

Angels & Demons

CERNopenlab

Accelerating and colliding particles in the Large Hadron Collider

Background image: Shutterstock

The LHC numbers

The tunnel's circumference is 27 km.

Particles are accelerated to the **99.9999991%** of the speed of light.

Superconductors cooled down to 1.9 K.

12000 A to produce magnetic field to guide the protons.

The vacuum is cleaner than the interplanetary space.

Particle bunches collide every 25 ns.

Particle detectors

Huge "cameras" take "pictures" of the collisions each 25 ns.

~10⁷ channels

400 Tb/s of data assuming binary channels.

Particle collisions

CERNopenlab

The largest of the detectors

Diameter: 25 mOverall weight: 7000 tonnesLength: 46 mElectronic channels: ~100 millionCables: ~3000 kmImage: Cables in the second sec

The particles from a collision event leave tracks and deposit energy in the detector.

Look for discoveries that the Standard Model cannot explain

Why the matter of the Universe is dominated by the dark matter?

Why the amounts of matter and antimatter are not equal?

New forces and unification of forces

Possible unknowns?

Extra dimensions of space Microscopic black holes String theory

The Standard Model

Discovery of the Higgs boson in 2012

Discovery of a new particle

In the Standard Model, all particles get their masses from the Higgs field.

4 July 2012

ATLAS and CMS announced they had each observed a new particle which is consistent with the Higgs boson.

8 October 2013

The Nobel prize in physics awarded jointly to F. Englert and P. Higgs for their work on the theory of the Higgs boson.

Technical challenges

The LHC The detector Trigger and data acquisition Offline computing

Technology transfer

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 13 Background image: Shutterstock

CERN openlab

The inner detector measures the tracks of charged particles

The calorimeters absorb and measure the energies carried by the particles

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 17 Background image: Shutterstock

The muon spectrometer identifies and measures the momenta of muons

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 18 Background image: Shutterstock

The magnet system bends charged particles for momentum measurement

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 19 Background image: Shutterstock

CERNopenlab

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 20 Background image: Shutterstock

The TDAQ system

What can be done with commodity hardware?

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 22 Background image: Shutterstock

Storage

Data flow in the ATLAS experiment

CERN openlab

CERN openlab

157 computing centers40 countries

200 petabytes of disk storage

Event reconstruction, simulation and analysis

300 000 processing cores25 petabytes per year

70 petabytes stored at CERN

CERNopenlab

The ATLAS experiment was built by a collaboration of scientists at institutions around the world

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 27 Background image: Shutterstock

Opportunities for students and graduates

Technical Student Programme Technical training period or final project 4 to 12 months

CERN openIab Student Programme Advanced IT projects 2 months in summer

Summer Student Programme 8 to 13 weeks

Fellowship Programmes

24 months (Marie Curie – 36 months)

Technician Training Experience (TTE) 1 to 2 years

VIA (Volontaires Internationaux en Administration) Contract from 6 to 24 months

Grzegorz Jereczek – ICE-DIP Project

26/11/2014 28 Background image: Shutterstock

(intel) MENA DCU

ICE-DIP 2013-2017: The Intel-CERN European Doctorate Industrial Program

A public-private partnership to research solutions for next generation data acquisition networks, offering research training to five Early Stage Researchers in ICT

Background image: Shutterstock

From particle collisions to the computing grid

Questions?

CERNopenlab