
A
TL

-D
A

Q
-P

R
O

C
-2

01
5-

00
1

11
Fe

br
ua

ry
20

15

Analogues between tuning TCP for Data

Acquisition and Datacenter Networks

Grzegorz Jereczek∗†, Giovanna Lehmann Miotto∗, David Malone†

∗European Organization for Nuclear Research (CERN), Geneva, Switzerland
†Maynooth University, Maynooth, Irleand

Abstract—A many-to-one communication pattern is present
both in Data Acquisition (DAQ) and datacenter networks. The
problem arising from this pattern is widely known in the
literature as incast and can be observed as TCP throughput
collapse. It is a result of overloading the switch buffers, when a
specific node in a network requests data from multiple sources.
This paper provides two contributions. First, we confirm that
there are strong analogies between the TCP behavior in DAQ
and datacenter networks. Second, we evaluate different proposals
from the datacenter environment for application in DAQ to
improve performance and reduce buffer requirements.

I. INTRODUCTION

ATLAS [1] is a general-purpose particle detector designed

to study particle collisions at the Large Hadron Collider (LHC)

at CERN. ATLAS, like other existing and emerging large-

scale experiments, produces increasingly high volumes of data.

Their source can be a wide variety of instruments, including

sensors, detectors, antennas or telescopes. Although charac-

teristics and goals of these experiments vary, they share a

common challenge for real-time filtering, storage and analysis

of the acquired data [2]. One of the key components of

this chain is a network, called the data acquisition network.

It collects together the outputs from all the instruments to

reconstruct a physical process. The ATLAS DAQ network is

used throughout this paper as a case study (see Fig. 1a).

There is a desire to use commodity hardware in these

systems whenever possible. It simplifies the configuration and

maintenance, but also reduces the costs. The ATLAS DAQ

network is based on TCP/IP and Ethernet technologies [3].

This poses, however, several challenges due to the bursty

nature and many-to-one communication pattern of the data

flow in DAQ. It resembles one of the patterns identified to be

very common in typical datacenter networks: incast [4].

This paper discusses the analogues between tuning TCP for

DAQ and datacenters to avoid incast. We evaluate if solutions

proven to be good for datacenter could be also employed in

DAQ. In the first part of the article we describe a typical DAQ

network and reveal its relation to the TCP incast in datacenters.

This part ends with related work in this area. In the second

half of the article we validate proposals for solving datacenter-

incast in the real DAQ system of the ATLAS experiment.

II. BACKGROUND AND MOTIVATION

A. Data Acquisition Networks

DAQ networks collect data from their sources and transport

them to processing units for further analysis. The high level

��������	
��	


�����������������

���
	�

��������
�

̴�����

���

��

�

	

�

�

�

�

�


��

�

	

�

�

�

�

�


��

�

	

�

�

�

�

�


���

	

��
�

��
��
�


�� �
�!���	
�

(a)

��������

�������	


�����

���

���������������

�������

�������

����������

������

����������

���

����

������

���

������

�������

�������

(b)

Fig. 1. The ATLAS DAQ system (a) and its network topology (b) as of
summer 2014.

diagram of the ATLAS DAQ is presented in Fig. 1a.

Events in the LHC nomenclature are particle collisions

inside of the LHC and their physical “fingerprints” are

recorded by the detector, which is the data source for the

DAQ system. The Read-Out Subsystem (ROS) is an interface

between the ATLAS-specific data acquisition components and

commodity equipment. This is the entry point to the DAQ

network transporting event data to the filtering farm (HLT,

High Level Trigger). The ROS sends data of a particular event

to a single Processing Unit (PU), which is a worker process

on a commodity server performing event reconstruction and

analysis. There are multiple PUs on each server of the farm

(working on independent events), but only one Data Collection

Manager (DCM) that requests event fragments from ROS on

the behalf of the PUs.

The ATLAS DAQ/HLT system is based on 10Gbps Ethernet

network with TCP as transport layer protocol and is capable

of filtering 2Tbps of event data, which is required by the ex-

periment. The requirement for the average data bandwidth can

be satisfied with commodity networking hardware nowadays,

but the specifics of data acquisition place an additional burden

on the network subsystem. The burstiness of the traffic makes

it difficult to handle with shallow-buffered network switches.

B. Relation to TCP incast in datacenters

Depending on the exact configuration of the ROS, between

100-200 PCs are used to read out the event data from the

detector. If a DCM requested full event data from all the ROS

PCs simultaneously, it would cause a large traffic burst in

the network. Switches without sufficient buffer capacity would

drop some portion of the packets, leading to an increased event

data collection time, which is one of the important parameters



0 500 1000 1500 2000

No. of fragments requested

0

100

200

300

400

500

M
ea

n
la

te
n

cy
[m

s]

ATLAS TDAQ

(a) Data collection latency

0 500 1000 1500 2000

No. of fragments requested

0

20

40

60

80

100

R
at

io
[%

]

ATLAS TDAQ

(b) Events with TCP timeouts

Fig. 2. Collapse of event data collection due to abrupt increase of the latency
(a), if too many event fragments are requested at the same time. It coincidences
with the fraction of events experiencing collection latency above 200 ms (b),
which is an indication of at least one TCP timeout. Fragments of size 1 kB
are spread across 200 ROS PCs.

that need to be kept under control in a DAQ system. This kind

of behavior is presented in Fig. 2a (see caption for details).

Synchronous requests for event data fragments from a single

DCM to a large number of ROS servers closely resembles

the many-to-one communication patterns in datacenters, which

are affected by the TCP incast pathology [5]. TCP incast is

defined as “a catastrophic throughput collapse that occurs as

the number of storage servers sending data to a client increases

past the ability of an Ethernet switch to buffer packets” [6].

Incast is usually analyzed in terms of throughput, which is

significantly degraded by the TCP recovery mechanisms after

packet loss. TCP timeouts, in particular, introduce delays of

hundreds of milliseconds leading to throughput degradation

[6]. The typical value for the minimum TCP retransmission

timeout (RTO) in TCP stack implementations of common

Linux distributions is 200ms [7] (including Scientific Linux 6,

SLC6 [8], used at CERN). These delays are the direct cause of

the increased data collection latency as can be seen in Fig. 2b.

A single TCP timeout increases the collection time by at least

200ms, compared to three orders of magnitude lower 200 µs

round trip time (RTT ) of the DAQ network. It confirms a

close relation between TCP incast in datacenters and traffic

burstiness in DAQ. Therefore, solutions from datacenters could

be tested in DAQ systems and, if successful, would help

in increasing their level of commoditization. Based on this

premise we explore possible adoption of techniques proposed

for datacenters to solve or reduce the impact of TCP incast in

DAQ systems.

C. Related work

A number of proposals for incast mitigation in datacenter,

ranging from the link layer through the transport layer up to the

application layer, can be found in the literature. For a review

of recent work in this area, see [4], [9], [10] and references

therein. Analytic models of incast behavior can be found in

[5], [11], [12], but first indications of poor TCP performance

with many flows were already presented in [13].

Details on the architecture of the ATLAS data acquisition

system are discussed in [14], [15]. Characteristics of the DAQ

traffic patterns on the example of the LHCb experiment at

CERN can be found in [16]. The CMS experiment approaches

the same problem with an InfiniBand network [17].

III. CURRENT SYSTEM

The following section begins with a description of the

network configuration of the ATLAS DAQ, used throughout

this paper to analyze and evaluate TCP performance. Then we

describe the current technique to mitigate the incast problem,

which is an application layer solution: traffic shaping.

A. Network configuration

The LHC and all its experiments are currently undergoing

a major upgrade for its second run period starting in 2015.

Since no data collection is ongoing, it is possible, to some

extent, to test and evaluate modified TCP variants on a real

large-scale DAQ system.

The diagram of the ATLAS data acquisition network con-

figured for the purposes of this paper is presented in Fig. 1b.

The ROS subsystem is used in emulation mode, generating

dummy data. On the DCM side, no actual event processing is

done either. The DCMs request fake events from the ROS and

push it to fake PUs with preconfigured processing times. In

this way, the network subsystem can be analyzed in isolation

from other factors while the topology corresponds closely to

the real DAQ configuration.

Fake event fragments are spread across ROS PCs, 12

fragments each. All fragments make an entire event (depending

on the number of enabled ROS PCs). These PCs are physically

located in different racks (9-12 ROS PCs each) so as not to

limit their bandwidth by the top of rack (ToR) to data core

(DC) link. For the filtering farm, only a single rack with 39

DCM machines is used in this configuration. HP6600 switches

[18] are used to aggregate machines within the same rack. The

core of the network is made with the Brocade MLXe32 router

[19] using the Virtual Output Queuing (VOQ) architecture

[20]. ToR switches and the DC router are connected via

10Gbps uplinks. All connections within the rack are 1Gbps.

As already mentioned, the average RTT of the network is

200 µs, so its bandwidth-delay product (BDP ) is:

BDP = Bandwidth ·RTT = 25 kB ≈ 17 Packets (1)

with a single packet’s Maximum Transmission Unit (MTU)

of 1500B. This means that 100 ROS applications sending a

single TCP segment to one DCM would exceed the network’s

BDP by a factor of 6. This excess must be buffered in the

switches, otherwise packet drops and increased latency are

observed. The initial congestion window of SLC6 [8] is 10

TCP segments, so upon receiving a request from DCM all ROS

endpoints are allowed to inject all event data into the network.

This explains the abrupt change of the data collection latency

in Fig. 2a and 2b above 500 fragment requests. The excess

does not fit into the DCM ToR switch buffers, so packets are

dropped leading to TCP retransmissions and timeouts. From

this it can be estimated that the HP6600 [18] ToR switch has

about 500 kB buffer per 1Gbps output port.



500 1000 1500 2000

No. of credits

0

100

200

300

400

500

600

M
ea

n
la

te
n

cy
[m

s]

ATLAS TDAQ

(a) Data collection latency

500 1000 1500 2000

No. of credits

0

20

40

60

80

100

R
at

io
[%

]

ATLAS TDAQ

(b) Events with timeouts

Fig. 3. TCP incast mitigation with traffic shaping when requesting full event
data (2400 fragments of 1 kB across 200 ROS PCs) from a single DCM.

B. Traffic shaping

Traffic shaping is a simple credit-based system allowing the

reduction of the impact of the DAQ traffic burstiness [15]. It

is employed on the aggregator side, the DCMs. Each of them

is assigned a fixed amount of credits. One credit permits a

request for one event fragment (independent of its size, a fixed

fragment size among the entire ROS is used in this paper).

A DCM shall not request more fragments than its currently

available quota. The quota is reduced when requests to the

ROS are sent and increased upon receiving the response with

event data. This algorithm limits the burstiness of the data flow

by spreading the DCM requests over time, thus taking down

the instantaneous pressure at the switch queues.

The capability of traffic shaping to mitigate TCP incast

is demonstrated in Fig. 3. In the optimum operating range,

between 100 and 550 credits, the mean latency of event data

collection stays near its minimum of 21.7ms. It is close to

the packetization delay of the entire event size on a 1Gbps

link of 19.2ms, thus proving the efficiency of the algorithm.

Below 100 credits the network is not fully utilized (insufficient

traffic in the network). On the other hand, the switch buffers

are overstressed and start to drop packets above 550 credits

quota (Fig. 3b, compare to 2a).

IV. APPROACHES TO AVOID TCP-INCAST

In this section we introduce some approaches to improve

the TCP performance when facing incast, which we evaluate

in reference to possible adoption in data acquisition systems.

We start with a straightforward solution, which is increasing

the buffer sizes in the network. Then we will confirm the need

to revise the parameters for TCP retransmission mechanisms.

A simplistic approach of statically configuring the TCP con-

gestion parameters is analyzed afterward. We have also chosen

one of the proposals for modified TCP congestion control,

Deadline and Incast Aware TCP (DIATCP [21]), to evaluate

as an alternative to traffic shaping.

A. Increasing the buffer sizes

The root cause of incast is packet drops due to buffer over-

flows in the network switches. A simple solution is to increase

the buffer space [6]. Although the most effective, it is also the

10 100 1000 10000

VOQ size [kB]

0

30

60

90

120

150

180

M
ea

n
la

te
n

cy
[m

s]

ATLAS TDAQ

(a) Data collection latency

10 100 1000 10000

VOQ size [kB]

0

20

40

60

80

100

R
at

io
[%

]

ATLAS TDAQ

(b) Events with timeouts

Fig. 4. Solving TCP incast with increased buffer sizes. Performance of a
single DCM (2400 event fragments of 1 kB across 200 ROS PCs).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time [s]

0

20

40

60

80

100

L
in

k
u
ti

li
za

ti
o
n

[%
]

200 ms 200 ms 240 ms 200 ms 200 ms 240 ms

ATLAS TDAQ

Fig. 5. Link utilization of a DCM over longer period of time. It remains idle
for at least 200ms after a TCP timeout, which suspends data collection.

least scalable approach as networking hardware with larger

memory cost more. The Brocade MLXe32 router supports

VOQ with queues of size up to 256MB [19]. Together with

the traffic shaping algorithm it can handle the entire DAQ farm

consisting of ~2000 servers filtering the LHC data.

Fig. 4 shows the effectiveness of increasing buffer sizes

in case when only one DCM is active in the system. It was

simulated by changing the maximum allowed VOQ size at

the DC router. With more than 64 kB VOQ the packet losses

are eliminated in the given configuration. Because of the high

costs of switch memory this way of solving incast can only

be used if memory cost is reduced.

B. Fine-grained TCP retransmissions

With our results we confirm the desirability for the revision

of the TCP retransmission timeouts as already indicated in

[5] and [7]. Both publications show that microsecond, instead

of millisecond, timeouts significantly reduce the consequences

of incast. We do not consider it as solution to incast for DAQ

systems, where retransmissions because of congestion can be

eliminated in first place, but the implications of non-congestion

related drops should be diminished as well. What can be seen

in Fig. 5 is the effect of TCP retransmission timeouts during

event data collection, which leads to locking of the PUs while

waiting for a TCP retransmission after a timeout of at least

200ms and increasing CPU idle time.

C. Static TCP configuration



1) Analysis: A single TCP sender is allowed to send no

more than the sender window W of unacknowledged bytes,

which is the minimum of sender’s congestion window (cwnd)

and the receiver’s advertised window (awnd):

W = min(cwnd, awnd) (2)

The optimal window is about the size of the BDP of the

network. It ensures that enough bytes are in-flight to keep its

links busy [3]. On the other hand, too large a value of W leads

to queuing in the switches and eventually packet drops. The

network is saturated without causing losses when:

BDP ≤ W < BDP +B (3)

where B is the available buffer at the switch [22]. In case of

multiple flows in the network:

BDP ≤

N∑

i=1

min(cwndi, awndi) < BDP +B (4)

where min(cwndi, awndi) is the send window of the i-th flow.

The total number of flows (N ) is given by the number of ROS

PCs (NROS) and DCMs (NDCM ):

N = NROS ·NDCM (5)

A simple static configuration of the send window in ROS

cwndi = cwnd can be a potential solution to TCP incast. The

cwnd can be easily configured with custom Linux loadable

congestion control modules, so kernel recompilation is not

even required. Assuming a large receiver’s window awnd, the

condition (4) for cwnd of a single flow becomes:

BDP

N
≤ cwnd <

BDP +B

N
(6)

We pointed out in Section III-A that with N = 147 we

already exceed the BDP , but with Equation (6) we can

approximate the required amount of buffering. With fixed

cwnd we guarantee that there will be no more than:

N · cwnd = NROS ·NDCM · cwnd (7)

of packets or bytes in-flight in the DAQ network. We evaluated

this approach with cwnd of 2 packets. In configuration with a

single DCM and MTU of 1500B we will need no more than

416 kB of buffering, which does not exceed the estimated per

port memory at the ToR switch. We can also calculate an

upper bound for the 39 DCMs setup, which is about 17MB

and gives an estimate of the required VOQ size for a complete

rack, with all its DCM applications.

2) Single event performance: Fig. 6 shows the IO behavior

of traffic shaping and static TCP configuration when collecting

a single event. This data was generated from TCP dumps on

a DCM. In case of both schemes the last response with data

from ROS arrives at the DCM at almost the same time (17ms).

There is a major difference when comparing traffic in the

opposite direction, from DCM to ROS. With static TCP the

DCM sends requests for all event fragments at once (see

higher slope in the beginning in Fig. 6b), whereas with traffic

0 5 10 15 20

Time [ms]

0

500

1000

1500

2000

C
u

m
u

la
ti

v
e

b
y

te
s

[k
B

]

E
v
en

t
co

m
p

le
te

ATLAS TDAQ

Traffic shaping

Static TCP

(a) ROS to DCM

0 5 10 15 20

Time [ms]

0

10

20

30

40

50

60

C
u

m
u

la
ti

v
e

b
y

te
s

[k
B

]

E
v
en

t
co

m
p

le
te

ATLAS TDAQ

Traffic shaping

Static TCP

(b) DCM to ROS

Fig. 6. IO graphs of a single event. The last ROS response (a) arrives after
16.766ms for static cwnd of 2 packets and after 16.84ms for traffic shaping
(396 credits quota). 147 ROS PCs with 1.1 kB fragments.

0 10 20 30 40 50 60

Time [s]

0

5

10

15

20

25

30

35

Q
u
eu

e
si

ze
[k

B
]

ATLAS TDAQ

Traffic shaping

Static TCP

Fig. 7. Maximum VOQ size of three different blades during event data
collection. One blade experiences higher load (more connected ROS racks).

shaping the requests are distributed in time depending on the

instantaneously available credits. This can have significant im-

plications on the switch buffers depending on their architecture

and configuration, as the traffic is not restricted on a single

ROS to DCM flow. In our setup (Fig. 1b) the ROS racks are

connected to different blades of the DC router (Fig. 1b) with

independent VOQs. The instantaneous size of a single VOQ

is stable over the time with lower maximum in case of static

configuration (Fig. 7). We can explain that by the fact that

particular ROS PC responds with a burst of event data for a

single request, if traffic shaping is used. Static TCP limits that

on each ROS to DCM flow, but they are all transporting data

simultaneously, so the load is spread evenly across VOQs.

The total number of bytes sent from DCM to ROS (Fig. 6b)

is 20 kB higher for the static configuration due to the increased

number of TCP acknowledgments (TCP ACKs). With cwnd

of 2 packets an ACK is sent for every 2 packets coming

from ROS. With the traffic shaping approach their rate is

lower, especially if TCP segmentation offloads are enabled

on the DCM. This effect has minor impact on the overall

performance, since the main data flow is in the other direction.

Another observation is the fact that DCM keeps sending TCP

ACKs for another 1.3ms after having received the last DCM

response. It is true only for the static TCP. In section IV-C3

we will see that this will be the cause for slightly increased

mean latency of data collection seen by the application layer.

3) Incast avoidance with 1 DCM: The cumulative distribu-

tion function (CDF) of event collection latency is presented in



1 10 100 1000

Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ATLAS TDAQ

Default SLC6 TCP
1680 fragments (1 kB)

Traffic shaping
1764 fragments (1.1 kB)
396 credits quota

Static TCP
1764 fragments (1.1 kB)
2 packets cwnd

Fig. 8. Data collection latency with 1 DCM. Static TCP and traffic shaping
eliminate TCP timeouts. All events suffer from at least one TCP timeout with
the default SLC6 TCP (TCP-Cubic without incast-avoidance algorithms).

5 10 15 20 25 30 35 40

Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ATLAS TDAQ

Traffic shaping L2
294 credits quota

Traffic shaping EB
294 credits quota

Static TCP L2
2 packets cwnd

Static TCP EB
2 packets cwnd

Fig. 9. Data collection latency with 39 DCMs. It is divided into L2 and EB
stages to fit into the available bandwidth. No TCP timeouts can be observed
for both solutions. 147 ROS PCs provide data fragments of 1.1 kB size.

Fig. 8. Static TCP mitigates incast as well as traffic shaping.

There are no TCP timeouts in both cases. The mean latency

is slightly higher for static configuration, which is contrary to

the time it takes to collect a single event (Fig. 6) as seen from

a TCP dump. The explanation lies in the fact that the mean

latency in Fig. 8 is observed by the application layer DAQ

software. The increase is therefore caused by an additional

overhead of handling all ROS connections in parallel. It is

also visible in the increased TCP ACK traffic in Fig. 6b for

the static TCP after having received the last data response from

ROS. The difference in mean latency is minor and does not

significantly affect the entire system’s performance.

4) Incast avoidance with 39 DCMs: Incast is avoided also

in a setup with 39 DCMs (Fig. 9). Since the bandwidth of the

DC-ToR 10Gbps link is not enough to handle the required

event rate (2 kHz), filtering is split into two phases [14]:

1) Partial event reconstruction (“L2”);

2) Full event building (“EB”).

In the first one a subset of event fragments is requested from

ROS and prompt decision is made by a PU whether these

data look promising. DCM pulls the remaining fragments only

for events accepted for the EB phase, so the bandwidth is

reduced. It is a simplification of the real ATLAS event filter,

but sufficient to study the network behavior.

The CDF (Fig. 9) is analogous to the one presented in

the previous section. There are no TCP timeouts both for the

static and traffic shaping algorithms and the second one shows

slightly lower mean latency of the EB stage.

D. DIATCP

Deadline and Incast Aware TCP (DIATCP) is a TCP variant

proposed for datacenter [21]. From variants proposed in the

literature we chose DIATCP for evaluation in DAQ networks.

The decision was dictated by the availability of the code, the

fact no changes are required to the networking hardware, and

straightforward integration with the ATLAS DAQ software.

1) Algorithm: DIATCP is deployed only at the aggregator

(the DCM in our case). In DIATCP the peers’ (ROS) sending

rate is controlled to avoid incast and application deadlines. For

a description refer to [21]. In the DAQ world the events must

be delivered reliably with minimum delay for the duration of

the experiment. There is no concept of strict deadlines, so we

only analyze DIATCP’s incast-avoidance feature.

In contrast to the static cwnd, where the congestion window

of the sender is used to control the packets injected into the

network, DIATCP utilizes the advertisement field in the TCP

ACKs to allocate a specific window size to each ROS peer. It

is the awnd (see Section IV-C1) that is controlled by DIATCP

and the condition defined with (4) takes the form:

BDP ≤

N∑

i=1

awndi < BDP +B (8)

where awndi is the advertised window to the ROS on i-th

DCM-ROS flow. We have the knowledge of all incoming flows

at the aggregator, so we can jointly regulate their advertised

windows, as opposed to controlling cwnd (single ROS peer

maintains a single connection to a particular DCM). The sum

of all the advertised window sizes at a single DCM is the

global window as defined in [21]:

gwnd =

NROS∑

i=1

awndi (9)

With the same gwnd at each DCM, the condition (8) becomes:

BDP ≤ NDCM · gwnd < BDP +B (10)

[21] gives guidance on tuning gwnd depending on the

network’s RTT . We limit ourselves for gwnd fulfilling the

requirement (8) and being comparable with cwnd and traffic

shaping quota in terms of total in-flight bytes in the network.

One can see analogy between traffic shaping and DIATCP.

The global window resembles the credits quota assigned to

a DCM. The first one is calculated in packets, whereas the

second in event fragment units. We can therefore treat DIATCP

as traffic shaping implemented at the transport layer.

2) Testbed: DIATCP cannot be implemented in form of a

TCP congestion control module, as the static TCP variant.

It requires changes to the TCP stack in the receiving path

and, as a result, kernel recompilation. Since the ATLAS DAQ

system is about to start with the next run of LHC next year,

we decided to evaluate DIATCP with an experimental testbed

running the same ATLAS DAQ software. It consists of 160

ROS applications emulated on 4 server class PCs equipped

with double-port Intel 82599 10Gbps Ethernet controllers and

1 DCM with 1Gbps controller. ROS and DCM are connected



0 5 10 15 20

Time [ms]

0

500

1000

1500

2000

2500

C
u

m
u

la
ti

v
e

b
y

te
s

[k
B

]

Traffic shaping

Static TCP

DIATCP

(a) ROS to DCM

0 5 10 15 20

Time [ms]

0

10

20

30

40

50

60

70

80

C
u

m
u

la
ti

v
e

b
y

te
s

[k
B

] Traffic shaping

Static TCP

DIATCP

(b) DCM to ROS

Fig. 10. IO graphs of a single event. The last ROS response arrives at DCM
after 18.94ms in case of DIATCP with gwnd of 160 packets, 22.19ms for
static cwnd of 2 packets and 18.48ms for traffic shaping (421 credits quota).
Experimental testbed used in all cases.

1 10 100

Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Default SLC6 TCP

Traffic shaping
421 credits quota

Static TCP
2 packets cwnd

DIATCP
320 packets gwnd

Fig. 11. Data collection latency (1 DCM). The three variants perform without
TCP timeouts opposed to the default TCP. Experimental testbed in all cases.
The software router drops less packets than the ToR switch of the ATLAS
DAQ resulting in less timeouts and better performance of SLC6 than in Fig. 8.

via a server with the same Intel adapters. It is configured as

a software router using the Linux IP forwarding capabilities.

With help of different Linux queuing parameters, it is possible

to emulate the behavior of a real DAQ network. Each ROS

application is configured with 12 fragments of 1.1 kB.

3) Single event performance: The IO graphs in Fig. 10

indicate comparable latencies for DIATCP and traffic shaping.

Static TCP performs measurably worse with the last ROS

response arriving 3ms later. We believe this is because the

use of a server instead of a real switch. The traffic is spread

among different Ethernet cards and CPU sockets on the server-

based router. The BDP of this network (0.5ms RTT ) is

already exceeded with a 2 packets cwnd, but the complexity

of this configuration has more implications on the results when

serving all TCP flows in parallel compared to a standard router.

Higher TCP traffic in the direction to ROS with DIATCP

(Fig. 10b) is caused by frequent TCP window updates.

4) Incast avoidance with 1 DCM: Fig. 11 confirms that

DIATCP can be a valid candidate for DAQ. TCP timeouts are

gone from the system in case of all the three solutions. The

mean latencies of DIATCP and traffic shaping are comparable.

V. CONCLUSION

In this paper we showed that there are analogues between

the use of TCP in DAQ networks and the incast problem in

datacenters. We evaluated a number of mechanisms to alleviate

these problems, allowing improved performance and reduced

buffer requirements. Even a simple static configuration of

TCP congestion control, which does not require any addi-

tional programming overhead, can already effectively solve the

problem. Advanced TCP incast avoidance algorithms proposed

for datacenter can be successfully applied in DAQ networks,

which we demonstrated on the example of DIATCP. These,

however, require at least Linux kernel recompilation and often

modifications to the networking hardware. If used, they can

save the programming effort of implementing application layer

solutions. Software traffic shaping obtains results that match or

exceed the alternative proposals, but it is specific to the ATLAS

DAQ and not transparently transferable to other environments.

ACKNOWLEDGMENT

This research project has been supported by a Marie Curie

Early European Industrial Doctorates Fellowship of the Eu-

ropean Community’s Seventh Framework Programme under

contract number (PITN-GA-2012-316596-ICE-DIP).

The authors thank Dr. Jaehyun Hwang for sharing and help

in integrating the DIATCP implementation.

REFERENCES

[1] ATLAS TDAQ Collaboration, “The ATLAS Trigger/DAQ Authorlist,”
CERN, Geneva, Tech. Rep. ATL-DAQ-PUB-2013-001, Jun 2013.

[2] A. Di Meglio et al., “CERN openlab whitepaper on future IT challenges
in scientific research,” 2014.

[3] K. R. Fall et al., TCP/IP illustrated, volume 1: The protocols. Addison-
Wesley, 2011.

[4] Y. Ren et al., “A survey on TCP incast in data center networks,”
International Journal of Communication Systems, 2012.

[5] Y. Chen et al., “Understanding TCP incast and its implications for big
data workloads,” DTIC Document, Tech. Rep., 2012.

[6] A. Phanishayee et al., “Measurement and analysis of TCP throughput
collapse in cluster-based storage systems.” in FAST, vol. 8, 2008.

[7] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” in Proc. ACM SIGCOMM, 2009.

[8] Scientific Linux. [Online]. Available: https://www.scientificlinux.org/
[9] I. R. Shohab et al., “Transport layers approaches for TCP incast problem

at data center networks,” IJSER, vol. 5, 2014.
[10] R. P. Tahiliani et al., “TCP variants for data center networks: A

comparative study,” in Proc. IEEE ISCOS, 2012.
[11] Z. Feng et al., “An analytic goodput model for TCP incast,” in Proc.

IEEE IMIS, 2012.
[12] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM

SIGCOMM, 2010.
[13] R. Morris, “TCP behavior with many flows,” in Proc. IEEE ICNP, 1997.
[14] J. G. Panduro Vazquez, “The ATLAS data acquisition system: from run

1 to run 2,” ATL-DAQ-PROC-2014-035, Tech. Rep., 2014.
[15] T. Colombo, “Data-flow performance optimisation on unreliable net-

works: the ATLAS data-acquisition case,” ATL-DAQ-PROC-2014-029,
Tech. Rep., 2014.

[16] G. Antichi et al., “Time structure analysis of the LHCb DAQ network,”
in Computing in High Energy and Nuclear Physics (CHEP), 2013.

[17] T. A. Bawej et al., “Boosting event building performance using Infini-
band FDR for CMS upgrade,” Tech. Rep., 2014.

[18] HP 6600 switch series. [Online]. Available: http://www.hp.com/
[19] Brocade MLX series. [Online]. Available: http://www.brocade.com/
[20] A. Kumar et al., Communication networking. Elsevier, 2004.
[21] J. Hwang et al., “Deadline and incast aware TCP for cloud data center

networks,” Computer Networks, 2014.
[22] H. Zheng et al., “An effective approach to preventing TCP incast

throughput collapse for data center networks,” in Proc. IEEE GLOBE-

COM, 2011.


