
Experiments with multi-threaded
velopix track reconstruction

7th LHCb Computing Workshop
2.6.2016

Omar Awile (omar.awile@cern.ch),
Pawel Szostek

mailto:omar.awile@cern.ch?subject=

Some context… and motivation
• We want to explore how velopixel track reconstruction can

be done on multi- and manycore CPUs - using
multithreading. 
 
 

• Intel Xeon is still the predominant HW architecture in
sci.comp. but can we use it more efficiently?

• Host-mode manycore processors (Knights Landing) with
100s of HW threads are around the corner, how can we
scale that far?

2

TBB

Let’s not start from scratch
• We ported Daniel Campora’s clPixel to serial C++ for

a baseline
• From there experimented with

• OpenMP
• TBB
• vectorization

3

We chose track forwarding
The production LHCb algorithm for velopix is searchByPair, a flavour of Track Forwarding
◦ For each pair of unused hits, a third hit is searched
◦ The first one found compatible is kept [hits are preordered by X]

19/11/2015 DANIEL HUGO CÁMPORA PÉREZ - OPENCL VELOPIX CROSS-PLATFORM STUDIES 8

vectorization

4

• We found a hotspot! but…
• loop is small and contains a reduction

• Use openmp-simd reductions
• Other loops…. difficult

• e.g. fillCandidates loop has multiple exits

Some OpenMP experiments
• Idea: “inject” nested parallel regions at different iteration

levels
• Manipulate them using C macros (turning parallelism on

and off, changing number of threads and scheduling
policies)

• Find the best settings by exploring the parameter space

5

Using TBB for multilevel parallelism
• We would like to be able to compare our parallel code with

a typical production run.
—> we parallelize over events and within each event

• For now mostly based on TBB parallel_for
• Also tested pipelining

• Used lock-free parallel implementations
• TBB thread-safe data-structures did not perform well!

6

Results and Timings

7

Making sure results are OK

8

(tbb|omp)Pixel
2180404 tracks including 26268 ghosts (1.2%). Event average 1.0%
 velo : 1923734 from 2105493 (91.4%) 30356 clones (1.58%), purity: (99.77%), hitEff: (96.06%)
 long : 671727 from 678628 (99.0%) 8266 clones (1.23%), purity: (99.74%), hitEff: (97.75%)
 long>5GeV : 445784 from 448535 (99.4%) 4672 clones (1.05%), purity: (99.78%), hitEff: (98.26%)
 long_strange : 27152 from 27846 (97.5%) 320 clones (1.18%), purity: (99.21%), hitEff: (97.81%)
 long_strange>5GeV : 13365 from 13679 (97.7%) 116 clones (0.87%), purity: (99.06%), hitEff: (98.55%)
 long_fromb : 38778 from 39148 (99.1%) 368 clones (0.95%), purity: (99.70%), hitEff: (97.94%)
 long_fromb>5GeV : 31989 from 32196 (99.4%) 275 clones (0.86%), purity: (99.73%), hitEff: (98.15%)

Brunel (v50r0) PrPixel
2248492 tracks including 56641 ghosts (2.5%). Event average 1.9%
 velo : 1937720 from 2105493 (92.0%) 44013 clones (2.27%), purity: (99.81%), hitEff: (95.40%)
 long : 672751 from 678628 (99.1%) 13556 clones (2.02%), purity: (99.82%), hitEff: (96.72%)
 long>5GeV : 446458 from 448535 (99.5%) 7731 clones (1.73%), purity: (99.83%), hitEff: (97.25%)
 long_strange : 27383 from 27846 (98.3%) 416 clones (1.52%), purity: (99.33%), hitEff: (97.51%)
 long_strange>5GeV : 13436 from 13679 (98.2%) 128 clones (0.95%), purity: (99.16%), hitEff: (98.35%)
 long_fromb : 38897 from 39148 (99.4%) 690 clones (1.77%), purity: (99.78%), hitEff: (97.15%)
 long_fromb>5GeV : 32074 from 32196 (99.6%) 537 clones (1.67%), purity: (99.80%), hitEff: (97.36%)

OpenMP Timings
• Runtime very sensitive to scheduling policies (dynamic

vs static, granularities)
• Nested parallel regions often give a slow-down with

respect to non-nested parallelism

9

R
el

at
iv

e
sp

ee
du

p

0

7.5

15

22.5

30

binaries
serial events2 events4 events8 events16 events56

21.81

15.711

8.064
4.0732.0421

0

7.5

15

22.5

30

events2 events4 events8 events16

Event-level parallelism time
Event-level and fillCandidates parallelism

TBB Timings

Comparing TBB with Brunel without HT (production?)
• tbbPixel speedup on HSW: 1.84
• tbbPixel speedup on BDW: 1.88 10

tbbPixel on the Xeon-Phi
• Very preliminary!
• When compared with KNC, KNL shows a big boost!
• Comparing with Xeon is not that easy

• Current code does not scale to KNL (or KNC) :(

11

What we’ve learned

12

vectorization
• If you can, use the Intel tools!

• icpc -qopt-report=5 
Generated reports are very wordy, but can give valuable
hints on where it is worth vectorizing and what could be
tried

• Intel Advisor 
Comprehensive tool for code vectorization and threading
analysis

13

Parallelization strategies
• Scalability of tbbPixel (or ompPixel) is limited!

• Event execution times vary by up to x1000  
—> computational imbalance

• For now we mostly parallelized simple loops
—> we are limited by Amdahl’s law

• A majority of events are very small, loop trip-counts are
very small

—> overhead from multithreading can be significant

14

Bits and pieces

15

Data Generation
• For rapid prototyping we want to break out of LHCb software

stack.
• Still work with “real” data

• PrEventDumper: https://gitlab.cern.ch/oawile/PrEventDumper
• The algorithm can be controlled with a Brunel configurable

parameter to output only (velopix) data or MC particle and
track data (e.g. for validation).

16

https://gitlab.cern.ch/oawile/PrEventDumper

Result validation
• Needed a simple track validation tool
• Also:

• should be independent of Brunel
• should be extendible
• should work with flat data format

• EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
• Written in python
• returns validation in format similar to PrChecker

17

$ python2.7 validator.py -v -f results.txt
Reading data:
 done.
2248492 tracks including 56641 ghosts (2.5%). Event average 1.9%
 velo : 1937720 from 2105493 (92.0%, 92.0%) 44013 clones (2.27%), purity: (99.81%, 99.84%), hitEff: (95.40%, 95.34%)
 long : 672751 from 678628 (99.1%, 99.2%) 13556 clones (2.02%), purity: (99.82%, 99.84%), hitEff: (96.72%, 96.67%)
 long>5GeV : 446458 from 448535 (99.5%, 99.5%) 7731 clones (1.73%), purity: (99.83%, 99.86%), hitEff: (97.25%, 97.18%)
 long_strange : 27383 from 27846 (98.3%, 98.4%) 416 clones (1.52%), purity: (99.33%, 99.38%), hitEff: (97.51%, 97.15%)
 long_strange>5GeV : 13436 from 13679 (98.2%, 98.2%) 128 clones (0.95%), purity: (99.16%, 99.21%), hitEff: (98.35%, 98.04%)
 long_fromb : 38897 from 39148 (99.4%, 99.4%) 690 clones (1.77%), purity: (99.78%, 99.84%), hitEff: (97.15%, 96.83%)
 long_fromb>5GeV : 32074 from 32196 (99.6%, 99.6%) 537 clones (1.67%), purity: (99.80%, 99.86%), hitEff: (97.36%, 97.04%)

https://gitlab.cern.ch/oawile/EventAnalyzer

What next?
• Knights Landing:

• We have started testing/benchmarking!
• With 200+ threads scaling is a problem

• TBB Flow Graph or HPX?
• Express our algorithm in terms of small concurrent tasks
• Leave the rest up to scheduler

• How can we reduce computational imbalance?
• Process “small” events only in serial freeing up resources for “big” events

• Understand scaling problems in OpenMP

18

19

Thank you!

Resources:
cl_forward: https://gitlab.cern.ch/oawile/cl_forward
PrEventDumper: https://gitlab.cern.ch/oawile/PrEventDumper
EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
Data format: https://gitlab.cern.ch/oawile/EventAnalyzer/blob/master/DATAFORMAT.md

https://gitlab.cern.ch/oawile/cl_forward
https://gitlab.cern.ch/oawile/PrEventDumper
https://gitlab.cern.ch/oawile/EventAnalyzer
https://gitlab.cern.ch/oawile/EventAnalyzer/blob/master/DATAFORMAT.md

Backup

20

General structure of the code

for event in events:

fillCandidates()

for sensor in sensors://52 sensors
trackForwarding()

for hit in sensor.hits:

trackCreation()

for track in tracks:

do_some_stuff_1()

21

fillCandidates():
for sensor in sensors:

for hit in sensor.hits:
for hit2 in sensor.next().hits:

do_some_stuff_2()

trackCreation():

for hit in sensors[s].hits:
for hit2 in sensors.next().hits:

do_some_stuff_4()

trackForwarding():
for track in tracks:

for hit in sensor.hits:
do_some_stuff_3()

22

