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What is KNC, anyway? 
• “Knights Corner”: First production version of 

Intel’s “Many Integrated Cores” architecture 
– Separate PCIe card 
– Many-core processor with its own memory 

hierarchy 
• 50 – 60 cores; 4 hw threads per core 
• Each core is a simple processor with the addition of a 

powerful vector unit 
• Cores are interconnected via ring 
• GDDR5 memory 
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KNC Block Diagram 
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KNC software environment 

• Special version of Linux running on the card 
• Full Intel software tool suite 

– Composers: C/C++ compiler; Fortran compiler 
– Inspector 
– VTUNE Amplifier 
– Math Kernel Library 
– MPI library 
– etc. 

 
24/04/2012 KNC – Vector Architecture  5 



Why vectors? 

• No new tricks available 
– Performance must mainly come from: 

• Nodes * Sockets(Cards) * Cores * Vectors 

• Vectors are energy efficient 
– Marginal power increase when vector size doubles 

• Therefore: 
– Design “smart” vector hardware that allows as 

much work as possible to be done 
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Why should we care? 

• We still live in a world where, if we 
require performance,  we need to check if 
the compiler does the right thing for us 
– Recommended actions: 

• Use VTUNE 
• Use “-vec-report”, “-opt-report”, etc. 
• Use “-S” to generate .s files for manual inspection 
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The down-side: The ISA manual contains 723 pages ! 



KNC Vector Hardware 

• Enhanced register architecture 
– 32 “zmm” registers with 512 bits each 

• Can contain: 
– 16 x 32-bit integer or floats 
–   8 x 64-bit integer or doubles 

 
 
 

– 8 “k” mask registers 
• Contains 16 bits 

– For instance:  0xFFFF, 0xF00F 
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p o n m l k j i h g f e d c b a 

Bit 0 Bit 511 



Smart mask registers 

• Mask registers are deployed to control the work: 
– Usage: 

• Produce masks 
– Comparisons 

• Compute with write-masks (or predicates) 
– If mask is off, then the hardware will not 

» Read the source 
» Perform the operation 
» Modify the destination 

• Generate carry/zero flags 
– Arbitrary length arithmetic 

• Flag work in progress 
– Clear corresponding mask when work completed 

• etc. 
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Instruction classes 

• Major groupings: 
– Vector arithmetic, logical, shift 
– Vector compare 
– Vector moves (load/store, gather/scatter, etc.) 
– Vector manipulations (blend, broadcast, permute, etc.) 
– Mask operations (logical, moves, etc.) 
– Branch 
– Miscellaneous 

• Convention for mnemonics: 
– vxxx(ps|pd): vector FP instructions  
– vpxxx(d|q): vector integer instructions 
– kxxx: mask instruction 
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Standard instruction format 

• Typically a ternary (3 sources) format: 
 

– vop zmm1{k1}, zmm2, convert(zmm3/mem) 
 

– Target, same as first source 
– Mask register 

• Predicates updates of target 
– Smart conversion of third source 

• See next slide 
– Third source can be register or memory 

• As in [16+rdi+rax*4] 
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On-the-fly conversion 

• Smart way of manipulating the data on the fly 
– Data conversion: 

• uint8, sint16, uint16, float16, etc. 
– Swizzle (inside 128-bit lanes): 

• {aaaa}, {bbbb}, {cccc}, {dddd} to broadcast a value 
• {cdab} , swap inner pairs 
• {badc}, swap with two-away 
• {dacb}, cross-product 

– Broadcast: 
• {1to8}, {4to8}, {8to8} (default for DP) 
• {1to16}, {4to16}, {16to16} (default for SP) 
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Data element types 

• 4 native 
packed 
formats: 
 

• Conversions 
– FP subset: 
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32-bit 64-bit 

Integer dword qword 

Floating-point float (float32) double (float64) 

Float32 Float64 

Float16 Yes No 

Int32 Yes Yes 

Uint32 Yes Yes 

Float64 Yes No 



Floating-point instructions 

• Extensive collection of 
– add, subtract, multiply (separate) 
– Fused add/subtract and multiply 
– Mathematical functions 

• rcp, rsqrt 
• exp, log 

– min, max 
– scale, round 
– pack, unpack 

• Some exotic ones 
– Not dealt with today 
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Standard FP math instructions 

• Standard vadd, vsub and vmul instructions 
– Packed single, double (ps|pd) 

• 24 fused multiply & add/subtract instructions 
• Format 

– v fffff nnn tt 
• fffff (function): fmadd,fmsub, fnmadd, fnmsub 
• nnn (distribution of source operands): 132, 213, 231 

– Why? 
» Pre-optimise the register that gets clobbered 
» Optimise UpLoadConversion  

• tt (type): ps, pd 
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 White space for readability 

Example: vfmsub231ps zmm1{k1}, zmm2, zmm3{4to16} 



Multiply-add example 

• From previous page: 
– vfmadd231ps zmm1{k1}, zmm2, zmm3{4to16} 
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zmm2: 2.0 1.0 3.0 4.0 8.0 2.0 4.0 1.0 4.0 5.0 6.0 2.5 3.0 2.0 9.0 0.0 

* 
t-zmm3: 2.5 2.6 3.0 8.0 2.5 2.6 3.0 8.0 2.5 2.6 3.0 8.0 2.5 2.6 3.0 8.0 

zmm1: 4.1 2.4 4.0 3.2 9.6 3.0 4.3 5.2 3.9 4.0 5.5 1.2 1.1 4.4 5.6 9.9 

= 

+ 

zmm1: 9.1 5.0 13.0 35.2 29.6 8.2 16.3 13.2 13.9 17.0 23.5 21.2 8.6 9.6 32.6 9.9 



Now the INT math instructions 
• INT32 (dword): 

– Standard instructions: 
• vpaddd, vpsubd 

– Also multiply (high or low): 
• vpmul(h|l)d 

– One (std) single multiply & add instruction:  
• vpmadd231d 

– Special instructions interacting with masks: 
• vpadcd (add with carry) 
• vpaddsetcd (add and set mask to carry) 
• vpaddsetsd (add and set mask to sign) 
• vpsbbd (subtract with borrow) 
• vpsubsetbd (subtract and set borrow) 

 
• Surprisingly little support for INT64 (qword) vectors 

– But, do we need it? 
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Vector shifts 
• Vector shift (logical/arithmetic) 

– Shift amount in immediate value or in vector 
register 

– Example shown (shift i32 vector left logical): 
• vpsllvd zmm1{k1}, zmm2, Si32(zmm3/mt) 
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zmm2: 5 14 13 12 11 10 5 6 2 5 7 9 14 4 4 4 

<< 
zmm3: 

(shift amount) 
2 1 0 3 0 0 3 2 1 0 3 1 0 2 1 0 

= 
zmm1: 20 28 13 96 11 10 40 24 4 5 56 18 14 16 8 4 



Vector compare instructions 

• Syntax: 
– vcmp(ps|pd)   k2{k1}, zmm1, convert(zmm2/mt), imm8 
– vpcmpd   k2{k1}, zmm1, convert(zmm2/mt), imm8 
– imm8: 

• eq, neq 
• lt, nlt 
• le, nle 
• ord,unord (valid for floating-point only) 

– Results are always stored in a mask register (k2) 
• Writemasked via k1 
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Mask instructions 

• kand 
– Bitwise logical-and 

• kandn 
– Bitwise logical-and-not  

• kandnr 
– And-not reverse 

• knot 
– Bitwise logical-not 

• kor 
– Bitwise logical-or 

• kxnor 
– Bitwise logical-xnor 

• kxor 
– Bitwise logical-xor 

• kortest 
– Set ZF if OR results in all ‘0’, CF if all ‘1’ 

 
• kconcath 

– Packs two vector masks into r64 (high) 

• kconcatl 
– Packs two vector masks into r64 (low) 

• kextract 
– Extracts a vector mask from r64 via imm8 

• kmerge2l1l 
– Swap and merge low to high byte 

• kmerge2l1h 
– Swap and merge high byte portion 

• kmov 
– Move vector masks 
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Vector Load/Store instructions 
• vgatherd(ps|pd) 

– Gather floating-point vector 
• vgatherpf0hintd(ps|pd) 

– Prefetch vector (in gather form) 
• vscatterd(ps|pd) 

– Scatter vector 

• vscatterpf0hintd(ps|pd) 
– Prefetch vector (in scatter from) 

• vmova(ps|pd) 
– Load/store aligned vector 

• vloadunpack 
– Load unaligned and expand to vector 

• vpackstore 
– Compress and store unaligned from vector 
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Plus others 



Working with SoA’s 

• Typical sequence: 
– Load all data 

• vmovapd zmm1{k1},mt [Must be: {8to8}  ] 

– Work 
– Perform tests 
– Mask out irrelevant elements 

• Masking (predication) ensures algorithmic optimization 

– More work 
– Store modified elements 

• vmovapd mt{k1}, zmm1 
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Z1 Z2 Z3 Z4 Z5 Z6 

Y1 Y2 Y3 Y4 Y5 Y6 

X1 X2 X3 X4 X5 X6 Spacepoints 



Working with AoS’s 

• Typical sequence: 
– Gather all data 

• vgatherdpd zmm11{k1}, Noconversion(mvt) 
– Work 
– Perform tests 
– Mask out irrelevant elements 
– More work 
– Store modified elements (vscatterdpd) 

 
• Gather and masking (predication) should ensure even better 

algorithmic optimization 
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SP1 
X,Y, Z 

SP2 
X,Y, Z 

SP3 
X,Y, Z 

SP4 
X,Y, Z 

SP5 
X,Y, Z 

SP6 
X,Y, Z 



Gather/Scatter loops 

• Only one element is guaranteed to 
complete (when the instruction is executed) 
– Solution: Loop (using mask register for control) 
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..L140: vgatherdps zmm11{k1}, DWORD PTR [12+r15+zmm6*4]  
 jkzd      k1, ..L139    # Prob 50% 
        vgatherdps zmm11{k1}, DWORD PTR [12+r15+zmm6*4] 
 jknzd     k1, ..L140    # Prob 50% 
..L139:  



Conclusions 
• MIC (“Knights Corner”) pushes performance in several 

dimensions: 
– Large (double-digit) core count 
– Four threads 
– Long vectors (512b) 

• Sophisticated vector instruction set 
– Large number of registers (both data and control) 
– Ternary instructions 
– Smart conversions (on the fly) 
– Native gather/scatter instructions 

• Consequently, applications need to expose: 
– Rich regions of: 

• Data and task parallelism 
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Next goal: Analyse some real loops 



Additional Reading and Community 
(Extracted from:  “An Introduction to Vectorization with the Intel® C++ Compiler”)  

• “A Guide to Vectorization with Intel C++ Compilers”, Mario Deilmann, Kiefer Kuah, Martyn Corden, 
Mark Sabahi, all from Intel.  

• “Vectorization with the Intel Compilers (Part 1)”, A.J.C Bik, Intel, Intel Software Network Knowledge 
base and search the title in the keyword search. This article offers good bibliographical references.  

• “The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum 
Performance”, A.J.C. Bik. Intel Press, June 2004, for a detailed discussion of how to vectorize code 
using the Intel compiler.  

• “Vectorization: Writing C/C++ code in VECTOR Format”, Mukkaysh Srivastav, Computational Research 
Laboratories (CRL) - Pune, India. Intel Software Network Knowledge base. 

• Intel Cilk™ Plus Introductory Information. Overviews, videos, getting started guide, documentation, 
white papers and a link to the community.  

• “Elemental functions: Writing data parallel code in C/C++ using Intel Cilk Plus”, Robert Geva, Intel 
• Intel® C++ Composer XE documentation, Includes documentation for the Intel C++ Compiler.  
• Intel Software Network, Search for topics such as “Parallel Programming in the “Communities” menu 

or “Software Forums” or Knowledge Base in the “Forums and Support” menu.  
• “Requirements for Vectorizable Loops”, Martyn Corden, Intel 
• “The Software Optimization Cookbook. High-Performance Recipes for IA-32 Platforms”, Second 

Edition, Richard Gerber, Aart J.C. Bik, Kevin B. Smith and Xinmin Tian, Intel Press.  
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