#### Radiation hardness evaluation and phase shift enhancement through ionizing radiation in silicon Mach-Zehnder modulators

RADECS 2016 Bremen, Germany

Marcel Zeiler<sup>ab\*</sup>, Stephane Detraz<sup>a</sup>, Lauri Olantera<sup>a</sup>, Sarah Seif El Nasr-Storey<sup>a</sup>, Christophe Sigaud<sup>a</sup>, Csaba Soos<sup>a</sup>, Jan Troska<sup>a</sup> and Francois Vasey<sup>a</sup>

<sup>a</sup> CERN, Geneva, Switzerland
 <sup>b</sup> Dublin City University, Dublin 9, Ireland
 \* marcel.zeiler@cern.ch



Acknowledgement: ICE-DIP is a European Industrial Doctorate project funded by the European Commission's 7th Framework programme Marie Curie Actions under grant PITN-GA-2012-316596



**Motivation & Introduction** 

**Test Procedure** 

**Experimental Results** 

Summary

# **CERN conducts research to find answers to fundamental questions about our universe**





#### For that purpose, CERN

- operates the Large Hadron Collider (LHC).
  - proton-proton collision at 14TeV, 40MHz
- hosts High Energy Physics (HEP) experiments.
  - ALICE, ATLAS, CMS, LHCb, etc.
- develops required technologies.
  - (opto)-electronic data links, sensors, vacuum, cooling, etc.

#### Radiation-hard fiber optic links are the backbone of the experiments' read-out systems





## HL-LHC luminosity upgrades will entail more particle collisions

CERN

LHC currently runs at nominal luminosity.

Upgrade to High-Luminosity (HL)-LHC around 2024 will increase luminosity by 5x.

→ 5x higher radiation levels in innermost detector regions

1-MeV neutron fluence up to  $3 \times 10^{16} n/cm^2$ Total Ionizing Dose (TID) of at least 1MGy

during 10-year operational lifetime



new optical transceivers that can withstand expected radiation levels in HL-LHC are required to read-out sensor data

## Lasers degrade too much to be considered for innermost detector regions





Neutron-induced **increase in threshold current and decrease in slope efficiency** for Vertical Cavity Surface Emitting Lasers (VCSELs) cannot be compensated for beyond the capabilities of the driving electronics.

→ no tight integration with detector modules possible in harshest environments of HL-LHC

#### Silicon Photonics as alternative: CMOScompatible electro-optic integrated circuits





Technology promises:

CMOS-compatible  $\rightarrow$  low cost devices

Integration with electronic circuits  $\rightarrow$  chips with reduced power & increased functionality

#### Our hope:

Radiation-hardness similar to those of silicon pixel sensors currently used in HEP experiments

→ Silicon Photonics (SiPh) Mach-Zehnder modulator is being investigated

### Phase modulation in the arms of an Mach-Zehnder interferometer leads to amplitude modulation





### Phase modulation in the arms of an Mach-Zehnder interferometer leads to amplitude modulation





### Voltage-induced carrier depletion in phase shifter diode results in phase shift of light



Carrier density change leads to change in material's refractive index (Plasma Dispersion Effect).

Guided mode sees a change in its effective refractive index n<sub>eff</sub>.

Accumulated phase shift of light after traveling through phase shifter of length L:  

$$\Delta \phi = \frac{2\pi \Delta n_{eff} L}{\lambda}$$

#### Phase shift can be determined by measuring MZMs' transmission spectra





wavelength (m)

## SiPh MZMs show high resistance against displacement damage





Silicon Photonic (SiPh) Mach-Zehnder Modulators (MZMs) show **no significant performance degradation due to displacement damage.** 

But: devices are very sensitive to ionizing radiation [3].

→ Can MZM design be improved to increase resistance to ionizing radiation?



MZM's failure mechanism can be attributed to large density of positive trapped charge in  $SiO_2$  which pinches-off holes in waveguide from contact [4].



**Higher doping levels** in MZM can mitigate effect of ionizing radiation.



**Lower etch depth** can delay carrier pinch-off.

#### 3 types of phase shifter diodes were evaluated for their radiation hardness





+ highest modulation efficiency- lowest modulation bandwidth

- medium modulation efficiency
- medium modulation bandwidth
- + highest modulation bandwidth- lowest modulation efficiency
- lowest modulation eniciency

In addition: Samples with two different p- and n-doping concentration in the waveguide were fabricated in 2015 by imec [5]

- nominal doping
- 2x nominal doping

### All measurements were done at die-level on a probe-station









Dice were not bonded to PCB → not biased during irradiation No annealing between and after irradiation steps Irradiation and measurements at room temperature

### Phase shift of MZMs with interleaved junctions vanishes around 100kGy





Independent of MZM length and doping concentration

- only 50% phase shift remains at 50kGy
- No phase shift measurable for TID levels > 150kGy
- → design not of interest to HEP applications

#### MZMs with lateral junction withstand higher TID despite having the same etch depth





Independent of  $w_{Dop}$  and doping concentration

- No significant phase shift degradation up to 100kGy
- No phase shift measurable for TID levels > 200kGy
- slightly better than MZMs with interleaved junction but still degrade too fast

#### **Reducing the etch depth greatly improves** the radiation hardness





- No degradation until 2000kGy but at higher TID for samples with nominal doping
- No degradation up to 3100kGy for samples with 2x nominal doping
- Phase shift enhancement before samples start to degrade
- Shallow etch depth and high doping concentration increases resistant against ionizing radiation significantly; candidate devices for application in HL-LHC

# Simulations show that pinch-off of holes causes phase shift degradation





2.3 pre-irradiation 2.2 2.1 n-doped Y p-doped hDensity (cm^-3) 1.0e+01 7.9e+04 6.2e+08 4.9e+12 3.8e+16 3.0e+20 1.9 1.8 3.2 2.6 2.8 3.4 х

after 250kGy



Simulation performed for deep etch MZM w/ nominal doping according to model proposed in [4].

Parameter fitting for shallow etch MZM and MZMs with 2x nominal doping is ongoing work.

#### **Summary**



- LHC luminosity upgrades will require new optical transceivers with improved radiation hardness
- SiPh MZMs are therefore investigated as alternative to VCSELs because these cannot be employed in harshest radiation regions
- Simulation results indicate that the doping concentration and the etch depth affect the radiation hardness of MZMs
- SiPh test chip was designed and tested before, during and after x-ray irradiation (un-biased)
  - work on irradiation test with biased devices is in progress
- Experimental results confirm the simulation results
- MZMs with a deep etch waveguide show generally low radiation hardness
- MZMs with a shallow etch waveguide and high doping concentrations are much harder against TID (>2MGy) than other designs
  - can reach detector regions where VCSELs cannot be installed
  - For these devices an increase in phase shift could be observed before degradation starts



[1] S. Seif El Nasr-Storey, S. Detraz, L. Olantera, G. Pezzullo, C. Sigaud, C. Soos, J. Troska, F. Vasey, and M. Zeiler, "Neutron and X-ray Irradiation of Silicon Based Mach-Zehnder Modulators," Journal of Instrumentation, vol. 10, 2015.

[2] https://ic.tweakimg.net/ext/i.dsp/1109883395.png

[3] S. Seif El Nasr-Storey, F. Boeuf, C. Baudot, S. Detraz, J. M. Fedeli, D. Marris-Morini, L. Olantera, G. Pezzullo, C. Sigaud, C. Soos, J. Troska, F. Vasey, L. Vivien, M. Zeiler, and M. Ziebell, "Effect of radiation on a Mach-Zehnder interferometer silicon modulator for HL-LHC data transmission applications," IEEE Transactions on Nuclear Science, vol. 62, no. 1, pp. 329–335, 2015.

[4] S. Seif El Nasr-Storey, F. Boeuf, C. Baudot, S. Detraz, J. M. Fedeli, D. Marris-Morini, L. Olantera, G. Pezzullo, C. Sigaud, C. Soos, J. Troska, F. Vasey, L. Vivien, M. Zeiler, and M. Ziebell, "Modeling TID Effects in Mach-Zehnder Interferometer Silicon Modulator for HL-LHC data Transmission Applications," IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2971–2978, 2015.

[5] M. Zeiler, S. Detraz, L. Olantera, G. Pezzullo, S. Seif El Nasr-Storey, C. Sigaud, C. Soos, J. Troska, and F. Vasey, "Design of Si-Photonic structures to evaluate their radiation hardness dependence on design parameters," Journal of Instrumentation, vol. 11, 2016.



