bandwidth of 120 Gbps.

Index Terms—data acquisition, incast congestion, software
switch.

I. INTRODUCTION

ATLAS [1] is a general-purpose particle detector designed

to study particle collisions at the Large Hadron Collider

(LHC) at CERN. One of the key components of the ATLAS,

and other large-scale experiments, is a network, called the

data acquisition network. It collects the outputs from all the

instruments to reconstruct a physical process. In [2], treating

the ATLAS DAQ network as a case study, we identified and

described a major challenge typical for the these networks:

incast. It is perceived as a throughput collapse occurring when

the number of servers sending data to clients increases past

the ability of an Ethernet switch to buffer packets and has

catastrophic consequences on the performance of the entire

data acquisition system. We also explained strong analogues

between incast in DAQ and datacenter networks (DCNs).

We indicated in [2] that increasing the available buffer

space in the network is the most effective solution to the

problem in case of the DAQ systems based on the TCP/IP

and Ethernet technologies, but also the least scalable due

to the high costs and availability of networking hardware

with larger memory. In this paper we discuss whether this

impediment can be possibly overcome by employing a group

of commodity servers equipped with multiple Ethernet ports

running a dedicated packet processing application. This gives

the opportunity to greatly extend the buffering capabilities

(limited only by the amount of the DRAM memory available

���

�

��
�

��
��
	


���

�

��
�

��
��
	


���

�

��
�

��
��
	


��
��� ��������

��� ��� ��


�������

�� !�����"

#$%%%

	�&
���

�

��
�

��
��
	


'()���(*� '���

����

+��

���

��,

Fig. 1. The ATLAS DAQ system as of March 2015 and the multi-to-one
communication pattern typical for DAQ networks. It is the cause of the incast
congestion in the ToR and core layers of the network.

on the servers) and perform flexible optimisations tailored to

the DAQ traffic patterns.

We continue to use the ATLAS experiment as a case study

in this work. The conclusions are, however, not limited only

to ATLAS but also many other networks susceptible to the

problems arising from the many-to-one communication pattern

as well as other data acquisition systems. The ATLAS DAQ

network, having very demanding traffic characteristics, is a

good environment to evaluate candidate technologies.

This paper is structured as follows. Section II gives an

overview of the ATLAS data acquisition network, followed by

a brief introduction to software switching, and concludes with

related work. In Section III we discuss the characteristics of

DAQ networks. We present our design of the lossless software

switch in detail in Section IV. Experimental results performed

with a small-scale prototype are provided in Section V, and

discussed in Section VI, which also indicates areas for future

exploration. We conclude our work in Section VII.

II. BACKGROUND AND MOTIVATION

A. Data acquisition networks and the TCP incast challenge

A DAQ network collects data from its sources and transports

it to processing units for further analysis. The high level

diagram of the ATLAS DAQ/HLT [3] is presented in Fig. 1.

In the LHC nomenclature, particle collisions inside a de-

tector are referred to as events. Their physical “fingerprints”



are recorded by the detector, which is the data source for the

DAQ system. Different data fragments corresponding to an

event are striped over multiple read-out PCs, which consti-

tute the Read-Out System (ROS). The ROS is an interface

between the ATLAS-specific data acquisition components and

commodity equipment. This is the entry point to the DAQ

network, transporting event data to the filtering farm (HLT,

High Level Trigger). The ROS sends data for a particular event

to a single Processing Unit (PU), which is a worker process

on a commodity server performing event reconstruction and

analysis. There are multiple PUs on each server of the farm

(working on independent events), but only one Data Collection

Manager (DCM). The DCM requests event fragments from

ROSes on the behalf of the PUs.

Today, the ATLAS DAQ/HLT system is based on 10Gbps

Ethernet (10GbE) network with TCP as transport layer proto-

col. The core of the network is built around two large routers.

Around 100 ROS nodes are connected directly to them, while

~2000 HLT nodes are organised in racks of at most 40 servers

that connect to the core via top of rack (ToR) switches.

The specifics of data acquisition place an additional burden

on the network subsystem. The burstiness of the traffic makes

it difficult to handle with shallow-buffered network switches.

A DCM requesting full event data from all the ROS PCs

simultaneously causes a large traffic burst in the network

(many-to-one communication pattern, see right side of Fig. 1).

Although the response coming from a single ROS PC is rel-

atively small, switches without sufficient buffer capacity drop

some portion of the packets when the number of concurrent

ROS responses increases. This leads to an order of magnitude

higher event data collection time, which is caused by TCP

timeouts [2]. This phenomenon is known as the TCP incast

pathology [4]. Since the data collection time is one of the

important parameters that need to be kept under control in a

DAQ system, incast needs careful attention.

Many ways to approach the incast challenge have been

proposed. We briefly reviewed some of them in [2] with

the intention of possible adoption in DAQ. Most proposals

focus on limiting the number of packets that are injected

into the network. Although effective, especially in avoiding

the incast congestion at ToR switches, large buffers are still

required in the core of the network. The core routers need to

sustain data flows from the ROS to all DCMs in the system.

Incast avoidance by controlling the injection rate becomes very

complex. The two routers of the current ATLAS DAQ network

provide extremely large buffering capabilities [2].

The demand on the buffering capacity will become even

more critical when facing the future upgrades of the LHC

[5]. Both the event sizes and rates will increase, thus mak-

ing incast even more challenging. It is questionable whether

traditional networking hardware will offer enough memory to

sustain the increased requirements. Recent work in the area

of the bufferbloat phenomenon [6] points out the excess of

buffering in the network rather than scarcity experienced by

DAQ. Specialist technologies like InfiniBand [7] or Ethernet

Datacenter Bridging (DCB) [8], which provide hardware-level

flow control and congestion control, can potentially operate

with limited buffers even under many-to-one communication

patterns. In this paper, however, we propose an alternative

approach, which still allows using the commodity off-the-shelf

(COTS) hardware.

B. Software switching

Packet processing in software on general purpose servers

has recently become a real alternative for specialized com-

mercial networking products thanks to new capabilities of

commodity hardware and user space networking frameworks

like Intel DPDK [9]. Commercial products like Brocade Vyatta

Virtual Router [10] or offerings of 6WIND [11] prove the

viability of this approach. With a combination of higher

flexibility and features for a target application, a solution tuned

for DAQ networks can be pursued. We investigate whether the

expensive and feature-rich deep-buffered core routers could be

replaced by a group of software switches running on servers

equipped with multiple Ethernet ports. With a DAQ-optimized

queuing discipline and buffering capabilities constrained solely

by the amount of DRAM memory it is possible to operate a

DAQ network without packet losses, thus avoiding the incast

congestion without any controls on the injected traffic, beyond

that arising naturally in a DAQ application. For this reason,

we refer to them as lossless in the context of a DAQ system.

C. Related work

Software switches, Open vSwitch (OVS) [12] in particular,

have already become an important part of cloud networking

architectures providing network access for virtual machines

(VMs) by linking virtual and physical network interfaces

(hence called virtual switches) [13]. Our focus, however, lies in

providing connectivity between physical hosts in the network

with a data plane dedicated to DAQ applications. As shown in

[14] a pure DPDK forwarding application currently provides

the best achievable performance, comparable to those based

on Netmap [15] and PF RING [16], which together with

the Snabb Switch [17] are popular frameworks for software-

based packet processing on standard x86 servers. The common

goal of these frameworks is to optimize performance, which

is achieved by providing their own drivers and libraries, not

relying on the standard network stack of the kernel.

The recent developments in commodity hardware and soft-

ware that enable high performance packet processing on gen-

eral purpose servers are described in [13], which also provides

performance evaluation and references to other packet for-

warding applications. Extended analysis of potential hardware

bottlenecks is available in [14]. Reference [18] gives a deeper

insight into the DPDK library and compares it with Netmap

and PF RING. DPDK is also seen by [19] as a successor of

the RouteBricks software router [20] and shows that saturating

80Gbps for packet of 192 bytes or larger is practical.

Details of the architecture of the ATLAS data acquisition

system are discussed in [21], [22]. Characteristics of the DAQ

traffic patterns on the example of the LHCb experiment at



CERN can be found in [23]. The example of an InfiniBand-

based DAQ network is the CMS experiment [24]. We related

the DAQ multi-to-one congestion with datacenter’s TCP in-

cast in [2]. For a recent review of work on TCP incast in

datacenters, see [4] and references therein.

III. CHARACTERISTICS OF DAQ NETWORKS

In this section we highlight the key aspects of data ac-

quisition networks, which distinguish them from the DCNs.

These differences justify our choices with regard to the specific

design of the software switch and, in the first place, the use

of extremely large buffers. We also show that the potential

bottlenecks of software switching [14] are insignificant in the

case of traffic patterns typical for DAQ.

A. Farm size

The DAQ farm of the ATLAS experiment consists of ~2000

servers filtering the LHC data and 100 servers in the ROS,

compared to typical DCNs containing hundreds of thousands

of servers [4]. The lookup table for packet switching is

therefore relatively small and we can neglect the dependency

of the performance on its size, which could normally cost

additional CPU cycles of the software switch.

B. Workload

The DAQ networks are active during the data collection

period, which for the LHC experiments is counted in months

and years. They are exclusively dedicated to deliver the event

data from the ROS to the filtering farm and isolated from any

other flows, including the control traffic. The consequences

are twofold. First, there are no flows in the DAQ whose

latency could suffer from the large buffers in the network.

Thus, bufferbloat [6] is not an issue. Second, the network can

operate in a nearly static configuration for a very long time.

This configuration can be set at the beginning of the run and

tailored for the current data taking period. We showed already

in [2] that disabling the TCP congestion control and setting

a static value for the congestion window can be effective in

solving the incast pathology in DAQ. We will now extend this

approach in our design of the software switch.

C. Packet sizes

The forwarding performance of software switches is typi-

cally evaluated in the unit of packets per second (pps) for the

smallest packet size. This is due to the fact that the forwarding

performance is mostly limited by the maximum packet rate and

not the packet size. It is therefore easier to saturate a link with

large packets. If there is a bottleneck in saturating a link of a

software switch, it is always for small packets.

In DAQ, however, the event data traversing the network are

generally large in relation to the Ethernet’s minimum frame

length of 64B. For example, in ATLAS’s 2015-2018 data-

taking period 1860 event data fragments of variable sizes

around 1 kB are distributed across ~100 ROS nodes [22].

This results in approximately 18.6 kB per single data source,

compared to the Ethernet’s maximum transmission unit (MTU)

of 1500B. For this reason and because of the limits of our

traffic generators, we will not analyze the performance of our

prototype for lower MTUs. Saturating 8 x 10GbE interfaces

with smaller packets was already demonstrated in [19].

D. Switching latency

One of the important performance indicators of a switch is

its latency. It is particularly critical in high frequency trading

or high performance computing. In data acquisition, due to the

large event sizes, the total data collection latency is dominated

by the packetization delay. It takes approximately 1.5ms to

send the entire event, as described above, over a 10Gbps link.

It will be even higher considering that multiple events traverse

the network simultaneously. Minimizing the switching latency

is therefore not critical in DAQ as long as it is kept within a

reasonable range.

E. Data collection time and jitter

The data collection latency is the time it takes to transfer

the event data between the ROS and HLT, and is dominated

in general by the packetization delay as already explained.

Its mean and variance or, in other words, jitter, are factors

important to the performance of the entire DAQ system.

Blocking the PUs from processing because of an increased

collection time translates into lost CPU time, which can lead

to underutilization of the compute farm and a reduced overall

event processing rate. As we explained in [2], the main

reason for an increased mean collection latency and jitter is

the multi-to-one communication pattern leading to the TCP

incast pathology. The TCP timeouts, in particular, caused by

overflows of the buffers in the network, introduce at least

200ms delay to the event collection, which increase the mean

and jitter radically. In this paper we focus our performance

evaluation on the ability of our design to eliminate the costly

packet drops in the network.

IV. DESIGN

The main rationale behind our design of the software switch

for data acquisition networks is to eliminate packet drops

caused by incast while maintaining high throughput. Because

of the large size of the events, less effort can be put into

minimizing the processing time of a single packet. We use

DPDK as the underlying packet processing framework to

perform packet I/O between user-level threads and the network

interface controllers (NICs). The high level design is presented

in Fig. 2. The decision to use DPDK is motivated by the its

exhaustive documentation and a broad set of examples. The

L3FWD application, in particular, delivered full forwarding

performance without any difficulty and became a basis for us

to design our own switching application.

The core of the design lies in the idea of implementing

dedicated buffers to each DCM in the system. Event data sent

from different ROSes, but targeting the same DCM, are put

into a single queue. With this approach the buffers can be

sized precisely, traffic can be shaped on a per DCM basis,

and fairness across all DCMs can be guaranteed.



Fig. 2. The design of the lossless software switch for data acquisition networks.

A. Overview

We use the FDIR (Flow Director) feature of each NIC

to assign the incoming packets into different hardware Rx

queues (based on the value of specified packet fields), as

in [25]. All packets which have not been identified as data

packets are placed into the Rx queue 0 (the default Rx

queue), whereas other queues (data Rx queues) are dedicated

to packets carrying event data. A set of user-space threads polls

packets from the assigned Rx queues. The buffering of event

data packets takes places in the DPDK lockless ring buffers

[9]. A single ring corresponds to a single destination DCM.

This binding can be either set statically or configured on-the-

fly by the default thread, which implements flow detection

logic. Three hardware queues are used on the transmit side

for outgoing packets: Tx queue 0 (the default Tx queue) for

the non-data and the other two (data Tx queues) for the data

flows.

We define four types of user-level threads:

1) Management;

2) Default;

3) Data receive;

4) Data transmit.

There is always one management and one default thread, and

a configurable number of data threads. Each of them is bound

to a single CPU core.

B. The default thread

The default thread polls the default Rx queue of all the NICs

that are bound to the software switch. It is implemented with

the use of the DPDK packet processing pipeline [9]. First, the

destination IP address is extracted from the received packet

and looked up in the Longest Prefix Match (LPM) table [9]

for the output port. Then, from the TCP payload, it determines

whether the flow is a new event data flow of the ATLAS

DAQ/HLT system. If so the new ring buffer is activated and

corresponding FDIR rules are created in the NICs, so that all

subsequent packets will be filtered to the data Rx queues and

handled by the data threads. Finally, the default thread puts the

packet directly into the default Tx queue of the output NIC.

C. Rx filtering

Each Rx data queue is bound to a single output port. The

LPM lookup mechanism of the default thread is thus offloaded

to the hardware. Within a single Rx data queue, a specific ID

is assigned to the packet based on the destination DCM by the

flow director, which is then accessed by the data threads to

enqueue the packet on the appropriate ring. A 1:1 queue-to-

DCM mapping would not be scalable because of the hardware

limited number of the supported Rx queues.

There is no risk of out-of-order packets since packets

belonging to a single TCP flow are always filtered to the same

hardware queue by the flow director, then handled by a single

application thread, and finally enqueued on the same software

ring. In theory it limits the data rate of a single flow to what

can be processed by one CPU core, which is then the natural

performance limit of the proposed architecture. Due to the fact

that DAQ networks carry large number of relatively small TCP

flows, it is practically impossible to reach the performance

limit of a thread with just a single flow. Furthermore, high

forwarding performance of a single CPU core has been already

confirmed in [14].

Normally, a DCM is uniquely identifiable by its destination

IP in the DAQ network, so the FDIR filters can be configured

solely with the destination IP field of the packet header.

D. The data threads and ring buffers

The data receive threads poll the data Rx queues of one

or more NICs. Based on the queue number and the FDIR ID

of the packet, they enqueue the packets on the appropriate

ring. Since all packets belonging to the flows coming from all

the ROSes to one DCM will be queued in the same DPDK

ring, the rings are of multi-producer single-consumer type. On

the transmit side, the data transmit threads dequeue packets

from the rings and place them into the data Tx queues. In

our prototype we use two Tx queues for data flows: one for

packets with the actual event data directed to DCMs, the

second for requests and TCP ACK packets directed to the

ROSes. The transmit threads also perform traffic policing,

which is particularly important, if the next hops in the network



have limited buffering/bandwidth capabilities. In order to avoid

incast in those network stages as well, rate limiting can be

applied. Since the event data targeted to a particular DCM is

queued in a dedicated buffer, rate limitation can be performed

very effectively on per destination DCM basis. Each data

transmit thread serves the data Tx queues of one or more

NICs.

If a particular DCM ring remains empty for a predefined

period of time it can be deactivated. In this case, it can be

reused by the default thread for any newly detected data flows.

E. Memory management and thread assignment policy

In order to achieve the highest performance of our switch,

we follow the DPDK recommendations, especially with re-

gard to NUMA-aware (Non-Uniform Memory Access) object

allocation in memory and the use of huge page tables. The

data Rx and Tx queues are spread across the available data

threads to match the NUMA-node of the corresponding NIC,

if possible.

F. Summary

Our design choices are closely correlated with the character-

istics of DAQ networks, which were discussed in Section III.

Because of the relatively small size of the entire ATLAS

DAQ/HLT farm the lookup mechanisms for packet forwarding

and data flow filtering can be offloaded to the hardware

flow director. A single Intel 82599 controller supports up to

8190 perfect match flow director filters and 128 Rx queues

[26]. Furthermore, in order to provide connectivity of the

whole system, a group of interconnected software switches is

required, further increasing the quota of the available hardware

filters.

The link bandwidth of a DCM is known at the start of

the run of the experiment and does not change over time.

Appropriate rate limits can be thus applied at the software

switch thanks to the large, per DCM buffers. This is particu-

larly important, if DCMs are connected by a ToR switch with

limited buffers to the DAQ network. The incast pathology can

be avoided at each network layer, keeping the data collection

latency low and without jitter. The size of a ring buffer can

be set to match the traffic targeting a single DCM.

Since many fewer CPU cycles are required to saturate

a 10Gbps with large packets, the number of data threads

required to provide full bandwidth can be less than the number

of available CPU cores on a server depending on the average

packet length. The number of threads can be configured to

match the expected performance leaving additional CPU cores

to perform other tasks.

V. EVALUATION

We evaluate the implementation of the lossless software

switch with a small-scale DAQ setup using the ATLAS DAQ

software in emulation mode. First, we verify the offered

bandwidth in an all-to-all communication scenario. Second,

we evaluate the buffering capability and determine its effec-

tiveness in solving incast in the typical for DAQ many-to-one

scenario.

Fig. 3. Hardware topology of the DuT.

A. Implementation

We implemented an initial prototype of the proposed design

on DPDK release 1.8.0. The L3FWD example creates the code

basis for the data threads, whereas the default thread is based

on the IP PIPELINE application. The implementation of the

data threads takes only 113 lines of code for the transmit and

138 for the receive functionality, since both of them merely

dequeue and enqueue packets between appropriate queues. The

implementation of the default thread required 640 lines, but

most of it is the configuration of the DPDK pipeline and

debug code of the data flow detection logic. The rest of the

source code is mainly initialization and configuration, which

does not differ significantly from that of the DPDK example

applications.

B. Evaluation setup

1) Device under test: The device under test (DuT) is a

server running a single instance of the lossless software switch

on 64-bit Fedora 20, kernel version 3.18.7-100. It is based

on the S2600GZ board [27] with two Intel Xeon EP-2680

eight-core CPUs (Fig. 3). Each CPU has an integrated memory

controller (IMC) and an integrated I/O module (IIO), which

provides up to 40 PCI Express lanes. The CPUs are connected

by two Quickpath Interconnect (QPI) 8GT/s links. A total of

128GiB DDR3 memory (64GiB per CPU socket) is available.

We equipped the platform with six dual-port 10GbE cards

based on the Intel 82599 Ethernet controller [26] providing

a total bandwidth of 120Gbps. The kernel is configured to

isolate those CPU cores used by the software switch (the

isolcpus flag) and further reduce the impact of the kernel with

the nohz full and rcu nocb poll flags. 64 1GiB huge pages

are in-use by DPDK.

2) Traffic generation: We use twelve hosts running on

virtual machines (spread across 5 physical servers). Each host

is connected over an unshared 10GbE link directly to the

DuT and runs the ATLAS DAQ/HLT software in emulation

mode. The ROS subsystem generates dummy data, whereas

the DCMs request the fake events from the ROS without

any processing. In this way, the network subsystem, which

in this configuration is solely the DuT, can be analysed in

isolation from other factors. Multiple ROSes and DCMs can

be run on the same host to emulate a larger data collection

configuration. All tests are performed with a MTU of 1500B



as already explained. A single DCM does not request another

event before it receives all fragments of the previous event

from all available ROSes. Data collection latency of a single

event is understood as the timespan between sending the first

request to the ROS and receiving the last fragment from the

ROS. We disable dynamic TCP congestion control in all ROS

hosts and instead use a static sender congestion window [2].

Unless otherwise stated, the window is set to a very large

value so that each ROS response is not rate limited by TCP,

further increasing the incast effect. It also allows us to evaluate

the performance of our prototype without the influence of

the congestion control and test in the best scenario from the

viewpoint of data acquisition pushing simply all the available

data on to the wire. In other words, there is no traffic injection

control and the optimizations discussed in our earlier study [2]

are not in place for the most of the experiments throughout

this work. It should be noted here that our goal is not a direct

comparison with traditional switches, which can provide the

same bandwidth with appropriate congestion control.

The presented values for latency, throughput, and bandwidth

are averages over approximately 120 s in all cases.

C. Maximum achievable bandwidth

In order to verify that the software switch can operate at its

full bidirectional bandwidth (resulting from the number and

speed of the NICs) we emulated 12 ROSes and 144 DCMs

on all available hosts attached to the switch as in Fig. 4a.

This is an artificial data taking configuration with all-to-all

communication, which allowed us to operate the switch in

most challenging conditions. Each ROS provides a single event

fragment of size 128KiB. Total event size is thus 1.5MiB.

As can be seen in Fig. 4b we achieved about 98% of the

theoretical throughput (taking into account protocol overheads

and excluding fragments requested from the same virtual

machine), which corresponds to an average bandwidth of

118Gbps at the software switch. Highest performance is

already achievable with only six CPU cores devoted to data

threads (three transmit and three receive threads) and their

frequency scaled down to 1.2GHz, which gives an estimate

of the required CPU power to provide full network bandwidth

for the DAQ-specific traffic. The limiting factor of this config-

uration is not the software switch, but the performance limits

of the hosts running the emulated ROSes and DCMs.

The distribution of the data collection time per event

(Fig. 4c) has a relatively long tail. This is caused by the

many-to-many communication and the fact that we did not

apply any rate limits on the data rings, which can lead to

queue buildup. The average latency with six data threads and

more for all CPU frequencies equals approximately to 13.8ms,

which is comparable to the packetization delay of 12 events

on a 10Gbps link (14.6ms). Since 12 DCMs are emulated

on a single host and the ROS responds to their requests on

a first-come-first-served basis, some events are collected with

a minimum latency approaching the packetization delay of a

single event on a 10Gbps link (1.2ms). There are also events

that suffer from the fact that each ROS responds to all 144

(a)

2 4 6 8 10 12 14

Number of data threads

0

2

4

6

8

10

12

14

16

T
h
ro

u
g
h
p
u
t

[G
B

/s
]

Theoretical maximum

CPU frequency: 1.2 GHz

CPU frequency: 2.0 GHz

CPU frequency: 2.7 GHz

(b)

2 4 6 8 10 12 14

Number of data threads

5

10

15

20

25

30

35

40

45

M
ea

n
la

te
n
cy

[m
s]

CPU frequency: 1.2 GHz

CPU frequency: 2.0 GHz

CPU frequency: 2.7 GHz

(c)

Fig. 4. The emulated data taking configuration for the full bandwidth test
of the software switch (a), the achieved DAQ throughput (b), and the event
collection latency characteristics (c). The markers represent the mean values.
The horizontal box lines represent the first quartile, the median (black), and
the third quartile. The box whiskers represent the 1st and the 99th percentile.

DCMs in the system, so their collection latency can increase

even above the packetization delay of data belonging to 12

events.

There were no packet drops in any of the tests. The

increased latency for configurations with 4 data threads and

less is caused solely by the higher load on the individual CPU

cores.

D. Latency and incast avoidance

In the following experiments we focus our attention on the

data collection latency and the effectiveness of the software



128 512 768 1024

Ring size per DCM [no. of packets]

10

100

1000
M

ea
n

la
te

n
cy

[m
s]

4096

cwnd: 4

cwnd: 16

cwnd: 64

cwnd: 5000

(a)

128 512 768 1024

Ring size per DCM [no. of packets]

0

200000

400000

600000

800000

T
C

P
re

tr
an

sm
is

si
o
n
s

4096

cwnd: 4

cwnd: 16

cwnd: 64

cwnd: 5000

(b)

Fig. 5. Data collection latency (a) of the same configuration as in Fig. 4a,
but with rate limiting applied to every destination DCM of approximately
0.8Gbps. The markers represent the mean values. The horizontal box lines
represent the first quartile, the median (black), and the third quartile. The box
whiskers represent the 1st and the 99th percentile. (b) shows the total number
of TCP retransmissions in a 120 s period of data collection.

switch in incast avoidance. The data receive threads were

configured to drop packets, if there was no space available

in the ring of the corresponding destination DCM.

1) Full system load: In this configuration, we continue with

the same setup as depicted in Fig. 4a, but we apply a rate

limit to each destination DCM. This is achieved simply by

restricting the transmit data threads to put no more than 32

packets from a single ring buffer to a single Tx queue every

500 µs, which limits each DCM to approximately 0.78Gbps at

the software switch. This approach shows how incast could be

avoided in a situation when DCMs are connected with slow

links to a ToR switch. By limiting the rate we ensure that

the ToR switch buffers are not overrun and the packets are

buffered at the software switch instead.

The latency characteristics and the corresponding TCP

performance are shown in Fig. 5. The tests were performed

for various combinations of the sender’s congestion window

(cwnd) and the per DCM ring sizes (in packets). Data of a

single event that needs to traverse the software switch requires

approximately 990 TCP segments over 11 TCP flows to a

single DCM. As can be seen in Fig. 5a, a small congestion

window of merely 4 packets is not prone to incast (no TCP

retransmissions) at any ring size as latency remains low

regardless of ring size. ROSes respond to a single DCM with

only 4 packets at a time, so no more than 44 packets need to

be queued in a single ring of the switch. Although incast is

avoided, the mean latency of event data collection is increased

compared to higher values of cwnd. Increasing the window

while maintaining small packet buffers (i.e. 128 or 512 packets

per DCM) triggers incast and results in a very high mean of the

data collection latency. In the optimum operating range, with

very large congestion windows and long queues, the latency

remains at its minimum value of 17.2ms with low jitter, and

without any TCP retransmissions. The packetization delay of

the entire event data on a link limited to 0.78Gbps, including

protocol overheads, equals to 15.6ms and gives the lower limit

on the minimum data collection time.

The direct effect of the collection latency is the maximum

achievable event rate of the system. In the optimum switch

configuration the DAQ throughput achieves 11.4GiB/s (80%

of the theoretical maximum and a bandwidth of 96Gbps at

the software switch). The maximum from the previous section

is not reached because of the applied rate control and the

performance limitations of the traffic generation setup. With

the limited congestion window (e.g. cwnd = 4) the throughput

reduces to 8.2GiB/s.

With the total of 144 DCMs in this configuration 144 ring

queues are active in the software switch. For the single ring

size of 4096 packets and 2048B of maximum packet size

configured at the switch, the total packet buffer space equals

to 1.12GiB.

2) Increased burstiness with a single DCM: We now in-

crease the burstiness of the traffic by increasing the number

of emulated ROSes to 110 (Fig. 6a), leaving the congestion

window at 5000. Only a single DCM is used in this test

and it is rate limited to 0.78Gbps. The total event size

is now 13.75MiB (single ROS fragment size remains the

same) and the packetization delay of the entire event, with

protocol overheads, is 156ms. The event size corresponds to

approximately 9790 TCP segments over 110 TCP flows.

The latency characteristics and the corresponding TCP

performance are presented in Fig. 6b, again as a function of the

ring buffer size. Starting with a length of 9000 packets (nearly

the number of packets required to carry the entire event) there

is no jitter and the mean latency remains at 159ms, very close

to the packetization delay. Reducing the ring size below 9000

triggers incast with high jitter and mean latency, which are

caused by the high number of TCP retransmissions. Because

of the large bursts, the DCM queue fills up and packets

are dropped by the switch. For queues below 5000 every

collected event suffers from at least one TCP timeout of a

minimum value of 200ms. The increase of the retransmissions

between the first two data points is caused by the higher

event rate achieved by the system. In other words, the average

retransmission rate per event is lower for the second data point.



(a)

2000 4000 6000 8000 10000 12000 14000

Ring size per DCM [no. of packets]

100

156

200

400

600

1000

M
ea

n
la

te
n
cy

[m
s]

(b)

2000 4000 6000 8000 10000 12000 14000

Ring size per DCM [no. of packets]

0

1000

2000

3000

4000

T
C

P
re

tr
an

sm
is

si
o
n
s

(c)

Fig. 6. The emulated data taking configuration (a) for a scenario with single
DCM and 110 ROSes. (b) gives the event collection latency characteristics.
The markers represent the mean values. The horizontal box lines represent
the first quartile, the median (black), and the third quartile. The box whiskers
represent the 1st and the 99th percentile. (c) shows the total number of TCP
retransmissions in a 120 s period of data collection.

VI. DISCUSSION AND OUTLOOK

Our results show that the proposed design of the software

switch can be configured to match the specifics of a DAQ

system and operate at full available bandwidth with low jitter

and without packet drops, thus eliminating incast. This is

also true under heavy congestion and for packets arriving in

extremely large bursts, which we have shown by disabling the

TCP congestion control and leaving the congestion window

practically limitless. These results are possible thanks to the

available amount of system memory that can be used as

packet buffers and the architecture of modern CPUs, which

provide the necessary performance. Equally important is the

presence of packet processing frameworks, which allow the

design of dedicated network applications tailored for a specific

configuration, like our lossless software switch for the ATLAS

DAQ network.

In [2] we analyzed whether the variety of algorithms

proposed to avoid TCP incast in datacenter could be also

considered for DAQ networks. Most of them focus on lowering

the packet injection rate into the network and thus reducing

the pressure on the switch buffers. The same approach is taken

by [22] in the present ATLAS DAQ/HLT system. A simple

credit-based mechanism called traffic shaping obtains results

that match or exceed the alternative proposals as described in

[2]. On the other hand, [22] also shows that larger buffers tend

to provide better performance in terms of achievable minimum

latency thanks to the better link utilization. The well-known

Data Center TCP (DCTCP) protocol, which leverages the

Explicit Congestion Notification (ECN) mechanism to keep

the queues small while maintaining high throughput, provides

comparable latencies as deep buffered switches [28]. It is

argued, however, that the short-message traffic is penalized due

to the queue buildup phenomenon. This drawback is avoided

with our design thanks to the dedicated queues for incast-

sensitive flows. Furthermore, DCTCP fails to avoid incast

if there are so many senders that the packets sent in the

first round trip time (RTT) overflow the buffers, as already

indicated by the authors [28]. This situation is not uncommon

for high-bandwidth low-latency DAQ networks like the one

of the ATLAS DAQ/HLT system [2]. For this reason we turn

our focus to a solution, which could provide flexible and cost-

competitive buffering capabilities. Our proposal also makes it

possible to use a simple unreliable protocol like UDP, which

may be advantageous in some DAQ systems.

We used the ATLAS experiment as a case study, but our

findings can be applied to other DAQ networks and possibly

other networks dealing with the many-to-one communication

pattern. Particularly in environments with relatively constant

mean load, already a simple static configuration with prede-

fined congestion windows and matching buffer sizes in the

network provide good performance under incast congestion.

Queueing algorithms can be easily adapted to provide the best

results for the given network topology and traffic patterns.

As an example, we use a dedicated queue for each DCM

to enforce a rate limit. With this approach we can treat the

network as part of our software infrastructure and optimize it

like any other computer program.

Our findings are still based on a small-scale prototype with

twelve 10GbE ports. We proved the feasibility of the approach,

which is the goal of this work. Bandwidth-wise, however,

the offered load of 120Gbps is already comparable with the

present system, which is designed to sustain a throughput of

several 10GiB after the restart of the LHC in 2015 [22].

Nevertheless, the DAQ network of the ATLAS experiment

requires full connectivity between the ROS and the HLT farm,

which is now provided by the classical architecture with two

large routers at the core of the network. Further investigation



is needed to determine whether this classical topology could

be eventually replaced by a number of interconnected software

switches and what the resulting port density would be. Since

there are physical limits on the number of NICs that can be

installed in a single server and the physical space available

at an experiment’s site is also limited, the achievable port

density becomes an important factor. This architecture will

have to sustain throughput that will be two or more orders of

magnitudes larger for the future upgrades of the experiment.

No less important are aspects as administration, configuration,

fault tolerance and load balancing, which also require careful

attention.

We have already shown that our switch does not require

all CPU cores at their maximum frequency to provide full

performance. This is the first step towards the analysis of

the energy consumption, which is an important consideration

as well. On the other hand, since only some fraction of the

CPU power is consumed by the software switch, there is the

potential of integration switching and processing elements in

a single server.

VII. CONCLUSION

In this paper we proposed the design of a lossless software-

based switch targeting high bandwidth data acquisition net-

works with the aim of preventing TCP throughput collapse

due to incast. For an application that requires an aggregate

bandwidth of less than 120Gbps and its bursts size fitting

within the memory of the software switch, being 128GiB,

our switch design should result in lossless operation. And,

importantly, controls on the injected traffic are not required.

First, we characterized DAQ networks and showed that

the potential impediments of software switching, like latency

or the offered bandwidth for small packets, are not critical

to the performance of data acquisition systems. Instead, the

nearly limitless memory and the flexibility of a software

switch allows us to design a dedicated software switch with

enormous packet buffers that could be considered as a potential

replacement for the expensive feature-rich core routers in the

future upgrades of the DAQ systems at the LHC. We verified

the correctness of this hypothesis on a real hardware providing

120Gbps bandwidth. Emulating data taking sessions with the

ATLAS DAQ software, we effectively prevented incast main-

taining the system bandwidth with 144 data collectors receiv-

ing data on a total of 1584 TCP flows through a single software

switch. The small prototype already reaches, bandwidth-wise,

figures comparable to the requirements of the existing system.

This paper does not demonstrate yet that such an architecture

will scale by two or more orders of magnitude for the future

upgrades of the ATLAS experiment, which is a further line

of research that will need to be demonstrated. Besides, there

are several other aspects requiring further exploration, ranging

from administration to port density and power consumption.

ACKNOWLEDGMENT

This research project has been supported by a Marie Curie

Early European Industrial Doctorates Fellowship of the Eu-
ropean Community’s Seventh Framework Programme under

contract number (PITN-GA-2012-316596-ICE-DIP).

REFERENCES

[1] The ATLAS Collaboration, “The ATLAS Experiment at the CERN Large
Hadron Collider,” Journal of Instrumentation, vol. 3, no. 08, p. S08003,
2008.

[2] G. Jereczek et al., “Analogues between tuning TCP for data acquisition
and datacenter networks,” in Proc. IEEE ICC, 2015, to be published.

[3] The ATLAS Collaboration, “ATLAS high-level trigger, data-acquisition
and controls: Technical design report,” Geneva, Tech. Rep. ATLAS-
TDR-16 CERN-LHCC-2003-022, 2003.

[4] Y. Zhang et al., “On architecture design, congestion notification, TCP
incast and power consumption in data centers,” Communications Surveys

& Tutorials, vol. 15, no. 1, pp. 39–64, 2013.
[5] A. Di Meglio et al., “CERN openlab whitepaper on future IT

challenges in scientific research,” May 2014. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.8765

[6] J. Gettys et al., “Bufferbloat: Dark buffers in the Internet,” Queue, vol. 9,
no. 11, 2011.

[7] E. G. Gran et al., “First experiences with congestion control in Infini-
Band hardware,” in Proc. IEEE IPDPS, 2010, pp. 1–12.

[8] S. S. Reinemo et al., “Ethernet for high-performance data centers: On
the new IEEE datacenter bridging standards,” IEEE Micro, vol. 30, no. 4,
pp. 42–51, 2010.

[9] Intel DPDK: Data plane development kit. [Online]. Available:
http://dpdk.org/

[10] Vyatta vRouter. [Online]. Available: http://www.brocade.com
[11] 6WIND. [Online]. Available: http://www.6wind.com
[12] Open vSwitch. [Online]. Available: http://openvswitch.org/
[13] P. Emmerich et al., “Performance characteristics of virtual switching,”

in Proc. IEEE CloudNet, 2014, pp. 120–125.
[14] P. Emmerich et al., “Assessing soft- and hardware bottlenecks in PC-

based packet forwarding systems,” ICN 2015, p. 90, 2015.
[15] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in Proc.

USENIX, 2012, pp. 101–112.
[16] PF RING. [Online]. Available: http://www.ntop.org/products/pf ring/
[17] Snabb switch. [Online]. Available: http://www.snabb.co
[18] D. Scholz, “A look at Intels dataplane development kit,” in Network

Architectures and Services (NET), vol. NET-2014-08-1, 2014, pp. 115–
122.

[19] D. Zhou et al., “Scalable, high performance Ethernet forwarding with
CuckooSwitch,” in Proc. ACM CoNEXT, 2013, pp. 97–108.

[20] K. Fall et al., “Routebricks: enabling general purpose network infras-
tructure,” ACM SIGOPS Operating Systems Review, vol. 45, no. 1, pp.
112–125, 2011.

[21] J. G. Panduro Vazquez, “The ATLAS data acquisition system: from run
1 to run 2,” Nuclear Physics B - Proceedings Supplements, 2015, to be
published.

[22] T. Colombo et al., “Data-flow performance optimisation on unreliable
networks: the ATLAS data-acquisition case,” J. Phys.: Conf. Ser., vol.
608, no. 1, p. 012005, 2015.

[23] G. Antichi et al., “Time structure analysis of the LHCb DAQ network,”
J. Phys.: Conf. Ser., vol. 513, no. 6, p. 062009, 2014.

[24] T. A. Bawej et al., “Boosting event building performance using Infini-
band FDR for CMS upgrade,” PoS, vol. TIPP2014, p. 190, 2014.

[25] I. Cerrato et al., “Supporting fine-grained network functions through
Intel DPDK,” in Proc. IEEE EWSDN, 2014, pp. 1–6.

[26] Intel 82599 10 GbE Controller Datasheet, Intel, February 2015, revision
3.1.

[27] Intel Server Board S2600GZ/GL Technical Product Specification, Intel,
March 2012, revision 1.1.

[28] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM

Computer Communication Review, vol. 40, no. 4, pp. 63–74, 2010.


