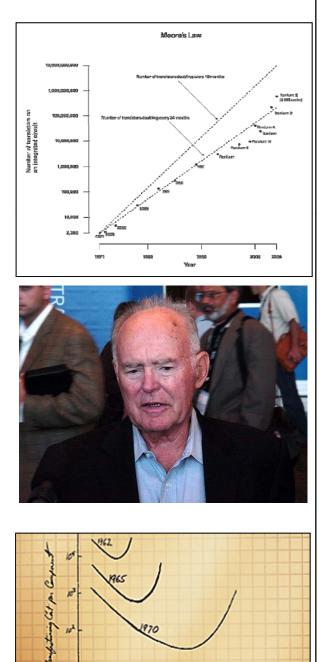
Harnessing Future Hardware

Sverre Jarp CERN openlab

IT Dept.

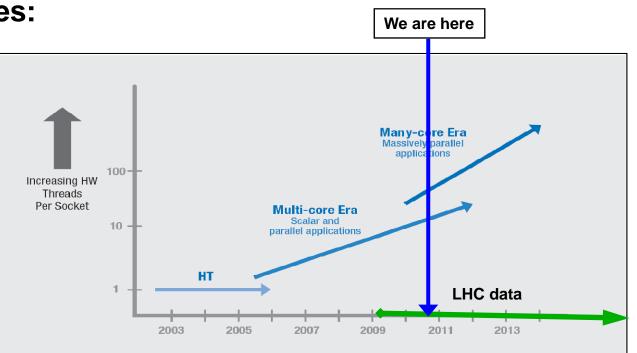


CERN

Tracking Workshop – GSI, Darmstadt, 9 – 11 June 2010

The driving force: Moore's law

- We continue to double the number of transistors every other year^(*)
 - Latest consequence Single core
 - → Multicore
 - → Manycore


Real consequence of Moore's law

- We are being "snowed under" by transistors:
 - More (and more complex) execution units
 - Hundreds of new instructions
 - Longer SIMD/SSE vectors
 - More hardware threading
 - More and more cores
- In order to profit we need to "think parallel"
 - Data parallelism
 - Task parallelism

"Intel platform 2015" (and beyond)

Today's silicon processes:

- 45 nm
- 32 nm
- On the roadmap:
 - 22 nm (2011/12)
 - 16 nm (2013/14)

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

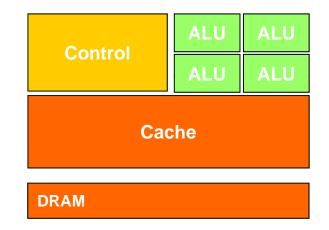
- In research:
 - 11 nm (2015/16)
 - 8 nm (2017/18)
 - Source: Bill Camp/Intel HPC

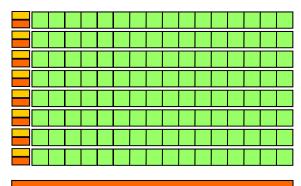
Each generation will push the core count:

• We are entering the many-core era (whether we like it or not) !

Sverre Jarp - CERN

Programming: A Complicated Story

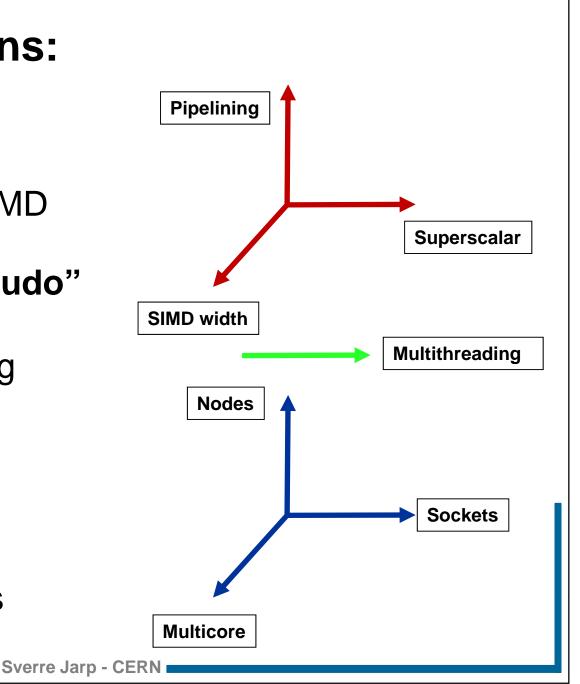

 We cannot concentrate on just one layer (ignoring the others)


Problem	
Algorithms, abstraction	
Source program	
Compiled code, libraries	
System architecture	
Instruction set	
μ-architecture	
Circuits	
Electrons	

Different designs: CPU or GPU

Different focus

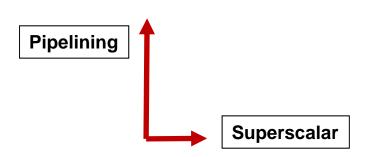
- CPU
 - Optimised for low-latency access to cached data sets
 - Control logic for out-of-order and speculative execution
- GPU
 - Optimised for data-parallel, throughput computation
 - Architecture tolerant of memory latency
 - More transistors dedicated to computation


DRAM

Seven dimensions of performance

First three dimensions:

- Superscalar
- Pipelining
- Computational width/SIMD
- Next dimension is a "pseudo" dimension:
 - Hardware multithreading
- Last three dimensions:
 - Multiple cores
 - Multiple sockets
 - Multiple compute nodes

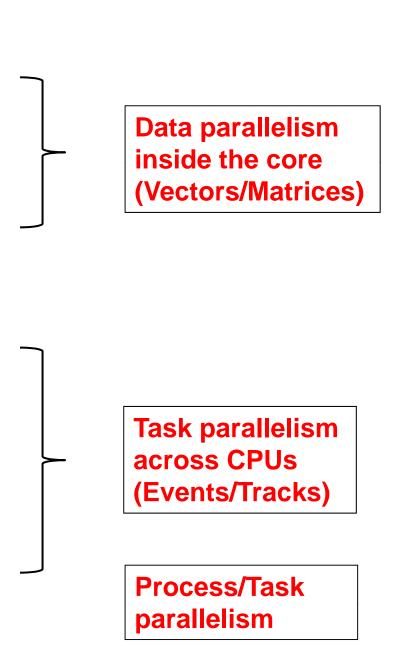


In the days of the Pentium

First three dimensions:

- Superscalar (only two ports)
- Pipelining (OK)
- No vectors

Sockets

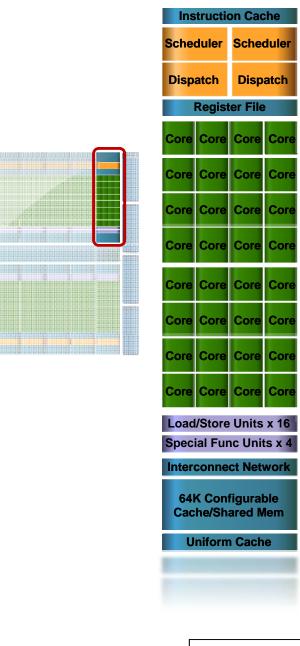

Nodes

- Next dimension is a "pseudo" dimension:
 - No hardware multithreading
- Last three dimensions:
 - No cores
 - Hardly any dual socket systems
 - Multiple compute nodes (OK)

Seven <u>multiplicative</u> dimensions:

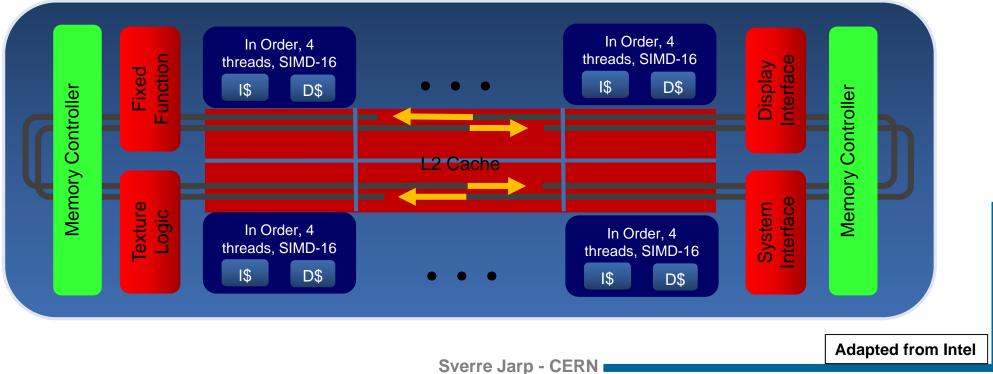
First three dimensions:

- Superscalar
- Pipelining
- Computational width/SIMD
- Next dimension is a "pseudo" dimension:
 - Hardware multithreading
- Last three dimensions:
 - Multiple cores
 - Multiple sockets
 - Multiple compute nodes



The move to many-core systems

- Examples of "CPU slots": Sockets * Cores * HW-threads
 - Basically what you observe in "cat /proc/cpuinfo"
 - Conservative:
 - Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual-socket Intel six-core Westmere: 2 * 6 * 2 = 24
 Quad-socket Intel Dunnington server: 4 * 6 * 1 = 24
 - Aggressive:
 - Quad-socket AMD Magny-Cours (12 core) 4 * 12 * 1 = 48
 - Octo-socket Nehalem-EX "octo-core":
 8 * 8 * 2 = 128
 - Quad-socket Sun Niagara (T3) processors w/16 cores and 8 threads (each): 4 * 16 * 8 = 512
- Now, or in the near future: Hundreds of CPU slots
- And, by the time new software is ready: Thousands !!


Nividia Fermi design

- Streaming Multiprocessing Architecture
- 32 CUDA cores per SM (512 total)
- 8× peak double precision floating point performance
 - 50% of peak single precision
- Dual Thread Scheduler
- 64 KB of RAM for shared memory and L1 cache (configurable)

Many-core accelerator

- Many Inter Core Architecture:
 - Announced at ISC10 (June 2010)
 - Based on the x86 architecture, 22nm (2012?)
 - Many-core (> 50 cores) + 4-way multithreaded + 512-bit vector unit

Conclusion

- The parallel (CPU, GPU) hardware is here to stay!
 - Realistic benchmarking becomes paramount !
- Different teams will take different parallelisation approaches, based on:
 - Political desire to change
 - The code size and the percentage that is performance sensitive
 - Loop constructs and vector, matrix availability in the code
 - Available effort for a substantial re-write
- The potential is huge but everybody needs to understand the ROI
 - Investment in human effort, against better use of available resources!