

2

3

Moore’s
law

Transistors used to increase raw-power Increase global power

Hardware continues to follow Moore’s law
–  More and more transistors available for

computation
»  More (and more complex) execution units:

hundreds of new instructions

»  Longer SIMD (Single Instruction Multiple Data)
vectors

»  More hardware threading
»  More and more cores

4

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:

1. The memory wall
2. The power wall
3. The instruction level parallelism (ILP) wall

5

– Processor clock rates have
been increasing faster than
memory clock rates

– Larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it

– Latency in memory access
is often the major
performance issue in
modern software
applications

6

Core 1 Core n …

Main memory:
200-300 cycles

–  Processors consume more and more power the faster they go
–  Not linear:

»  73% increase in power gives just 13% improvement in performance

»  (downclocking a processor by about 13% gives roughly half the power
consumption)

–  Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power

–  Green Computing!

http://www.processor-comparison.com/power.html

7

–  Longer and fatter parallel
instruction pipelines has been a
main architectural trend in `90s

–  Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP)

–  In practice inter-instruction data
dependencies and run-time
branching limit the amount of
achievable ILP

8

–  A turning point was reached and a new technology emerged:
multicore

»  Keep low frequency and consumption
»  Transistors used for multiple cores on a single chip: 2, 4,

6, 8,… cores on a single chip

–  Multiple hardware-threads on a single core
–  Dedicated architectures:

»  GPGPU (NVIDIA, ATI-AMD, Intel Larrabee)
»  IBM CELL

»  FPGA (Reconfigurable
computing)

9

10

Exploit all 7 “parallel” dimensions of modern computing
architecture for High Performance Computing (HPC)

– Inside a core (climb the ILP wall)
1.  Superscalar: Fill the ports (maximize instruction per

cycle)
2.  Pipelined: Fill the stages (avoid stalls)

3.  SIMD (vector): Fill the register width (exploit SSE)

– Inside a Box (climb the memory wall)
4.  HW threads: Fill up a core (share core & caches)

5.  Processor cores: Fill up a processor (share of low
level resources)

6.  Sockets: Fill up a box (share high level resources)

– LAN & WAN (climb the network wall)
7.  Optimize scheduling and resource sharing on the Grid

11

In
 t

hi
s

le
ct

ur
e

– Concurrent programming: the program can be logically split in
independent parts (threads)

»  Concurrent programs can be executed sequentially on a single CPU
by interleaving the execution steps of each computational process

»  Benefits can arise from the use of I/O resources
•  Example: a thread is waiting for a resource reply (e.g. data form disk), so

another thread can be executed by the CPU
•  Keep CPU busy as much as possible

–  Parallel execution: Independent parts of a program execute
simultaneously

12

–  Process: an instance of a computer program that is being
executed (sequentially). It contains the program code and its
current activity: its own “address space” with all the program
code and data, its own file descriptors with the operating
system permission, its own heap and its own stack.

–  SW Thread: a process can fork in different threads of
execution. These threads run in the same address space, share
the same program code, the operating system resources as the
process they belong to. Each thread gets its own stack.

–  Core: unity for executing a software process or thread:
execution logic, cache storage, register files, instruction
counter (IC)

–  HW Thread: addition of a set of register files plus IC

13

So
ft

w
ar

e
le

ve
l

H
ar

dw
ar

e
le

ve
l

14

P

T T

P

T T T T

P

T T T

P

T

P

T

Applications

Operating System & Run-Time System

S

C C

S

C C

S

C C C C

S

C C

P: process
T: thread
C: core
S: socket (Shared) Memory

Schematic overview

– HW-Threads x Cores x Sockets = “Slots” available
»  CELL Processor: 9 x 1 x 1 = 9
»  Dual-socket Intel quad-core i7: 2 x 4 x 2 = 16
»  Quad-socket Intel Dunnington server: 1 x 6 x 4 = 24

»  16-socket IBM dual-core Power6: 2 x 2 x 16 = 64
»  Tesla Nvidia GPU: 1 x 240 x 1 = 240
»  Quad-socket Sun Niagara (T2+): 8 x 8 x 4 = 256
»  Radeon ATI/AMD GPU: 1 x 1600 x 1 = 1600

–  In future we expect an increase on the number of slots:
Thousands!!!

»  Are we ready to write parallel code for those massive (many-cores)
parallel architectures?

15

16

Engineering Parallel software follows the “usual” software
development process with one difference: Think Parallel!

  Analyze, Find & Design
  Analyze problem, Finding and designing parallelism

  Specify & Implement
  How will you express the parallelism (in detail)?

  Check correctness
  How will you determine if the parallelism is right or wrong?

  Check performance
  How will you determine if the parallelism improves over sequential
performance?

17

Four Steps:
– Partitioning

» Dividing computation and data

– Communication
»  Sharing data between computations

– Agglomeration
» Grouping tasks to improve performance

– Mapping
»  Assigning tasks to processors/threads

From “Designing and Building Parallel Programs” by Ian Foster

18

– Partition
»  Divide problem into tasks

– Communicate
»  Determine amount and

pattern of communication
– Agglomerate

»  Combine tasks
– Map

»  Assign agglomerated tasks to
created threads

The
Problem

Initial tasks

Communication

Combined Tasks

Final Program

19

– Exploit large datasets whose elements can be
computed independently

»  Divide data and associated computation amongst
threads

»  Focus on largest or most frequently accessed data
structures

»  Data parallelism: same operations(s) applied to all
data

20

– Divide computation based on a natural set of
independent functions

»  Predictable organization and dependencies
»  Assign data for each task as needed

•  Conceptually a single data value or transformation is performed
repeatedly

Atmosphere Model

Ocean
Model

Land Surface
Model

Hydrology
Model

21

– Divide computation based on a natural set of
independent tasks

»  Non deterministic transformation
»  Assign data for each task as needed
»  Little communication

– Example: Paint-by-numbers
»  Painting a single color is a single task

1
1 1 2 2

3
3 3

3
3

3 3

3 3
3

4

4
4

4

5 5 5 5 5
5 5

5
5

5 5 5 5 5
3 6

6

7 9

8

3

8

3
3

8 8

9

1

1
0

7

6

1
1

22

– Reduction of the wall-time: we want to achieve
better performance, defined as (results
response/execution) times

– Memory footprint: large data sample, so we
want to split in different sub-samples

23

–  The problem can be broken down into subparts
(embarrassing parallelism):

»  Each subpart is independent of the others
»  No communication is required, except to split up the problem and

combine the final results

»  Ex: Monte-Carlo simulations

–  Regular and Synchronous Problems:
»  Same instruction set (regular algorithm) applied to all data
»  Synchronous communication (or close to): each processor finishes

its task at the same time

»  Ex: Algebra (matrix-vector products), Fast Fourier transforms

24

–  Ideal case
»  our programs would be written in such a way

that their performance would scale automatically
»  Additional hardware, cores/threads or vectors,

would automatically be put to good use
»  Scaling would be as expect:

•  If the number of cores double, scaling (speed-up)
would be 2x (or maybe 1.99x), but certainly not
1.05x

–  Real case
»  Much more complicated situation…

25

– Definition:
S → speed-up
N → number of parallel processes
T1→ execution time for sequential algorithm
TN→ execution time for parallel algorithm with N processes

»  Remember to balance the load between the processes. Final
time is given by the slowest process!

– Maximum theoretical speed-up: Amdahl’s Law
P → portion of code which is parallelized

»  Implication:

»  Need to find good algorithms to be parallelized!

26

27

–  Any sufficiently large problem can be efficiently parallelized

S → speed-up

N → number of parallel processes
P → portion of code which is parallelized
–  Amdahl’s law VS Gustafson's law

»  Amdahl's law is based on fixed workload or fixed problem size. It
implies that the sequential part of a program does not change with
respect to machine size (i.e, the number of processors). However the
parallel part is evenly distributed by N processors

»  Gustafson's law removes the fixed problem size on the parallel
processors: instead, he proposed a fixed time concept which leads to
scaled speedup for larger problem sizes

28

–  Amdahl's Law approximately suggests:
»  Suppose a car is traveling between two cities 60 miles apart (fixed

problem size), and has already spent one hour traveling half the distance
at 30 mph. No matter how fast you drive the last half, it is impossible to
achieve 90 mph average (speed-up) before reaching the second city.
Since it has already taken you 1 hour and you only have a distance of 60
miles total; going infinitely fast you would only achieve 60 mph.

–  Gustafson's Law approximately states:
»  Suppose a car has already been traveling for some time at less than 90

mph. Given enough time and distance to travel, the car's average speed
can always eventually reach 90mph (speed-up), no matter how long or
how slowly it has already traveled. For example, if the car spent one
hour at 30 mph, it could achieve this by driving at 120 mph for two
additional hours, or at 150 mph for an hour, and so on (fixed time
concept).

29

Source wikipedia: http://en.wikipedia.org/wiki/Gustafson%27s_law

30

–  In order to create complex software it is necessary to
compose programming patters

–  Examples:
»  Pipes and filters
»  Layered systems
»  Agents and Repository

»  Event-Based Systems
»  Puppeteer
»  Map/Reduce

– No time to describe them
here but you can look at
the book…

31

–  Automatic parallelization of a sequential program by a
compiler is the holy grail of parallel computing

»  automatic parallelization has had only limited success so far…
–  Parallelization must be explicitly declared in a program (or at

the best partially implicit, in which a programmer gives the
compiler directives for parallelization)

»  Some languages define parallelization as own instructions
•  High Performance Fortran
•  Chapel (by Cray)
•  X10 (by IBM)
•  C++1x (the new C++ standard)

»  In most cases parallelization relays on external libraries
•  Native: pthreads/Windows threads
•  OpenMP (www.openmp.org)
•  Intel Threading Building Blocks (TBB)
•  OpenCL (www.khronos.org/opencl)
•  CUDA (by Nvidia, for GPU programming)

32

33

–  Event-level parallelism mostly used
»  Compute one event after the other in a single process
»  Advantage: large jobs can be split into N efficient processes, each

responsible for process M events
•  Built-in scalability

»  Disadvantage: memory must be made available to each process
•  With 2 – 4 GB per process, with a dual-socket server with Quad-core

processors we need 16 –32 GB (or more)
•  Memory is expensive (power and cost!) and the capacity does not scale as

the number of cores

–  Algorithm parallelization
»  Prototypes using posix-thread, OpenMP and parallel gcclib
»  Effort to provide basic thread-safe/multi-thread library

components

–  See examples of applications in the backup slides

34

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process?

  multi-process vs multi-threaded

  Read-only: Copy-on-write, Shared Libraries

  Read-write: Shared Memory, sockets, files

35

CMS:
1GB total Memory
Footprint
Event Size 1 MB
Sharable data 250MB
Shared code 130MB
Private Data 400MB !!

36

– Hardware and software technologies may come to the
rescue in many areas

»  We shall be ready to exploit them

– Scaling to many-core processors (96-core processors
foreseen for next year) will require innovative solutions

»  Parallelism beyond event level

»  Fine grain parallelism
»  Parallel I/O

– But, Amdahl docet, algorithm concept have to change
to take advantages on parallelism: think parallel, write
parallel!

37

–  Special thanks to Vincenzo Innocente (CERN/PH) and Sverre
Jarp (CERN/Openlab)

»  I took most of the slides from their presentations at ESC09 school:
http://web.infn.it/esc09/

– Many references:
»  Google and wikipedia

»  Books and links that I suggested during the presentations

–  Further readings (just as a starting point):
»  “Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processors Parallelism”, J. Reinders, O’Reilly, first edition, 2007
»  “Principles of Concurrent and Distributed Programming”, M. Ben-Ari,

2nd edition, Addison Wesley, 2006
»  “The Software Optimization Cookbook”, R.Gerber, A.J.C. Bik, K.B.

Smith and X. Tian, Intel Press, 2nd edition, 2006

38

Q & A

40

– Collaboration among experiments, IT-departments, projects
such as Openlab, Geant4, ROOT, Grid

–  Target multi-core (8-24/box) in the short term, many-core
(96+/box) in near future

– Optimize use of CPU/Memory architecture
–  Exploit modern OS and compiler features

»  Copy-on-Write
»  MPI, OpenMP
»  SSE/AltiVec, Intel Ct, OpenCL

41

–  Complex and dispersed “legacy” software
»  Difficult to manage/share/tune resources (memory, I/O): better to rely in

the support from OS and compiler
»  Coding and maintaining thread-safe software at user-level is hard
»  Need automatic tools to identify code to be made thread-aware

•  Geant4: 10K lines modified! (thread-parallel Geant4)
•  Not enough, many hidden (optimization) details

–  “Simple” multi-process seems more promising
»  ATLAS: fork() (exploit copy-on-write), shmem (needs library support)
»  LHCb: python
»  PROOF-lite

–  Other limitations are at the door (I/O, communication, memory)
»  Proof: client-server communication overhead in a single box
»  Proof-lite: I/O bound >2 processes per disk
»  Online (Atlas, CMS) limit in in/out-bound connections to one box

42

–  Modern OS share read-only pages among processes dynamically
»  A memory page is copied and made private to a process only when

modified

–  Prototype in Atlas and LHCb
»  Encouraging results as memory sharing is concerned (50% shared)

»  Concerns about I/O (need to merge output from multiple processes)

43

Memory (ATLAS)
One process: 700MB VMem and 420MB RSS
COW:
(before) evt 0: private: 004 MB | shared: 310 MB
(before) evt 1: private: 235 MB | shared: 265 MB
. . .
(before) evt50: private: 250 MB | shared: 263 MB

–  KSM is a linux driver that allows dynamically sharing identical
memory pages between one or more processes.

»  It has been developed as a backend of KVM to help memory sharing between virtual
machines running on the same host.

»  KSM scans just memory that was registered with it. Essentially this means that each memory
allocation, sensible to be shared, need to be followed by a call to a registry function.

–  Test performed “retrofitting” TCMalloc with KSM
»  Just one single line of code added!

–  CMS reconstruction of real data (Cosmics with full detector)
»  No code change

»  400MB private data; 250MB shared data; 130MB shared code

–  ATLAS
»  No code change

»  In a Reconstruction job of 1.6GB VM, up to 1GB can be shared with KSM

44

45

Sub-process

Transient
Event StoreParent-process

Transient Event
Store

Algorithm
Algorithm

Algorithm

input

output

Event Serialization/
Deserialization

OutputStream

W
or

k
Q

ue
ue

O
ut

pu
t

Q
ue

ue

input

Reduce number of files (and I/O buffers)
by 1-2 orders of magnitude

C
W
W

W

46

22 GB, IO
bound

 CPU
bound

2 GB, no
memory
refresh

47

– Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

»  Prototypes using posix-thread, OpenMP and parallel gcclib
»  Effort to provide basic thread-safe/multi-thread library

components
•  Random number generators
•  Parallel minimization/fitting algorithms
•  Parallel/Vector linear algebra

–  Positive and interesting experience with MINUIT
»  Parallelization of parameter-fitting opens the opportunity to enlarge

the region of multidimensional space used in physics analysis to
essentially the whole data sample

48

–  Minimization of Maximum Likelihood or χ2 requires iterative computation
of the gradient of the NLL function

–  Execution time scales with number θ free parameters and the number N of input
events in the fit

–  Two strategies for the parallelization of the gradient and NLL calculation:
1.  Gradient or NLL calculation on

the same multi-cores node (OpenMP)

1.  Distribute Gradient on different

nodes (MPI) and parallelize NLL

calculation on each multi-cores

node (pthreads): hybrid solution

49

–  Waiting time for fit to converge down from several days to a night (Babar
examples)
»  iteration on results back to a human timeframe!

50

60 cores

30 cores

15 cores

–  Recent progress shows that we shall be able to exploit next
generation multicore with “small” changes to HEP code
»  Exploit copy-on-write (COW) in multi-processing (MP)
»  Develop an affordable solution for the sharing of the output file
»  Leverage Geant4 experience to explore multi-thread (MT)

solutions

– Continue optimization of memory hierarchy usage
»  Study data and code “locality” including “core-affinity”

–  Expand Minuit experience to other areas of “final” data analysis,
such as machine learning techniques
»  Investigating the possibility to use GPUs and custom FPGAs

solutions

–  “Learn” how to run MT/MP jobs on the grid

51

–  A lot of interest is growing around GPUs
»  Particular interesting is the case of NVIDIA cards using CUDA for

programming
»  Impressive performance (even 100x faster than a normal CPU), but high

energy consumption (up to 200 Watts)
»  A lot of project ongoing in HPC community. Some example in HEP (see M. Al-

Turany‘s talk at CHEP09 on GPU for event reconstruction at Panda
experiment)

»  Great performance using single floating point precision (IEEE 754 standard):
up to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)

»  Need to rewrite most of the code to benefit of this massive parallelism
(thread parallelism), especially memory usage: it can be not straightforward…

»  The situation can improve with OpenCL and Intel Larrabee architecture
(standard x86)

52

