Research on Event Search

Andrey Ustyuzhanin Yandex, Moscow

Search for rare decays

$$B_s \to \mu^+ \mu^-$$

$$B_s \to 4\mu$$

$$\tau \to 3\mu$$

$$B \to K^* \mu^+ \mu^-$$

• • •

Quest for analysis sensitivity

Analysis Value Chain

Sources of better sensitivity

- 1. more powerful algorithms (e.g. BDT, Deep Neural Networks)
- 2. improved features (e.g. «isolation» variables or particle identification)
- 3. complex training schemes (e.g. n-folding, ensembling, blending, cascading)

4

Data Science

«How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?»

Tom Mitchell, CMU

Price for sensitivity

- How do I check quality of discriminating function?
- Overfitting
- Correlations
- Relevance of figure of merit to analysis significance
- How do I deal with complexity?
- Estimate influence of model parameters
- Extra computation
- Organization (cross-checks, collaboration)

Growing a tree

M_t - invariant mass P_t - jet transverse momentum H_t - sum of P_t for all objects

Pros:

- easy to build
- interpretable

Parameters:

- max depth
- splitting criteria
- stopping criteria

.

Cons: - not very accurate (prone to overfitting)

- do not represent real probability distributions

Combining weak trees into strong forest

MVA Performance (ROC, Learning curve)

Figure-of-Merits Land

64.3
Area under ROC
Likelihood
Misclassification
False Positive, False Negative
Punzi measure $\frac{S}{\sqrt{S+B}}, \frac{S}{\sqrt{B}}, \cdots$

Efficiency flatness?

Complexity indicators

- 'I can't remember which version of the code I used to generate figure 13'
- 'The new student wants to reuse that model I published three years ago but he can't reproduce the figures'
 - 'I thought I used the same parameters but I'm getting different results!?'
 - 'It worked yesterday!'
 - 'Why did I do that?'
 - 'Where are events selected with previous version of reconstruction software?'

11

Analysis complexity Case: $au ightarrow 3\mu$ (LHCb)

Repeat count: 10^2 10^2 I 02Trained models: ~1500Requi

10³ 10² 10²

Requires dedicated framework!

Research reproducibility

By yourself

By your team members

- By member of another team in the same domain (HEP, Cosmology, ...)
- By someone else

Requires dedicated framework!

Web Search Workflow

Old model

- Low level of shared knowledge
- No well-defined quality criteria
- > Not scaleable
- Ineffective
- Slow
- > Difficult to change

Collaborative Model

- Consistent automatic crosschecks
- Ready-to-use tools & components
- **Changes management**
- > Online shared environment
- Reproducibility of results
- Easy to play

Prototype for HEP: Event Filter + IPython

- Online & Interactive
- Runs on Ixplus.cern.ch
- support for ROOT & Python & Bender
- Train Matrixnet
- Run heavy jobs on cluster

*]: import train_strategy

Code Example

```
folding_scheme = train_strategy.TrainStrategy(directory=work_dir + 'folding/', classifier_type='TMVA')
folding_scheme.set_params(nfolds=10, features=variables, spectators=['mass'])
folding_scheme.fit(train_data_descriptiption)
folding_scheme.predict(test_file)
```

```
report = folding_scheme.get_model_report()
```

More details: http://bit.ly/1fCjEqg (~10th April, LHCb)

Skills for a physicist

Conclusion

New source of tools & metrics: data science ...as well as source of complexity Reproducibility as indicator of mastering complexity

- Environment (http://bit.ly/1fCjEqg, ~10th April, LHCb Analysis week@CERN)
- New research methodology emerging

N-folding, training scheme example (works well for limited statistics)

Split data in N folds randomly

D2 D1

Take i-th fold, train formula on remaining folds, apply to selected one

