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Radiation-hard fiber optic links are the y
backbone of the experiments’ read-out systems 7z
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HL-LHC luminosity upgrades will y
entail more particle collisions 2

LHC has currently reached its nominal luminosity.
Upgrade to High-Luminosity (HL)-LHC around 2024 will increase luminosity by 5x.

=>» 5x higher radiation levels in innermost detector regions
1-MeV neutron fluence higher than 6 X 1015n/cm?

during 10-year operational lifetime
Total lonizing Dose (TID) of at least 1M Gy
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=» new optical transceivers that can withstand expected radiation
levels in HL-LHC are required to read-out pixel tracker




Lasers degrade too much to be considered y
for innermost detector regions 2
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Neutron-induced increase in threshold current and decrease in slope efficiency for Vertical
Cavity Surface Emitting Lasers (VCSELs) cannot be compensated for beyond the capabilities of
the driving electronics.

=>» no tight integration with detector modules possible in harshest environments of HL-LHC



Silicon Photonics as alternative: CMOS- y
compatible electro-optic integrated circuits 7

Silicon Photonics

Laser

Modulator

Photodetector

Technology promises:
CMOS-compatible = low cost devices
Integration with electronic circuits = chips with increased functionality & reduced power

Our hope:

Design customized Silicon Photonics (SiPh) devices with a radiation-hardness similar to those
of silicon pixel sensors currently used in HEP experiments

=» SiPh Mach-Zehnder modulator is being investigated for transmitting side



Mach-Zehnder modulator translates phase y
modulation to amplitude modulation 7

Schematic of an interferometric Mach-Zehnder Modulator (MZM)
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Mach-Zehnder modulator translates phase y
modulation to amplitude modulation

Schematic of an interferometric Mach-Zehnder Modulator (MZM)
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Phase shift can be determined by

measuring MZM'’s transmission spectra

optical power (dBm)
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wavelength shift A4 is measured

=>» phase shift can be calculated
2mAA(V)

Ap(V) = FSR

the larger the phase shifter the
more efficient the device




Standard SiPh MZMs are insensitive
to high neutron fluence but not to TID 7
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Silicon Photonic (SiPh) Mach-Zehnder Modulators (MZMs) show no significant

performance degradation due to displacement damage.

But: devices are very sensitive to ionizing radiation [3].

=» Can MZM design be customized to increase resistance to ionizing radiation?



Custom-designed SiPh test chip was y
fabricated in Multi-Project Wafer run 7

4 different types of phase shifter diodes were fabricated by
imec in 2015 [4] and evaluated for their radiation hardness:

lateral pn-junctions, deep etch depth lateral pn-junctions, shallow etch depth

shallow etch

deep etch

n-doped I p-doped
+ high modulation efficiency - low modulation efficiency
e medium modulation bandwidth + high modulation bandwidth
e medium radiation-hardness expected + high radiation-hardness expected

In addition: Samples have two different p- and n-doping concentrations in the waveguide
* nominal doping
e 2x nominal doping

10



First, MZM samples were stepwise
exposed to x-rays and manually tested

x-ray exposure (14.05Gy/s)

]
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Due to lack of time, dice could not be
pigtailed and bonded to PCB

=> not biased during irradiation

=> measured manually on probe station —»

No annealing between irradiation steps

Irradiation and measurements at room
temperature
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Shallow etch MZMs withstand longer than
deep etch MZMs during un-biased irradiation

relative phase shift
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Independent of doping levels used,

* phase shift of deep etch MZMs degrades at TID levels far below minimum requirement
* shallow etch MZMs do not degrade up to a TID of more than 2MGy [5]

=» What changes when MZMs are biased and measured online during irradiation?
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Second, MZMs were pigtailed and bonded to
measure the phase shifts during irradiation
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Bias during irradiation accelerates phase
shift degradation in deep etch MZMs
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Phase shift reduction of biased MZMs to 50% occurs at

* 30% (nominal) m

* 55% (2x nominal) @
of TID (130kGy) at which un-biased MZMs degraded to 50%.
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Shallow etch MZMs also degrade
faster but still meet requirements
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Like deep etch MZM, radiation hardness of shallow etch sample is also reduced to
30% when biased.

Phase shift of shallow etch MZM with 2x nominal doping degrades to 50% only at

1380kGy.

=» Highly doping shallow etch MZMs could be deployed in future HEP experiment



Conclusion & Outlook }’

* LHC luminosity upgrades will require new optical transceivers with improved
radiation hardness

= > 1MGy & 6 X 10n/cm?

e Customized SiPh MZMs were irradiated with x-rays to asses their resistance against
ionizing radiation

* Irradiation tests showed that MZMs degrade faster when reversed biased during
irradiation

= similar behavior to CMOS transistors

= MZMs with a shallow etch waveguide and high doping concentrations show no
significant degradation up to 1.4MGy

= could be installed in detector regions of HL-LHC where VCSELs would degrade too quickly

What’s next:
* Irradiate biased MZMs at low temperature
» Assess radiation hardness of Ge/Si-photodiodes

* Design and test radiation-hard MZM voltage driver

16



References 7’

[1] S. Seif El Nasr-Storey, S. Detraz, L. Olantera, G. Pezzullo, C. Sigaud, C. Soos, J. Troska, F. Vasey, and M. Zeiler,
“Neutron and X-ray Irradiation of Silicon Based Mach-Zehnder Modulators,” Journal of Instrumentation, vol.
10, 2015.

[2] https://ic.tweakimg.net/ext/i.dsp/1109883395.png

[3] S. Seif El Nasr-Storey, F. Boeuf, C. Baudot, S. Detraz, J. M. Fedeli, D. Marris-Morini, L. Olantera, G. Pezzullo,
C. Sigaud, C. Soos, J. Troska, F. Vasey, L. Vivien, M. Zeiler, and M. Ziebell, “Effect of radiation on a Mach-
Zehnder interferometer silicon modulator for HL-LHC data transmission applications,” IEEE Transactions on
Nuclear Science, vol. 62, no. 1, pp. 329-335, 2015.

[4] M. Zeiler, S. Detraz, L. Olantera, G. Pezzullo, S. Seif El Nasr-Storey, C. Sigaud, C. Soos, J. Troska, and F. Vasey,
“Design of Si-Photonic structures to evaluate their radiation hardness dependence on design parameters,”
Journal of Instrumentation, vol. 11, 2016.

[5] M. Zeiler, S. Detraz, L. Olantera, S. Seif El Nasr-Storey, C. Sigaud, C. Soos, J. Troska, and F. Vasey, “Radiation
hardness evaluation and phase shift enhancement through ionizing radiation in silicon Mach-Zehnder
modulators,” in Radiation Effects on Components and Systems (RADECS), 2016.

[6] S. Seif El Nasr-Storey, F. Boeuf, C. Baudot, S. Detraz, J. M. Fedeli, D. Marris-Morini, L. Olantera, G. Pezzullo,
C. Sigaud, C. Soos, J. Troska, F. Vasey, L. Vivien, M. Zeiler, and M. Ziebell, “Modeling TID Effects in Mach-
Zehnder Interferometer Silicon Modulator for HL-LHC data Transmission Applications,” IEEE Transactions on
Nuclear Science, vol. 62, no. 6, pp. 2971-2978, 2015.

* P
.~'-.

iy
CERNopenlab

%A Maynooth °
Bh @ XENA =2 ‘Ufs marcel.zeiler@cern.ch .

of Ireland Maynooth




