
KNC Vector Architecture

Knights Corner co-processor
An Initial Encounter

24 April 2012

Sverre Jarp, CERN openlab

Agenda

• What are MIC and KNC ?
• Vector architecture
• Whiteboard example

– Putting it all together

• Conclusions

24/04/2012 KNC – Vector Architecture 2

What is KNC, anyway?
• “Knights Corner”: First production version of

Intel’s “Many Integrated Cores” architecture
– Separate PCIe card
– Many-core processor with its own memory

hierarchy
• 50 – 60 cores; 4 hw threads per core
• Each core is a simple processor with the addition of a

powerful vector unit
• Cores are interconnected via ring
• GDDR5 memory

24/04/2012 KNC – Vector Architecture 3

KNC Block Diagram

28/02/2012 KNC – Vector Architecture 4

KNC software environment

• Special version of Linux running on the card
• Full Intel software tool suite

– Composers: C/C++ compiler; Fortran compiler
– Inspector
– VTUNE Amplifier
– Math Kernel Library
– MPI library
– etc.

24/04/2012 KNC – Vector Architecture 5

Why vectors?

• No new tricks available
– Performance must mainly come from:

• Nodes * Sockets(Cards) * Cores * Vectors

• Vectors are energy efficient
– Marginal power increase when vector size doubles

• Therefore:
– Design “smart” vector hardware that allows as

much work as possible to be done

24/04/2012 KNC – Vector Architecture 6

Why should we care?

• We still live in a world where, if we
require performance, we need to check if
the compiler does the right thing for us
– Recommended actions:

• Use VTUNE
• Use “-vec-report”, “-opt-report”, etc.
• Use “-S” to generate .s files for manual inspection

24/04/2012 KNC – Vector Architecture 7

The down-side: The ISA manual contains 723 pages !

KNC Vector Hardware

• Enhanced register architecture
– 32 “zmm” registers with 512 bits each

• Can contain:
– 16 x 32-bit integer or floats
– 8 x 64-bit integer or doubles

– 8 “k” mask registers
• Contains 16 bits

– For instance: 0xFFFF, 0xF00F
 24/04/2012 KNC – Vector Architecture 8

p o n m l k j i h g f e d c b a

Bit 0 Bit 511

Smart mask registers

• Mask registers are deployed to control the work:
– Usage:

• Produce masks
– Comparisons

• Compute with write-masks (or predicates)
– If mask is off, then the hardware will not

» Read the source
» Perform the operation
» Modify the destination

• Generate carry/zero flags
– Arbitrary length arithmetic

• Flag work in progress
– Clear corresponding mask when work completed

• etc.

24/04/2012 KNC – Vector Architecture 9

Instruction classes

• Major groupings:
– Vector arithmetic, logical, shift
– Vector compare
– Vector moves (load/store, gather/scatter, etc.)
– Vector manipulations (blend, broadcast, permute, etc.)
– Mask operations (logical, moves, etc.)
– Branch
– Miscellaneous

• Convention for mnemonics:
– vxxx(ps|pd): vector FP instructions
– vpxxx(d|q): vector integer instructions
– kxxx: mask instruction

24/04/2012 KNC – Vector Architecture 10

Standard instruction format

• Typically a ternary (3 sources) format:

– vop zmm1{k1}, zmm2, convert(zmm3/mem)

– Target, same as first source
– Mask register

• Predicates updates of target
– Smart conversion of third source

• See next slide
– Third source can be register or memory

• As in [16+rdi+rax*4]

24/04/2012 KNC – Vector Architecture 11

On-the-fly conversion

• Smart way of manipulating the data on the fly
– Data conversion:

• uint8, sint16, uint16, float16, etc.
– Swizzle (inside 128-bit lanes):

• {aaaa}, {bbbb}, {cccc}, {dddd} to broadcast a value
• {cdab} , swap inner pairs
• {badc}, swap with two-away
• {dacb}, cross-product

– Broadcast:
• {1to8}, {4to8}, {8to8} (default for DP)
• {1to16}, {4to16}, {16to16} (default for SP)

24/04/2012 KNC – Vector Architecture 12

Data element types

• 4 native
packed
formats:

• Conversions
– FP subset:

24/04/2012 KNC – Vector Architecture 13

32-bit 64-bit

Integer dword qword

Floating-point float (float32) double (float64)

Float32 Float64

Float16 Yes No

Int32 Yes Yes

Uint32 Yes Yes

Float64 Yes No

Floating-point instructions

• Extensive collection of
– add, subtract, multiply (separate)
– Fused add/subtract and multiply
– Mathematical functions

• rcp, rsqrt
• exp, log

– min, max
– scale, round
– pack, unpack

• Some exotic ones
– Not dealt with today

24/04/2012 KNC – Vector Architecture 14

Standard FP math instructions

• Standard vadd, vsub and vmul instructions
– Packed single, double (ps|pd)

• 24 fused multiply & add/subtract instructions
• Format

– v fffff nnn tt
• fffff (function): fmadd,fmsub, fnmadd, fnmsub
• nnn (distribution of source operands): 132, 213, 231

– Why?
» Pre-optimise the register that gets clobbered
» Optimise UpLoadConversion

• tt (type): ps, pd

24/04/2012 KNC – Vector Architecture 15

 White space for readability

Example: vfmsub231ps zmm1{k1}, zmm2, zmm3{4to16}

Multiply-add example

• From previous page:
– vfmadd231ps zmm1{k1}, zmm2, zmm3{4to16}

24/04/2012 KNC – Vector Architecture 16

zmm2: 2.0 1.0 3.0 4.0 8.0 2.0 4.0 1.0 4.0 5.0 6.0 2.5 3.0 2.0 9.0 0.0

*
t-zmm3: 2.5 2.6 3.0 8.0 2.5 2.6 3.0 8.0 2.5 2.6 3.0 8.0 2.5 2.6 3.0 8.0

zmm1: 4.1 2.4 4.0 3.2 9.6 3.0 4.3 5.2 3.9 4.0 5.5 1.2 1.1 4.4 5.6 9.9

=

+

zmm1: 9.1 5.0 13.0 35.2 29.6 8.2 16.3 13.2 13.9 17.0 23.5 21.2 8.6 9.6 32.6 9.9

Now the INT math instructions
• INT32 (dword):

– Standard instructions:
• vpaddd, vpsubd

– Also multiply (high or low):
• vpmul(h|l)d

– One (std) single multiply & add instruction:
• vpmadd231d

– Special instructions interacting with masks:
• vpadcd (add with carry)
• vpaddsetcd (add and set mask to carry)
• vpaddsetsd (add and set mask to sign)
• vpsbbd (subtract with borrow)
• vpsubsetbd (subtract and set borrow)

• Surprisingly little support for INT64 (qword) vectors

– But, do we need it?

24/04/2012 KNC – Vector Architecture 17

Vector shifts
• Vector shift (logical/arithmetic)

– Shift amount in immediate value or in vector
register

– Example shown (shift i32 vector left logical):
• vpsllvd zmm1{k1}, zmm2, Si32(zmm3/mt)

24/04/2012 KNC – Vector Architecture 18

zmm2: 5 14 13 12 11 10 5 6 2 5 7 9 14 4 4 4

<<
zmm3:

(shift amount)
2 1 0 3 0 0 3 2 1 0 3 1 0 2 1 0

=
zmm1: 20 28 13 96 11 10 40 24 4 5 56 18 14 16 8 4

Vector compare instructions

• Syntax:
– vcmp(ps|pd) k2{k1}, zmm1, convert(zmm2/mt), imm8
– vpcmpd k2{k1}, zmm1, convert(zmm2/mt), imm8
– imm8:

• eq, neq
• lt, nlt
• le, nle
• ord,unord (valid for floating-point only)

– Results are always stored in a mask register (k2)
• Writemasked via k1

24/04/2012 KNC – Vector Architecture 19

Mask instructions

• kand
– Bitwise logical-and

• kandn
– Bitwise logical-and-not

• kandnr
– And-not reverse

• knot
– Bitwise logical-not

• kor
– Bitwise logical-or

• kxnor
– Bitwise logical-xnor

• kxor
– Bitwise logical-xor

• kortest
– Set ZF if OR results in all ‘0’, CF if all ‘1’

• kconcath

– Packs two vector masks into r64 (high)

• kconcatl
– Packs two vector masks into r64 (low)

• kextract
– Extracts a vector mask from r64 via imm8

• kmerge2l1l
– Swap and merge low to high byte

• kmerge2l1h
– Swap and merge high byte portion

• kmov
– Move vector masks

28/02/2012 KNC – Vector Architecture 20

Vector Load/Store instructions
• vgatherd(ps|pd)

– Gather floating-point vector
• vgatherpf0hintd(ps|pd)

– Prefetch vector (in gather form)
• vscatterd(ps|pd)

– Scatter vector

• vscatterpf0hintd(ps|pd)
– Prefetch vector (in scatter from)

• vmova(ps|pd)
– Load/store aligned vector

• vloadunpack
– Load unaligned and expand to vector

• vpackstore
– Compress and store unaligned from vector

24/04/2012 KNC – Vector Architecture 21

Plus others

Working with SoA’s

• Typical sequence:
– Load all data

• vmovapd zmm1{k1},mt [Must be: {8to8}]

– Work
– Perform tests
– Mask out irrelevant elements

• Masking (predication) ensures algorithmic optimization

– More work
– Store modified elements

• vmovapd mt{k1}, zmm1
24/04/2012 KNC – Vector Architecture 22

Z1 Z2 Z3 Z4 Z5 Z6

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6 Spacepoints

Working with AoS’s

• Typical sequence:
– Gather all data

• vgatherdpd zmm11{k1}, Noconversion(mvt)
– Work
– Perform tests
– Mask out irrelevant elements
– More work
– Store modified elements (vscatterdpd)

• Gather and masking (predication) should ensure even better

algorithmic optimization

24/04/2012 KNC – Vector Architecture 23

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Gather/Scatter loops

• Only one element is guaranteed to
complete (when the instruction is executed)
– Solution: Loop (using mask register for control)

24/04/2012 KNC – Vector Architecture 24

..L140: vgatherdps zmm11{k1}, DWORD PTR [12+r15+zmm6*4]
 jkzd k1, ..L139 # Prob 50%
 vgatherdps zmm11{k1}, DWORD PTR [12+r15+zmm6*4]
 jknzd k1, ..L140 # Prob 50%
..L139:

Conclusions
• MIC (“Knights Corner”) pushes performance in several

dimensions:
– Large (double-digit) core count
– Four threads
– Long vectors (512b)

• Sophisticated vector instruction set
– Large number of registers (both data and control)
– Ternary instructions
– Smart conversions (on the fly)
– Native gather/scatter instructions

• Consequently, applications need to expose:
– Rich regions of:

• Data and task parallelism

24/04/2012 KNC – Vector Architecture 25

Next goal: Analyse some real loops

Additional Reading and Community
(Extracted from: “An Introduction to Vectorization with the Intel® C++ Compiler”)

• “A Guide to Vectorization with Intel C++ Compilers”, Mario Deilmann, Kiefer Kuah, Martyn Corden,
Mark Sabahi, all from Intel.

• “Vectorization with the Intel Compilers (Part 1)”, A.J.C Bik, Intel, Intel Software Network Knowledge
base and search the title in the keyword search. This article offers good bibliographical references.

• “The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum
Performance”, A.J.C. Bik. Intel Press, June 2004, for a detailed discussion of how to vectorize code
using the Intel compiler.

• “Vectorization: Writing C/C++ code in VECTOR Format”, Mukkaysh Srivastav, Computational Research
Laboratories (CRL) - Pune, India. Intel Software Network Knowledge base.

• Intel Cilk™ Plus Introductory Information. Overviews, videos, getting started guide, documentation,
white papers and a link to the community.

• “Elemental functions: Writing data parallel code in C/C++ using Intel Cilk Plus”, Robert Geva, Intel
• Intel® C++ Composer XE documentation, Includes documentation for the Intel C++ Compiler.
• Intel Software Network, Search for topics such as “Parallel Programming in the “Communities” menu

or “Software Forums” or Knowledge Base in the “Forums and Support” menu.
• “Requirements for Vectorizable Loops”, Martyn Corden, Intel
• “The Software Optimization Cookbook. High-Performance Recipes for IA-32 Platforms”, Second

Edition, Richard Gerber, Aart J.C. Bik, Kevin B. Smith and Xinmin Tian, Intel Press.

KNC – Vector Architecture (Intel Confidential) 26

	KNC Vector Architecture
	Agenda
	What is KNC, anyway?
	KNC Block Diagram
	KNC software environment
	Why vectors?
	Why should we care?
	KNC Vector Hardware
	Smart mask registers
	Instruction classes
	Standard instruction format
	On-the-fly conversion
	Data element types
	Floating-point instructions
	Standard FP math instructions
	Multiply-add example
	Now the INT math instructions
	Vector shifts
	Vector compare instructions
	Mask instructions
	Vector Load/Store instructions
	Working with SoA’s
	Working with AoS’s
	Gather/Scatter loops
	Conclusions
	Additional Reading and Community�(Extracted from: “An Introduction to Vectorization with the Intel® C++ Compiler”)

