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What is the CERN openlab? 

 A science-industry partnership to drive R&D 
and innovation with over a decade of success 

 Evaluate state-of-the-art technologies in a 
challenging environment and improve them 

 Test in a research environment today what 
will be used in many business sectors 
tomorrow 

 Train next generation engineers/employees 

 Disseminate results and outreach to new 
audiences 
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Why worry about performance? 

 My arguments: 
 The “easy ride” disappeared: The frequency scaling we 

enjoyed in the past does not exist any longer. 
It stopped a decade ago! 
 ..and, as a “by-product”, the CPU/GPU architectures are 

becoming (much) more complicated 
 

 Performance per watt: There are important thermal issues 
associated with large scale computing 
 Even when 1W processors exist! 

 

 Performance per €: There are important cost issues 
associated with large scale computing 
 Even when using “commodity equipment” 
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Moore’s law 
 We continue to double the number of 

transistors every other year 

 The consequences: 
 CPUs 

 Single core  Multicore  Manycore 
 Hardware vector support 
 Hardware threading 

 GPUs 
 Huge number of floating-point units 

 Today, we commonly acquire chips with 
1’000’000’000 transistors! 
 Intel/AMD server chips and high-end GPU 

devices are much more 
 Kepler GK110: 7.1 billion transistors 

Adapted from Wikipedia From Wikipedia 
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“Intel platform 2015” (and beyond) 
 Today’s silicon processes:  

 32, 28, 22 nm 

 Being introduced: 
 14 nm (2013/14) 

 

 In research: 
 10 nm (2015/16) 
   7 nm (2017/18) 
   5 nm (2019/20) 

– Source: Intel 

 Each generation will push the core count: 
 We are inside the many-core era (whether we like it or not) ! 

 

LHC data 

We are here 

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005. 
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Complexity in Computing 
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Archaic Computing Units 
 As “stupid” as 50 years ago 

 Still based on the Von Neumann 
architecture 

 Primitive “machine language” 

 Ferranti Mercury: 
 Floating-point calculations 

–  Add: 3 cycles; Multiply: 5 cycles 

 Today:  
 Programming for performance 

is the same headache as in the 
past 
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And the language is ancient, too!  
 Assembly/machine code! 

..B1.31:                      # Preds ..B1.31 ..B1.30         # Infreq 
        movsd     (%rsp), %xmm3                                 #94.17 
        lea       (%rbx,%rbx,2), %rcx                           #94.36 
        movsd     (%rsi,%rcx,8), %xmm2                          #94.40 
        incl      %eax                                          #93.42 
        movsd     8(%rsi,%rcx,8), %xmm0                         #94.40 
        cmpl      %edx, %eax                                    #93.39 
        mulsd     %xmm2, %xmm2                                  #94.40 
        mulsd     %xmm0, %xmm0                                  #94.40 
        movsd     16(%rsi,%rcx,8), %xmm1                        #94.40 
        addsd     %xmm0, %xmm2                                  #94.40 
        mulsd     %xmm1, %xmm1                                  #94.40 
        movl      %eax, %ebx                                    #93.42 
        addsd     %xmm1, %xmm2                                  #94.40 
        sqrtsd    %xmm2, %xmm2                                  #94.40 
        addsd     %xmm2, %xmm3                                  #94.17 
        movsd     %xmm3, (%rsp)                                 #94.17 
        jb        ..B1.31       # Prob 82%                      #93.39  
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And, even assembly is “too high level” 

 Intel translates x86 assembly instructions 
 into micro-operations 

 

 NVIDIA translates PTX (virtual assembly) 
 into machine instructions  

 

 So, what does it mean (?) when the hardware tells 
you: 
 “XXN instructions executed” 
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Performance: A complicated story! 

 We start with a concrete, real-life problem to solve 
 For instance, simulate the passage of elementary particles 

through matter 

 We write programs in high level languages 
 C, C++, CUDA, JAVA, Python, etc. 

 A compiler (or an interpreter) transforms the high-level code to 
machine-level code 

 We link in external libraries 

 A sophisticated processor with a complex architecture and 
even more complex micro-architecture executes the code  

 In most cases, we have little clue as to the efficiency of this 
transformation process 
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A Complicated Story (in 9 layers!) 

Adapted from Y.Patt, U-Austin 

 We must avoid being fenced into a single layer! 

Problem 
Design, Algorithms, Data 

Language/Source program 

System architecture 
Instruction set architecture 

µ-architecture 
Circuits 

Electrons 

Compilers; Libraries 
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In the days of the Pentium 

 Life was really simple: 
 

 Basically two dimensions 
 The frequency of the pipeline 
 The number of boxes 

 
 The semiconductor industry 

increased the frequency 
 

 We acquired the right number of 
(single-socket) boxes  

Superscalar 

Pipelining 

Nodes 

Sockets 



Sverre Jarp - CERN 

Computer Architecture and Performance Tuning 

14 

Frequency scaling 
 The 7 “fat” years of frequency scaling in HEP 

 

 The Pentium Pro in 1996: 150 MHz 
 The Pentium 4 in 2003: 3.8 GHz (~25x) 

 But, this was 10 years ago! 

 Since then 
 Core 2 systems: 

 ~3 GHz 
 Multi-core 

 Recent CERN purchase: 
 Intel Xeon E5-2630L 

 “only” 2.00 GHz From A. Nowak/openlab 
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Accelerators (1): Nvidia Kepler GPU 

 Made available in 4Q2012 
 

 GK110 GPU 
 3x DP performance: 

 >1 Teraflops 

 Innovative design: 
 SMX (streaming 

multiprocessors) 
 Dynamic parallelism for 

spawning new threads 
 Hyper-Q enables multiple 

CPU cores to utilise CUDA 
cores 

Adapted from Nvidia 

Considerable interest 
in the HEP community 
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Accelerators (2): Intel Xeon Phi 
 Intel Many Integrated Cores (MIC): 
 Announced at ISC10, available 2 ½ years later 
 Based on the x86 architecture, 22nm, ~1.0 GHz 
 Many-core (up to 62 cores) + 4-way multithreaded + 

512-bit vector unit 
 Limited memory: 8 Gigabytes 
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CPU servers: 7 dimensions of performance 

 First three dimensions: 
 Pipelining 
 Superscalar 
 Hardware vectors/SIMD 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Vector width 

Superscalar 

Pipelining 

SIMD = Single Instruction Multiple Data 

Multithreading 

Nodes 

Multicore 

Sockets 
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Seven multiplicative dimensions: 
 First three dimensions: 
 Pipelining 
 Superscalar  
 Hardware vectors/SIMD 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Data parallelism 
(Vectors/Matrices) 

Task parallelism 
(Events/Tracks) 

Task/process 
parallelism 
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Intel Haswell superscalar architecture 

 Intel’s Haswell micro-architecture will 
execute four instructions in parallel 
(across eight ports) in each cycle. 

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Vec Int 
ALU 

x87 FP 
Multiply 

Vec FMA 
Vec FMul 

Vector 
Logical 

Vector 
Shift 

Integer 
Alu 

Integer 
Alu 

Vec Int 
ALU 

Vector 
Logical 

Vector 
Shuffle 

Load 
Data 

Store 
Data 

Branch 
Unit 

DIV 
SQRT 

x87 FP 
Add 

Vec FMA 
Vec FMul 
Vec FAdd 

Integer 
Shift 

Integer 
MUL 

Integer 
LEA 

PSAD 

String 
Compare 

Integer 
LEA 

Port 6 Port 7 

Store 
 Address 

Load 
Data 

Store 
 Address 

Integer 
Alu 

Store 
Address 

Integer 
Shift 

Branch 
Unit 

Vector 
Logical 

Source: IDF 2012  
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Memory Hierarchy 

 From CPU to 
main memory 
on a Nehalem 
processor 
 With 

multicore, 
memory 
bandwidth is 
shared 
between 
cores in the 
same 
processor 
(socket) 

c = cycle 

Processor Core 
(Registers) 

L1D 
(32 KB) 

L2 
(256 KB) 

Local memory 
(large) 

64 B/2c (R+W), 10 c latency 

~24 B/c for all cores 
> 200 c latency 

L1I 
(32 KB) 

64 B/1c (R+W), 4 c latency 

Shared L3 
(8192 KB) 

64 B/2c for all cores 
> 35 c latency 
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GPUs: 7 dimensions of performance 

 First four dimensions: 
 Pipelining 
 Superscalar (dual issue) 
 Threads (32) 
 Instruction Scheduler (4) 

 Then, there are: 
 Warps 

 Last dimensions: 
 Multiple SMs 
 Multiple accelerators 

Threads 

Superscalar 

Pipelining 

Warps 

Instruction Schedulers 

Cards 

SM 
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Streaming Multiprocessor Architecture 

Source: NVIDIA white paper 



Sverre Jarp - CERN 

Computer Architecture and Performance Tuning 

23 

Amdahl’s law 
 Maximum speedup defined by Amdahl’s law 

 

 
 

 

 Three possibilities 
 Speedup less than thread-count: sub-linear 
 Speedup equal to thread-count: linear 
 Speed-up greater than thread-count: super-linear 

n
ppp nS

+−
=

1
1max )( n = #threads,  p = parallel fraction 

Gene 
Amdahl 
(born: 
1922) 
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Scaled Speedup (Gustafson-Barsis’s law) 

 Amdahl’s law does not take into account 
 Overhead costs 
 Natural desire to increase the problem size 

when computing with more cores 

 

 Increasing the core count enables 
 An increase of the problem size   A 

decrease of the sequential fraction of 
computation  Increased speed-up 

John L. Gustafson  
CalTech in 1977 

(Moved from Intel to 
AMD in 2012) 

Edwin Barsis: 
Director at Sandia 
Labs (at the time) 
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Recommendations 
(based on observations in openlab) 
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A proposal for “agile” software: 
1) Seek out parallelism at all levels 

a. Events, tracks, vertices, etc. 
b. Perform “chunk” processing (removing event separation) 

2) Build forward scalability 

3) Create compute-intensive kernels 

4) Optimise data layout for locality of reference 

5) Performance-oriented Code 

6) Combine broad programming talents 

7) Use best-of-breed tools 
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Concurrency in High Energy Physics 
 We are “blessed” with lots of it: 
 Entire events 
 Particles, hits, tracks and vertices 
 Physics processes 
 I/O streams (ROOT trees, branches) 
 Buffer handling (also data compaction, etc.) 
 Fitting variables 
 Partial sums, partial histograms 
 and many others ….. 

 Usable for both data and task parallelism! 

 But, fine-grained parallelism is not well exposed in 
today’s C++ frameworks 
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The holy grail: Forward scalability 

 Not only should a program be written in such a way that it 
extracts maximum performance from today’s hardware 

 On future processors, performance should scale 
automatically 
 In the worst case, one would have to recompile or relink 

 Additional CPU/GPU hardware, be it cores/threads or 
vectors, would automatically be put to good use 

 Scaling would be as expected: 
 If the number of cores (or the vector size) doubled: 

 Scaling would be close to 2x, but certainly not just a few percent 

 We cannot afford to “rewrite” our software for every 
hardware change! 
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Kernel-oriented Programming 
 Take the whole program and its execution behaviour 

into account 
 Get yourself a global overview as soon as possible 

 Via early prototyping with realistic algorithms/data 
 Influence early the design and definitely the implementation 

 Foster clear split: 
 Prepare to compute 
 Do the heavy computation 

 In kernels, where you go after all the available parallelism 

 Post-processing 

 Often, a single kernel is not sufficient 
 A sequence of kernels may be needed 

Heavy compute Pre Post 
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CPU / GPU co-existence 

 What I would like to see happen to a (possibly dusty, 
sequential) x86 application: 

 A strong porting effort to move it to the GPU 
 A good “kernel-oriented design” that aims for a triple-digit 

speed-up 

 Then, a solid port back to the CPU servers 
 Exploiting vectors and cores 

 Outcome: 
 Applications that can profit from new breakthroughs on 

either side of the fence  
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CPU / GPU comparison (A case study) 
 A study presented by Robert J. Harrison, ORNL 
 3 years old (but approach still highly interesting) 
 Metropolis Monte Carlo (Chemistry benchmark) 

 Hardware: 
 NVIDIA Tesla C1060 @ 1.3 GHz 

 240 cores, 1/8 DP MADD/cycle 

 Intel Core I7 920 @ 2.67 GHz 
 Quad core, single socket, 4 DP FLOPS/cycle 

 Performance of CUDA kernel (initial port) 
 520x faster than Intel (CPU & compiler) 

 

1.8 : 1 ratio 

Accelerating past the petascale. A case study of GPGPUs in chemistry (R.J.Harrison, UT/ORNL, 2010) 
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CPU / GPU comparison (Case study – cont’d) 

 Second step: 
 Go back and understand all performance dimensions of 

the CPU 
 In particular, get vectorisation to work 

 Bottom line: 
 Improvement: 30x; new NVIDIA : Intel ratio (17.6x) 
 ‘The optimal x86 and CUDA kernels become “identical” ‘ 

 R.J. Harrison’s conclusion: 
 “Any credible architecture benchmark must back port the 

CUDA kernel to x86 and vectorise it” 
 In the name of “architectural freedom” 
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Data layout: SoA versus AoS 

 In general, both GPUs and 
CPUs prefer the former! 

 Structure of Arrays (SoA): 

 

 Array of Structures (AoS): 
Z1 Z2 Z3 Z4 Z5 Z6 

Y1 Y2 Y3 Y4 Y5 Y6 

X1 X2 X3 X4 X5 X6 

SP1 
X,Y, Z 

SP2 
X,Y, Z 

SP3 
X,Y, Z 

SP4 
X,Y, Z 

SP5 
X,Y, Z 

SP6 
X,Y, Z 

Spacepoints 

We need Data-Oriented Designs! 
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Performance-oriented code 

 C++ for performance 
Use light-weight C++ constructs 
Minimize virtual functions 
 Inline whenever important 
Optimize the use of math functions 

– SQRT, DIV 
– LOG, EXP, POW 
– SIN, COS, ATAN2 

 
 

 
 
 

 

 

Learn to inspect the compiler-generated assembly, 
especially of kernels 

Use vector 
libraries 
whenever 
possible 
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Performance tools 

 Surround yourself with good tools: 
 Compilers (not just one!) 
 Libraries 
 Profilers 
 Debuggers 
 Thread 

checkers 
 Thread 

profilers 
Image: software.intel.com 
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Broad Programming Talent 
 In order to cover as many layers as possible 

Problem 
Algorithms, abstraction 

Language/Source program 

System architecture 
Instruction set 
µ-architecture 

Circuits 
Electrons 

Compiled code, libraries 

Solution 
specialists 

Technology 
specialists 
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HEP examples 
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Examples of parallelism: 
CBM/ALICE track fitting 

 Extracted from the High 
Level Trigger (HLT) Code 
 Originally ported to IBM’s 

Cell processor 

 Tracing particles in a 
magnetic field  
 Embarrassingly parallel 

code 

 Re-optimization on x86-64 
systems 
 Using vectors instead of 

scalars 

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit” 
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf 

“Compressed Baryonic Matter” 
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CBM/ALICE track fitting 

 Details of the re-optimization on x86-64: 
 Part 1: use SSE vectors instead of scalars 

 Operator overloading allows seamless change of data types 
 Intrinsics (from Intel/GNU header file): Map directly to 

instructions: 
– __mm_add_ps  corresponds directly to ADDPS, the instruction 

that operates on four packed, single-precision FP numbers 
● 128 bits in total 

 Classes 
– P4_F32vec4 – packed single class with overloaded operators 

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { 
return _mm_add_ps(a,b); } 

 
 Result: 4x speed increase from x87 scalar to packed SSE 

(single precision) 
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Examples of parallelism: 
CBM track fitting 
 Re-optimization on x86-64 systems 
 Step 1: Data parallelism using SIMD instructions 
 Step 2: use TBB (or OpenMP) to scale across cores 

From H.Bjerke/CERN openlab, I.Kisel/GSI 

V T 
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Example: ROOT minimization and fitting 
 Minuit parallelization is independent of user code 

 
 Log-likelihood parallelization (splitting the sum) is quite efficient 

 
 Example on a 32-core server: 

 
 
 
 
 
 
 
 
 
 

 In principle, we can have combinations of:  
 vectorization (using SSE or AVX) 
 parallelization via multi-threading in a multi-core CPU  
 multiple process in a distributed computing environment 

 

Recent paper: 
Comparison of 
Software Technologies 
for Vectorization and 
Parallelization 
(CERN openlab, 2012) 

V T 
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Examples of parallelism: GEANT4 

 Initially; ParGeant4 (Gene Cooperman/NEU) 
 implemented event-level parallelism to simulate separate 

events across remote nodes. 

 New prototype re-implements thread-safe event-level 
parallelism inside a multi-core node 

 Done by NEU PhD student Xin Dong: 
– Using FullCMS and TestEM examples 

 Required change of lots of existing classes (10% of 1 MLOC): 
– Especially global, “extrn”, and static declarations 
– Preprocessor used for automating the work. 

 Major reimplementation: 
– Now in separate branch in the G4 source tree 

 Additional memory: Only 25 MB/thread (!) 

T 
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Multithreaded GEANT4 benchmark 
 Excellent “weak” scaling on 32 (real) cores 

 With a 4-socket server 

From A.Nowak/CERN openlab 

T 
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Geant4 in medicine (Another case study) 

SOA: 

Benchmark on Tesla C2070: 
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Concluding remarks 

 Massively parallel hardware is here to stay! 
 Our current software frameworks were not 

developed for such parallelism 
 Nevertheless, in physics, we have the 

parallelism needed 
 Porting to GPUs is beneficial for code 

redesign 
 If you ensure that the CPU version also 

profits, you can have the best of both 
worlds!  
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Thank you! 
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