
Moving to Good Software Designs

(given the complexity of modern
computing devices)

“The 7 dimensions of performance”

Sverre Jarp
CERN

openlab
CTO

IT Dept., CERN

GPUs in High Energy Physics workshop
15 - 16 April 2013

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

2

What is the CERN openlab?

 A science-industry partnership to drive R&D
and innovation with over a decade of success

 Evaluate state-of-the-art technologies in a
challenging environment and improve them

 Test in a research environment today what
will be used in many business sectors
tomorrow

 Train next generation engineers/employees

 Disseminate results and outreach to new
audiences

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

3

Contents

Why worry about performance?

 Complexity in Computing

 Guidelines for SW design

 Some HEP examples

 Conclusions

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

4

Why worry about performance?

 My arguments:
 The “easy ride” disappeared: The frequency scaling we

enjoyed in the past does not exist any longer.
It stopped a decade ago!
 ..and, as a “by-product”, the CPU/GPU architectures are

becoming (much) more complicated

 Performance per watt: There are important thermal issues
associated with large scale computing
 Even when 1W processors exist!

 Performance per €: There are important cost issues
associated with large scale computing
 Even when using “commodity equipment”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

5

Moore’s law
 We continue to double the number of

transistors every other year

 The consequences:
 CPUs

 Single core Multicore Manycore
 Hardware vector support
 Hardware threading

 GPUs
 Huge number of floating-point units

 Today, we commonly acquire chips with
1’000’000’000 transistors!
 Intel/AMD server chips and high-end GPU

devices are much more
 Kepler GK110: 7.1 billion transistors

Adapted from Wikipedia From Wikipedia

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

6

“Intel platform 2015” (and beyond)
 Today’s silicon processes:

 32, 28, 22 nm

 Being introduced:
 14 nm (2013/14)

 In research:
 10 nm (2015/16)
 7 nm (2017/18)
 5 nm (2019/20)

– Source: Intel

 Each generation will push the core count:
 We are inside the many-core era (whether we like it or not) !

LHC data

We are here

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

7

Complexity in Computing

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

8

Archaic Computing Units
 As “stupid” as 50 years ago

 Still based on the Von Neumann
architecture

 Primitive “machine language”

 Ferranti Mercury:
 Floating-point calculations

– Add: 3 cycles; Multiply: 5 cycles

 Today:
 Programming for performance

is the same headache as in the
past

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

9

And the language is ancient, too!
 Assembly/machine code!

..B1.31: # Preds ..B1.31 ..B1.30 # Infreq
 movsd (%rsp), %xmm3 #94.17
 lea (%rbx,%rbx,2), %rcx #94.36
 movsd (%rsi,%rcx,8), %xmm2 #94.40
 incl %eax #93.42
 movsd 8(%rsi,%rcx,8), %xmm0 #94.40
 cmpl %edx, %eax #93.39
 mulsd %xmm2, %xmm2 #94.40
 mulsd %xmm0, %xmm0 #94.40
 movsd 16(%rsi,%rcx,8), %xmm1 #94.40
 addsd %xmm0, %xmm2 #94.40
 mulsd %xmm1, %xmm1 #94.40
 movl %eax, %ebx #93.42
 addsd %xmm1, %xmm2 #94.40
 sqrtsd %xmm2, %xmm2 #94.40
 addsd %xmm2, %xmm3 #94.17
 movsd %xmm3, (%rsp) #94.17
 jb ..B1.31 # Prob 82% #93.39

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

10

And, even assembly is “too high level”

 Intel translates x86 assembly instructions
 into micro-operations

 NVIDIA translates PTX (virtual assembly)
 into machine instructions

 So, what does it mean (?) when the hardware tells
you:
 “XXN instructions executed”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

11

Performance: A complicated story!

 We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matter

 We write programs in high level languages
 C, C++, CUDA, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

 In most cases, we have little clue as to the efficiency of this
transformation process

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

12

A Complicated Story (in 9 layers!)

Adapted from Y.Patt, U-Austin

 We must avoid being fenced into a single layer!

Problem
Design, Algorithms, Data

Language/Source program

System architecture
Instruction set architecture

µ-architecture
Circuits

Electrons

Compilers; Libraries

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

13

In the days of the Pentium

 Life was really simple:

 Basically two dimensions
 The frequency of the pipeline
 The number of boxes

 The semiconductor industry

increased the frequency

 We acquired the right number of
(single-socket) boxes

Superscalar

Pipelining

Nodes

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

14

Frequency scaling
 The 7 “fat” years of frequency scaling in HEP

 The Pentium Pro in 1996: 150 MHz
 The Pentium 4 in 2003: 3.8 GHz (~25x)

 But, this was 10 years ago!

 Since then
 Core 2 systems:

 ~3 GHz
 Multi-core

 Recent CERN purchase:
 Intel Xeon E5-2630L

 “only” 2.00 GHz From A. Nowak/openlab

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

15

Accelerators (1): Nvidia Kepler GPU

 Made available in 4Q2012

 GK110 GPU
 3x DP performance:

 >1 Teraflops

 Innovative design:
 SMX (streaming

multiprocessors)
 Dynamic parallelism for

spawning new threads
 Hyper-Q enables multiple

CPU cores to utilise CUDA
cores

Adapted from Nvidia

Considerable interest
in the HEP community

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

16

Accelerators (2): Intel Xeon Phi
 Intel Many Integrated Cores (MIC):
 Announced at ISC10, available 2 ½ years later
 Based on the x86 architecture, 22nm, ~1.0 GHz
 Many-core (up to 62 cores) + 4-way multithreaded +

512-bit vector unit
 Limited memory: 8 Gigabytes

In Order, 4
threads, SIMD-16

M
em

or
y

C
on

tro
lle

r

S
ys

te
m

In

te
rfa

ce

D
is

pl
ay

In

te
rfa

ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

. . .

. . .

L2 Cache

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

17

CPU servers: 7 dimensions of performance

 First three dimensions:
 Pipelining
 Superscalar
 Hardware vectors/SIMD

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Vector width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Multithreading

Nodes

Multicore

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

18

Seven multiplicative dimensions:
 First three dimensions:
 Pipelining
 Superscalar
 Hardware vectors/SIMD

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Data parallelism
(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

19

Intel Haswell superscalar architecture

 Intel’s Haswell micro-architecture will
execute four instructions in parallel
(across eight ports) in each cycle.

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Vec Int
ALU

x87 FP
Multiply

Vec FMA
Vec FMul

Vector
Logical

Vector
Shift

Integer
Alu

Integer
Alu

Vec Int
ALU

Vector
Logical

Vector
Shuffle

Load
Data

Store
Data

Branch
Unit

DIV
SQRT

x87 FP
Add

Vec FMA
Vec FMul
Vec FAdd

Integer
Shift

Integer
MUL

Integer
LEA

PSAD

String
Compare

Integer
LEA

Port 6 Port 7

Store
 Address

Load
Data

Store
 Address

Integer
Alu

Store
Address

Integer
Shift

Branch
Unit

Vector
Logical

Source: IDF 2012

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

20

Memory Hierarchy

 From CPU to
main memory
on a Nehalem
processor
 With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c = cycle

Processor Core
(Registers)

L1D
(32 KB)

L2
(256 KB)

Local memory
(large)

64 B/2c (R+W), 10 c latency

~24 B/c for all cores
> 200 c latency

L1I
(32 KB)

64 B/1c (R+W), 4 c latency

Shared L3
(8192 KB)

64 B/2c for all cores
> 35 c latency

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

21

GPUs: 7 dimensions of performance

 First four dimensions:
 Pipelining
 Superscalar (dual issue)
 Threads (32)
 Instruction Scheduler (4)

 Then, there are:
 Warps

 Last dimensions:
 Multiple SMs
 Multiple accelerators

Threads

Superscalar

Pipelining

Warps

Instruction Schedulers

Cards

SM

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

22

Streaming Multiprocessor Architecture

Source: NVIDIA white paper

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

23

Amdahl’s law
 Maximum speedup defined by Amdahl’s law

 Three possibilities
 Speedup less than thread-count: sub-linear
 Speedup equal to thread-count: linear
 Speed-up greater than thread-count: super-linear

n
ppp nS

+−
=

1
1max)(n = #threads, p = parallel fraction

Gene
Amdahl
(born:
1922)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

24

Scaled Speedup (Gustafson-Barsis’s law)

 Amdahl’s law does not take into account
 Overhead costs
 Natural desire to increase the problem size

when computing with more cores

 Increasing the core count enables
 An increase of the problem size A

decrease of the sequential fraction of
computation Increased speed-up

John L. Gustafson
CalTech in 1977

(Moved from Intel to
AMD in 2012)

Edwin Barsis:
Director at Sandia
Labs (at the time)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

25

Recommendations
(based on observations in openlab)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

26

A proposal for “agile” software:
1) Seek out parallelism at all levels

a. Events, tracks, vertices, etc.
b. Perform “chunk” processing (removing event separation)

2) Build forward scalability

3) Create compute-intensive kernels

4) Optimise data layout for locality of reference

5) Performance-oriented Code

6) Combine broad programming talents

7) Use best-of-breed tools

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

27

Concurrency in High Energy Physics
 We are “blessed” with lots of it:
 Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But, fine-grained parallelism is not well exposed in
today’s C++ frameworks

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

28

The holy grail: Forward scalability

 Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

 Scaling would be as expected:
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percent

 We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

29

Kernel-oriented Programming
 Take the whole program and its execution behaviour

into account
 Get yourself a global overview as soon as possible

 Via early prototyping with realistic algorithms/data
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute
 Do the heavy computation

 In kernels, where you go after all the available parallelism

 Post-processing

 Often, a single kernel is not sufficient
 A sequence of kernels may be needed

Heavy compute Pre Post

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

30

CPU / GPU co-existence

 What I would like to see happen to a (possibly dusty,
sequential) x86 application:

 A strong porting effort to move it to the GPU
 A good “kernel-oriented design” that aims for a triple-digit

speed-up

 Then, a solid port back to the CPU servers
 Exploiting vectors and cores

 Outcome:
 Applications that can profit from new breakthroughs on

either side of the fence

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

31

CPU / GPU comparison (A case study)
 A study presented by Robert J. Harrison, ORNL
 3 years old (but approach still highly interesting)
 Metropolis Monte Carlo (Chemistry benchmark)

 Hardware:
 NVIDIA Tesla C1060 @ 1.3 GHz

 240 cores, 1/8 DP MADD/cycle

 Intel Core I7 920 @ 2.67 GHz
 Quad core, single socket, 4 DP FLOPS/cycle

 Performance of CUDA kernel (initial port)
 520x faster than Intel (CPU & compiler)

1.8 : 1 ratio

Accelerating past the petascale. A case study of GPGPUs in chemistry (R.J.Harrison, UT/ORNL, 2010)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

32

CPU / GPU comparison (Case study – cont’d)

 Second step:
 Go back and understand all performance dimensions of

the CPU
 In particular, get vectorisation to work

 Bottom line:
 Improvement: 30x; new NVIDIA : Intel ratio (17.6x)
 ‘The optimal x86 and CUDA kernels become “identical” ‘

 R.J. Harrison’s conclusion:
 “Any credible architecture benchmark must back port the

CUDA kernel to x86 and vectorise it”
 In the name of “architectural freedom”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

33

Data layout: SoA versus AoS

 In general, both GPUs and
CPUs prefer the former!

 Structure of Arrays (SoA):

 Array of Structures (AoS):
Z1 Z2 Z3 Z4 Z5 Z6

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Spacepoints

We need Data-Oriented Designs!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

34

Performance-oriented code

 C++ for performance
Use light-weight C++ constructs
Minimize virtual functions
 Inline whenever important
Optimize the use of math functions

– SQRT, DIV
– LOG, EXP, POW
– SIN, COS, ATAN2

Learn to inspect the compiler-generated assembly,
especially of kernels

Use vector
libraries
whenever
possible

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

35

Performance tools

 Surround yourself with good tools:
 Compilers (not just one!)
 Libraries
 Profilers
 Debuggers
 Thread

checkers
 Thread

profilers
Image: software.intel.com

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

36

Broad Programming Talent
 In order to cover as many layers as possible

Problem
Algorithms, abstraction

Language/Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Compiled code, libraries

Solution
specialists

Technology
specialists

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

37

HEP examples

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

38

Examples of parallelism:
CBM/ALICE track fitting

 Extracted from the High
Level Trigger (HLT) Code
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systems
 Using vectors instead of

scalars

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

“Compressed Baryonic Matter”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

39

CBM/ALICE track fitting

 Details of the re-optimization on x86-64:
 Part 1: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

 Result: 4x speed increase from x87 scalar to packed SSE

(single precision)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

40

Examples of parallelism:
CBM track fitting
 Re-optimization on x86-64 systems
 Step 1: Data parallelism using SIMD instructions
 Step 2: use TBB (or OpenMP) to scale across cores

From H.Bjerke/CERN openlab, I.Kisel/GSI

V T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

41

Example: ROOT minimization and fitting
 Minuit parallelization is independent of user code

 Log-likelihood parallelization (splitting the sum) is quite efficient

 Example on a 32-core server:

 In principle, we can have combinations of:
 vectorization (using SSE or AVX)
 parallelization via multi-threading in a multi-core CPU
 multiple process in a distributed computing environment

Recent paper:
Comparison of
Software Technologies
for Vectorization and
Parallelization
(CERN openlab, 2012)

V T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

42

Examples of parallelism: GEANT4

 Initially; ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate

events across remote nodes.

 New prototype re-implements thread-safe event-level
parallelism inside a multi-core node

 Done by NEU PhD student Xin Dong:
– Using FullCMS and TestEM examples

 Required change of lots of existing classes (10% of 1 MLOC):
– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.

 Major reimplementation:
– Now in separate branch in the G4 source tree

 Additional memory: Only 25 MB/thread (!)

T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

43

Multithreaded GEANT4 benchmark
 Excellent “weak” scaling on 32 (real) cores

 With a 4-socket server

From A.Nowak/CERN openlab

T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

44

Geant4 in medicine (Another case study)

SOA:

Benchmark on Tesla C2070:

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

45

Concluding remarks

 Massively parallel hardware is here to stay!
 Our current software frameworks were not

developed for such parallelism
 Nevertheless, in physics, we have the

parallelism needed
 Porting to GPUs is beneficial for code

redesign
 If you ensure that the CPU version also

profits, you can have the best of both
worlds!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

46

Thank you!

	Slide Number 1
	What is the CERN openlab?
	Contents
	Why worry about performance?
	Moore’s law
	“Intel platform 2015” (and beyond)
	Complexity in Computing
	Archaic Computing Units
	And the language is ancient, too!
	And, even assembly is “too high level”
	Performance: A complicated story!
	A Complicated Story (in 9 layers!)
	In the days of the Pentium
	Frequency scaling
	Accelerators (1): Nvidia Kepler GPU
	Accelerators (2): Intel Xeon Phi
	CPU servers: 7 dimensions of performance
	Seven multiplicative dimensions:
	Intel Haswell superscalar architecture
	Memory Hierarchy
	GPUs: 7 dimensions of performance
	Streaming Multiprocessor Architecture
	Amdahl’s law
	Scaled Speedup (Gustafson-Barsis’s law)
	Recommendations�(based on observations in openlab)
	A proposal for “agile” software:
	Concurrency in High Energy Physics
	The holy grail: Forward scalability
	Kernel-oriented Programming
	CPU / GPU co-existence
	CPU / GPU comparison (A case study)
	CPU / GPU comparison (Case study – cont’d)
	Data layout: SoA versus AoS
	Performance-oriented code
	Performance tools
	Broad Programming Talent
	HEP examples
	Examples of parallelism:�CBM/ALICE track fitting
	CBM/ALICE track fitting
	Examples of parallelism:�CBM track fitting
	Example: ROOT minimization and fitting
	Examples of parallelism: GEANT4
	Multithreaded GEANT4 benchmark
	Geant4 in medicine (Another case study)
	Concluding remarks
	Thank you!

