CERN openlab III Report from International Tracking CERN Workshop openlab GSI/Darmstadt, 9 – 11 June 2010

Sverre Jarp, CERN openlab

Background

- ~40 participants
- Two days of training, three-day workshop
- Main interest from heavy-ion experiments
- Fixed target:
 - CBM, Panda, Hades (GSI)
- Collider:
 - ALICE (CERN), STAR (Brookhaven)
- All depend on an excellent High-Level Trigger (HLT) capability

- Develop common methods for tracking and vertexing
 - Could there be a common (and complete) toolkit ?
 - As we have it for simulation and data analysis today
- Optimize performance
 - Algorithmic work
 - Exploit modern hardware fully
 - CPUs (Vectors, Cores)
 - Accelerators:
 - GPUs (NVIDIA, AMD)
 - Intel MICA

Ivan Kisel's original work

http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

 Main performance improvements came from the algorithmic work (not the hardware optimization):

Stage	Description	Speedup	
	Initial scalar version	-	
1	Approximation of magnetic field	50	- 1750
2	Optimization of the algorithm	35	
3	Vectorization (single precision)	4.5	
4	Porting to Cell processor	1.5	- 67.5
5	Parallelisation on 16 SPEs (2 Cells)	10	

CERN openlab

Four half days:

- C_t (C-throughput): Hans Bapst/Intel
- Vc (Vector Classes)/SIMD: Mattias Kretz
- CUDA/OpenCL: David Rohr
- Multithreading (with TBB): Mattias Kretz
- Full coverage onWeb site (also tutorials):
 - https://www.gsi.de/documents/FOLDER-9871272014070.html

Workshop agenda

- Six half-days with multiple topics:
 - Fixed-Target Experiments
 - Collider Experiments
 - Software Architectures
 - Computer Architectures
 - Reconstruction Methods
 - General discussion and Future plans

CBM (Compressed Baryonic Matter)

- Non-homogeneous magnetic field
- Detector layout:

CBM (continued)

- 600 tracks at 10 MHz
- No bunch structure, measurements in 4D
- Requirements:
 - Fast and efficient tracking of all particles
 - Fast and efficient trigger algorithms
 - Fast offline event reconstruction

Lots of interesting talks

CERN openlab

A small selection:

- R.Frühwirth/A.Strandlie: Adaptive methods for reconstruction
- I.Kisel: Event Reconstruction in CBM
- I.Kisel: Methods for Track Finding
- S.Gorbunov: CA HLT Tracker in ALICE
- M.AI-Turany: GPUs for Event Reconstruction (PANDA)
- S.Lebedev: Ring Reconstruction in the CBM RICH Detector
- A.Lebedev: Fast parallel tracking algorithm for the CBM Muon Detector
- I.Kulakov: Tracking in ALICE and STAR TPC
 - CA Tracker ported (better parameterisation, bug fixing)
- M.Bach: SIMT Kalman Filter
- S.Jarp: Harnessing future CPU/GPU hardware
- K.D.Örtel: Intel's MIC Announcement
- H.Babst: Productive Parallel Programming (with C_t)

R. Frühwirth/A.Strandlie

- Adaptive track-fitting:
 - Do preliminary pattern recognition (or none at all)
 - Submit hit/track collective to adaptive fit
 - Inspect posterior weights of hits/tracks and remove outliers
- Various implementations:
 - Elastic arms
 - Elastic tracking
 - Combinatorial Kalman filter
 - Gaussian-sum filter
 - Deterministic annealing filter (DAF)

GPUs in PANDA

- Track propagation in the PANDA experiment
 - Runge-Kutta propagator from Geant3
 - All tracks propagated in parallel
 - Texture memory used for field map optimization

#tracks	CPU (single core, no SIMD)	GPU emul. (on CPU)	Tesla C1060
100	210	160	5.0
1000	210	177	1.9

Time in microseconds/track

CBM RICH Ring Reconstruction

- Method used and preliminary results:
 - Ring Finding
 - Localised Hough Transform
 - Ring Selection
 - Ring Fitting
 - Ellipse-based

	Time, ms	Speedup
Initial	357	-
Optimization	5.8	62
Parallelization	3	2
Final	-	119

2x Intel Xeon X5550 processors at 2.67GHz (8 cores)

Parallel algorithm are under investigation

MC, 14 TeV pp events:

HLT Tracker :

CA HLT in ALICE

Based on MC data:

~ linear time dependence:

Adapted from presentation by S.Gorbunov |CERN openIab presentation - 2010

Offline Tracker :

• TPC tracking algorithm:

Category of Task	Name of Task	Description on Task	
	(Initialization)		
Combinatorial Part	I: Neighbors Finding	Construct Seeds (Track Candidates)	
(Cellular Automaton)	II: Evolution		
Kalman Filter Part	III: Tracklet Construction	Fit Seed Extrapolate Tracklet Find New Clusters	
	IV: Tracklet Selection	Select good Tracklets	
	(Tracklet Output)		

Speed comparison CPU versus GPU (for heavy ion event)

Twofold performance increase on CPU 2.5-fold performance increase compared to CPU

Workshop conclusions

CERN openlab

Agreement on a common approach

- Host experiments: ALICE, CBM, PANDA, STAR
- Extend functionality of SIMD Kalman Filter (DAF, etc.)
- CA Track Finder ported to C_t in parallel to Vcbased version
- Vertexing package (KFParticle, used in ALICE, CBM, STAR) will be extended
- Next meeting in a year's time: At CERN ?
- CERN openlab's interest:
 - Realistic benchmarks for multiple platforms
 - Written with scalability in mind