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Performance Models
• Performance models help us better understand why our program is 

behaving in a certain way 
• With a simple model we abstract away a lot of technical details of the 

hardware 
• We can better track performance through application development 
• Guides performance optimization 

• Allows us to prioritize work 

• We can make predictions for new code or new hardware
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A visual performance model for  
floating-point applications
Disclaimer: This work was published by S. Williams et al in ACM Communications 
52(4), 2009
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The Roofline Model
• Measure the floating point performance (FLOP/s) as a function of the 

arithmetic intensity (i.e. number of FLOPs per byte transferred from 
memory/cache). 

• Performance is limited by 
• the peak performance available  

to the core 
• the memory bandwidth times 

the arithmetic intensity
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Roofline: Hardware limits
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• AVX (vector instructions) takes  
4 doubles: 4 x scalar perf 

• FMA (fused multiply add) 
performs 1 multiply & 1 add 
at the same time: 2 x vector perf



Roofline: Software limits
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Arithmetic Intensities
• Computational codes can be characterized by their arithmetic intensity: 

• floating point operations performed per bytes read and written 

• A little example: Cholesky decomposition of 3x3 matrices
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L[0] = sqrt(C[0]); 
L_inv = 1.0 / L[0]; 
L[1]  = C[1]  * L_inv; 
L[3]  = C[3]  * L_inv; 
L[2] = sqrt((C[2] - L[1]*L[1])); 
L_inv = 1.0 / L[2]; 
L[4]  = (C[4]  - L[3] *L[1]) * L_inv; 
L[5] = sqrt((C[5] - L[3]*L[3] - L[4]*L[4]));
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Depends on context: has C been used before? will L be used afterwards?
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By the way… How many FMAs can we have here? 
How does this change the arithmetic intensity?



Some hardware rooflines
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Hardware limits
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• By analyzing the specific rooflines for different hardware architectures we 
can see what is the maximum performance we can achieve with a 
particular code 

• Intel x5650 has lowest peak perf  
but it is very well balanced. 

• peak perf can be achieved at  
arithmetic intensity < 2.0!



Hardware limits - looking forward
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• E5-2699v4 shows impressive 
performance. 

• Great BW means lower 
“sweat spot” (5 FLOPs/Byte)



Hardware limits - looking forward
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• E5-2699v4 shows impressive 
performance. 

• Great BW means lower 
“sweet spot” (5 FLOPs/Byte)

What about the KNL?



Hardware limits -  KNL
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• Careful: We are comparing single  
CPUs here! 

• A dual-socket E5-2699v4 will  
still beat the KNL (but $ x2 !) 

• We have to learn how to properly  
use MCDRAM



How to get your own Rooflines
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The manual way
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1. Get the roofs for the hardware architecture you are running on 
• Using theoretical limits from specification 
• Using micro benchmarks: https://bitbucket.org/berkeleylab/cs-roofline-toolkit 

2. Get the number of FLOPs the code is incurring 
• By analyzing the code 
• By using Intel SDE: https://software.intel.com/en-us/articles/intel-software-

development-emulator 
3. Get the number of bytes read/written 

• By analyzing the code 
• By using vtune and hardware counters for memory read/write events

https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://software.intel.com/en-us/articles/intel-software-development-emulator


Kalman Filter
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• These are single-threaded benchmarks. 
• Especially smooth could probably be further improved 
• KNL code uses AVX512 & FMA



The automatic way
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• Intel Analyzer 2018 will have a tool for roofline analysis. 
• Currently still in alpha/beta stage, but available at CERN openlab. 
• Contact me if you  

are interested



Velopixel track reconstruction
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• Only one kernel of this algorithm has an arithmetic intensity that can take advantage to 
typical optimizations (here we show top 2) 

• Overall arithmetic intensity very low —> A completely different approach might be worth it



In Summary
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• The roofline model can be useful in three ways: 
1. It helps tracking hardware performance and allows easily comparing different 

platforms 
2. It can be used as a tool during code development or optimization to see how 

close (or rather how far) are we are to the optimum 
3. It gives guidance as to which is the next optimization to attack 

• Caveats: 
• Bytes read&written is difficult to assess, depends on operations around kernel 
• The model works well for small computational kernels —> There is no point in 

making a Gaudi roofline! 
• Integer operations and memory latency sensitive operations are not exposed 

in this model
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Thank you!
Who are we: 

CERN openlab High Throughput Computing Collaboration  
Olof Bärring, Niko Neufeld  
Luca Atzori, Omar Awile, Paolo Durante, Christian Färber, Placido Fernandez, 
Karel Hà, Jon Machen (Intel), Rainer Schwemmer, Sébastien Valat, Balázs 
Vőneki


