

### **Big Data Analytics:**

Unlocking the full potential of the CERN's Large Hadron Collider.

Manuel Martín Márquez





Intel IoT Ignition Lab – Cloud and Big Data Munich, September 17th

## CERN

- CERN European Laboratory for Particle Physics
- Founded in 1954 by 12 Countries for fundamental physics research in a post-war Europe
  - Major milestone in the post-World War II recovery/reconstruction
    process



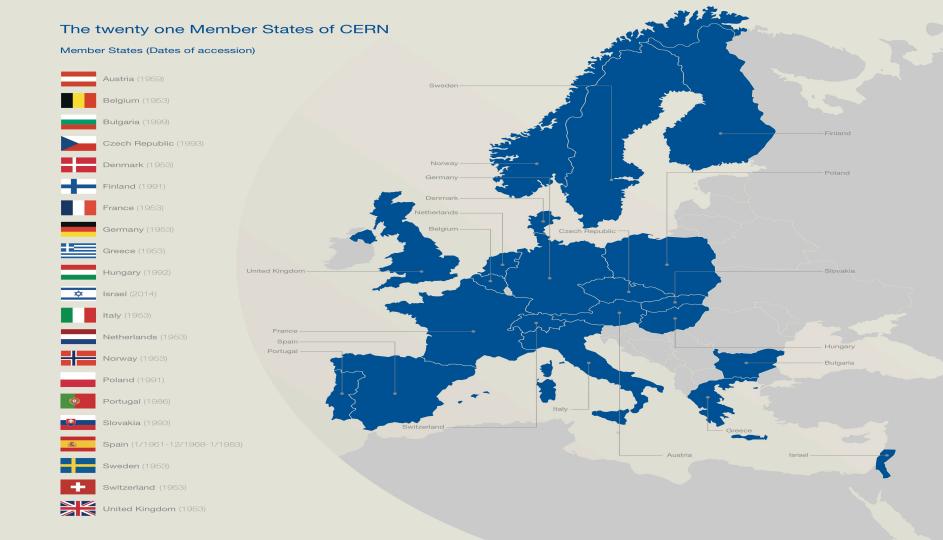


# **CERN** openlab

- Public-private partnership between CERN and leading ICT companies
- Accelerate cutting-edge solutions to be used by the worldwide LHC community
- Train the next generation of top engineers and scientists.



Partners


Contributors

C rackspace. the open cloud company

Associates

Yandex





#### **Observers**

| India  | 220 |      |
|--------|-----|------|
| Japan  | 244 |      |
| Russia | 982 |      |
| Turkey | 146 | 0574 |
| USA    | 979 | 2571 |

#### Other States

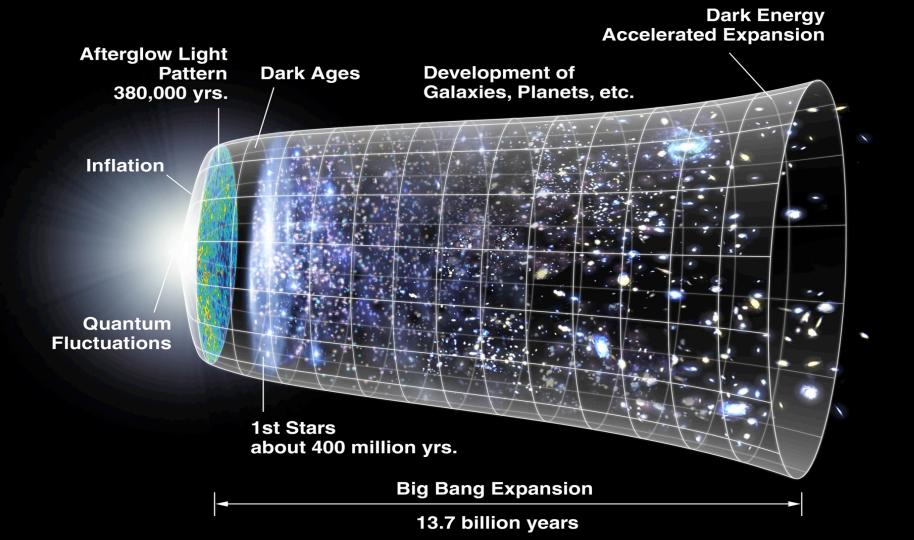
| Afghanistan   | 1    | El Salvador   | 1     | Pakistan          | 41   |
|---------------|------|---------------|-------|-------------------|------|
| Albania       | 2    | Estonia       | 16    | Palestine (O.T.). | 4    |
| Algeria       | 8    | Georgia       | 36    | Peru              | 8    |
| Argentina     | 11   | Gibraltar     | 1     | Philippines       | 1    |
| Armenia       | 25   | Hong Kong     | 1     | Saudi Arabia      | 3    |
| Australia     | 25   | Iceland       | 4     | Senegal           | 1    |
| Azerbaijan    | 8    | Indonesia     | 1     | Singapore         | 2    |
| Bangladesh    | 4    | Iran          | 28    | Sint Maarten      | 2    |
| Belarus       | 47   | Ireland       | 22    | Slovenia          | 27   |
| Bolivia       | 3    | Jordan        | 2     | South Africa      | 16   |
| Bosnia &      |      | Kenya         | 1     | Sri Lanka         | 5    |
| Herzegovina   | 1    | Korea, D.P.R. | 1     | Syria             | 2    |
| Brazil        | 108  | Korea Rep.    | 117   | Thailand          | 12   |
| Cameroon      | 1    | Kuwait        | 1/1/  | T.F.Y.R.O.M.      | //1  |
| Canada        | 134  | Lebanon       | 12    | Tunisia           | 6    |
| Cape Verde    | 1    | Lithuania     | 19    | Ukraine           | 55   |
| Chile         | 12   | Luxembourg    | 4     | Uzbekistan        | 4    |
| China         | 280  | Madagascar    | 4     | Venezuela         | 9    |
| China (Tapei) | 45   | Malaysia      | 15    | Viet Nam          | 9    |
| Colombia      | 30   | Mauritius     | ///1/ | Zimbabwe          | //2  |
| Croatia       | 35   | Mexico        | 64    |                   |      |
| Cuba          | //7/ | Montenegro    | 3     |                   |      |
| Cyprus        | 16   | Morocco       | 12    |                   |      |
| Ecuador       | 3    | Nepal         | 5     |                   | 444  |
| Egypt         | 19   | New Zealand   | // 7/ |                   | 7475 |
|               |      |               |       |                   |      |

#### A World-Wide Collaboration

#### Member States

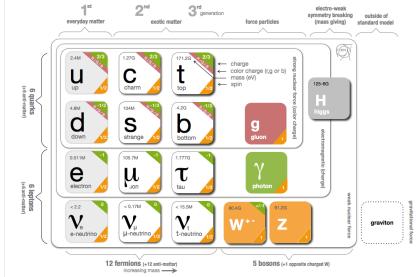
| Austria        | 99   | Greece      | 152  | Slovakia       | 88   |
|----------------|------|-------------|------|----------------|------|
| Belgium        | 106  | Hungary     | 68   | Spain          | 337  |
| Bulgaria       | 75   | Israel      | 51   | Sweden         | 75   |
| Czech Republic | 202  | Italy       | 1686 | Switzerland    | 180  |
| Denmark        | 53   | Netherlands | 153  | United Kingdom | 640  |
| Finland        | 87   | Norway      | 61   |                |      |
| France         | 751  | Poland      | 229  |                |      |
| Germany        | 1150 | Portugal    | 109  |                | 6352 |
|                |      |             |      |                |      |

#### Candidate for Accession


Romania 118

#### Associate Members in the Pre-stage to Membership

Serbia 41


Distribution of All CERN Users by Nationality on 14 January 2014

# How the Universe works and what is made of...

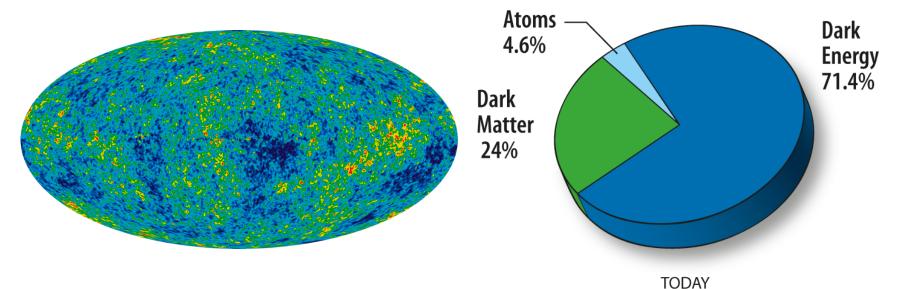


### **Fundamental Research**

• Why do particles have mass?

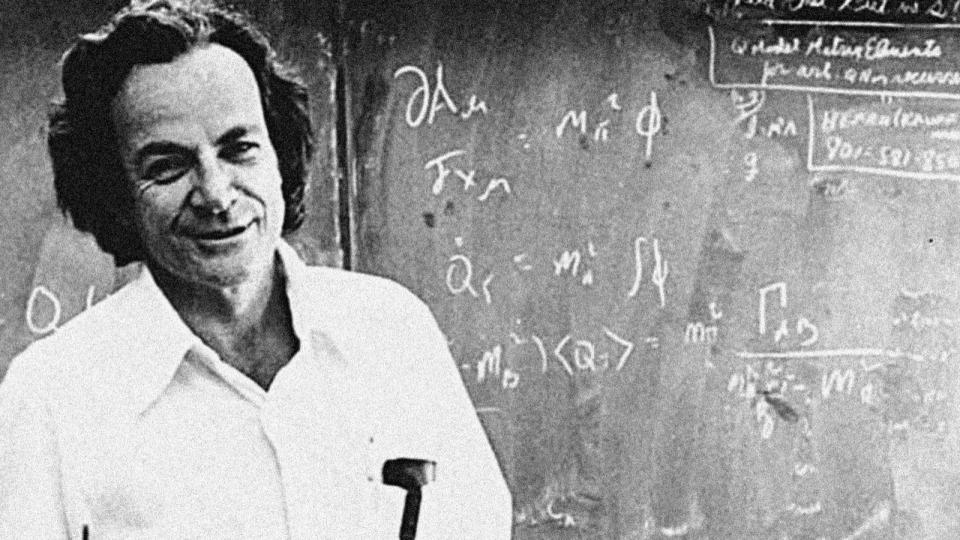





## **Fundamental Research**

- Why is there no antimatter left in the Universe?
  - Nature should be symmetrical
- What was matter like during the first second of the Universe, right after the "Big Bang"?
  - A journey towards the beginning of the Universe gives us deeper insight.




### **Fundamental Research**

What is 95% of the Universe made of? •



Manuel Martin Marquez

Intel IoT Ignition Lab – Cloud and Big Data Munich, September 17th

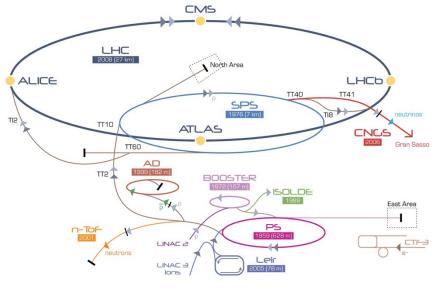


### The Large Hadron Collider (LHC)

Largest machine in the world 27km, 6000+ superconducting magnets

Fastest racetrack on Earth

Protons circulate 11245 times/s (99.9999991% the speed of light)


Emptiest place in the solar system High vacuum inside the magnets

Hottest spot in the galaxy During Lead ion collisions create temperatures 100 000x hotter than the heart of the sun;

**CERN** Prévessin

### The Large Hadron Collider (LHC)

### **CERN's Accelerator Complex**



▶ p (proton) → ion → neutrons → p̄ (antiproton) → +→ proton/antiproton conversion → neutrinos → electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice



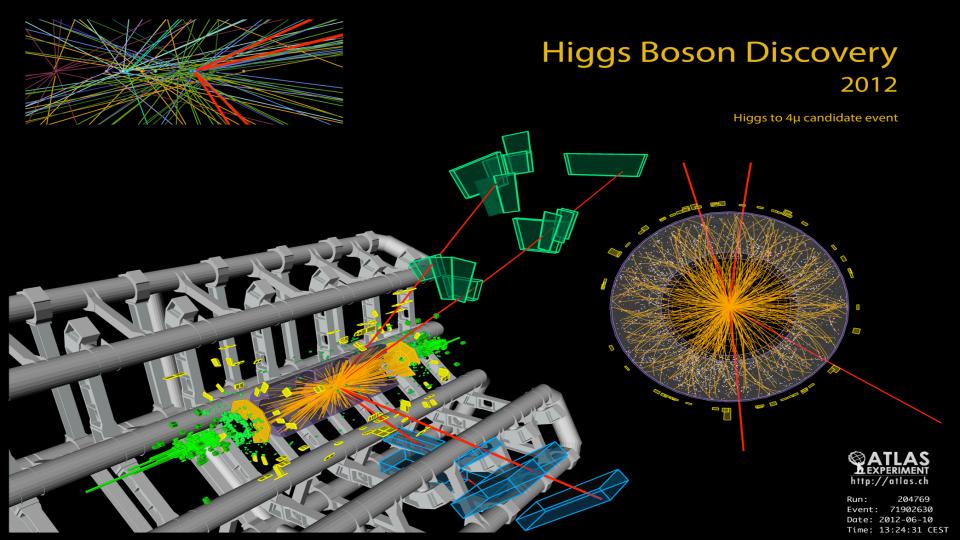
Manuel Martin Marquez

Intel IoT Ignition Lab – Cloud and Big Data Munich, September 17th 15

### ATLAS Detector

150 Million of sensor Control and detection sensors

Massive 3D camera Capturing 40+ million collisions per second Data rate TB per second


### **CMS** Detector

#### **Raw Data**

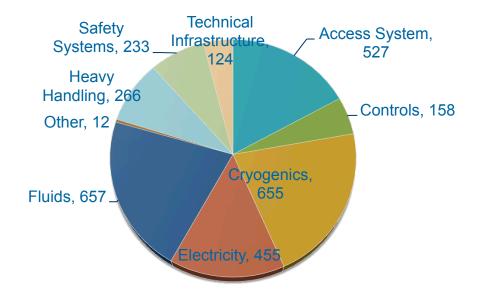
Was a detector element hint? How much energy? What time?

#### **Reconstructed Data**

Particle Type Origin Momentum of tracks (4 vectors) Energy in cluster (jets) Calibration Information S THE NO



### **CERN** Control Centre


CERN Accelerator Complex is unique installation Therefore, we have to face unique challenges

**Control and Operations** 

Million of sensors, large number of control devices, front-end equipment, etc. Many critical systems: Cryogenics, Vacuums, Machine Protection, etc.

# **Data Analytics Challenges**

### LHC Corrective Intervention: 3087 / year

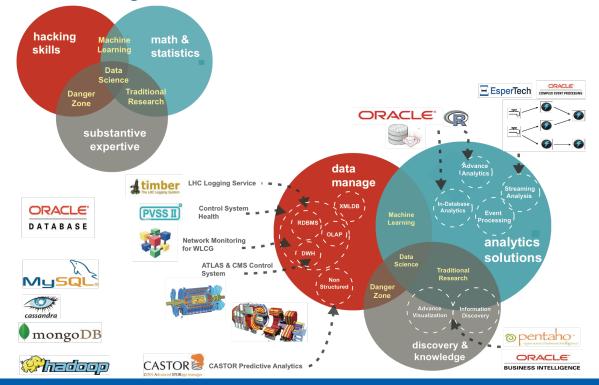




# **Data Analytics Challenges**

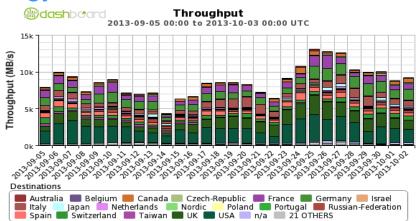
- A look into the near Future
  - LHC run 2 (2015)

|                                                     | <u>(</u> 6             | 24                     | 14                     | 2015                 |  |
|-----------------------------------------------------|------------------------|------------------------|------------------------|----------------------|--|
| Parameter                                           | 2010                   | 2011                   | 2012                   | design value         |  |
| Beam energy                                         | 3.5                    | 3.5                    | 4                      | 7                    |  |
| β* in IP 1 and 5 (m)                                | 2.0/3.5                | 1.5/1.0                | 0.6                    | 0.55                 |  |
| Bunch spacing (ns)                                  | 150                    | 75/50                  | 50                     | 25                   |  |
| Max. number of bunches                              | 368                    | 1380                   | 1380                   | 2808                 |  |
| Max. bunch intensity (protons per bunch)            | 1.2 × 1011             | 1.45 × 1011            | 1.7 × 10 <sup>11</sup> | 1.15 × 1011          |  |
| Normalized emittance at start of fill (mm mrad)     | ≈2.0                   | ≈2.4                   | ≈2.5                   | 3.75                 |  |
| Peak luminosity (cm <sup>-2</sup> s <sup>-1</sup> ) | 2.1 x 10 <sup>32</sup> | 3.7 x 10 <sup>33</sup> | 7.7 x 10 <sup>33</sup> | 1 x 10 <sup>34</sup> |  |
| Max. mean number of events per bunch crossing       | 4                      | 17                     | 37                     | 19                   |  |
| Stored beam energy (MJ)                             | ≈28                    | ≈110                   | ≈140                   | 362                  |  |



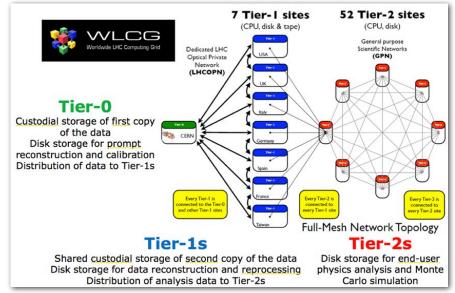

# **Data Analytics Challenges**

- Profit from our data investment
  - Extracting knowledge.
- Optimize our systems is mandatory
  - Reducing and predicting faults and corrective interventions
  - Increase the availability and operations efficiency
- Control and Monitoring Systems
  - Proactive
  - Predictive
  - Intelligent




# **Data & Analytics Environment**





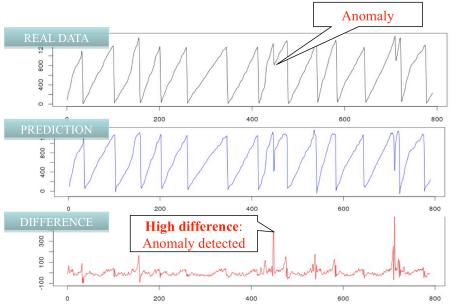

- WLCG relies heavily on the underlying networks
- Network Monitoring WLCG
  - Correlation in time and topology
  - Real-Time Analytics
    - Root Cause Analysis
    - Early warning systems





- Intelligent Data Placement for CMS
- Resources optimization
  - Minimize number of replicas
  - Remove Obsolete
  - Job time in data access
  - Job time in data analysis
- Resources Prediction



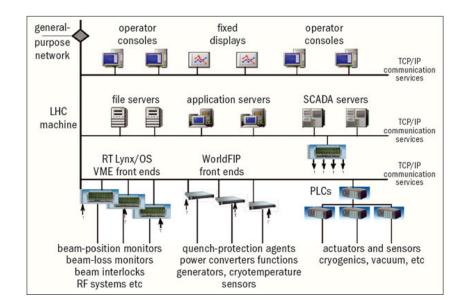



- CASTOR CERN Advance Storage Manager
  - CERN Mass Storage Solution
    - Disk + Tapes
    - 12k disks, 30k tapes
- Expert system
  - Spot ongoing incidents
- Predictive analysis
  - Predict problem occurrences





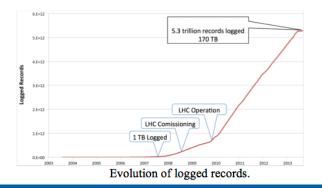
- CASTOR Anomaly Detection
  - Data to be transferred
    - Queue data
  - Prediction Model
    - Real Prediction

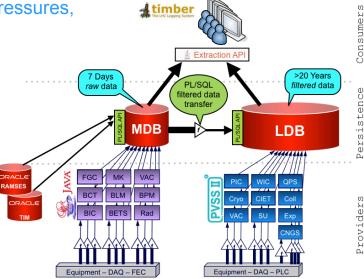





Manuel Martin Marquez

Intel IoT Ignition Lab – Cloud and Big Data Munich, September 17th 27

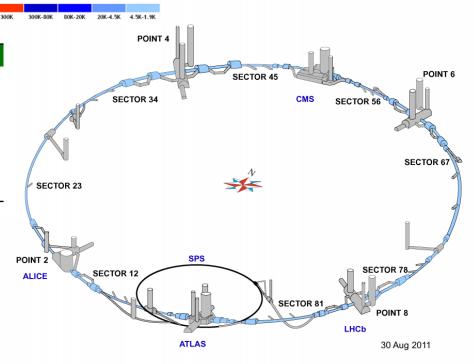

- Control Systems
  - Control system Health
    - Gas Breakdown
    - Predictive maintenance
      - Cryogenics
      - Vacuum
      - Machine Protection
  - Quench Detection






### **CERN Accelerators Control System**

- Close to 1 million pre-defined signals
  - Cryogenics temperatures,
  - Magnetic field strengths, Power dissipation, Vacuum Pressures,
  - Beam intensities and positions...etc...
- About 5 million daily/average data requests
- Throughput over 100TB/Year, 300TB in 2015








### **Largest Cryogenics Installation**

| Instruments           | Range     | Total |
|-----------------------|-----------|-------|
| TT (temperature)      | 1.6- 300K | 9500  |
| PT (pressure)         | 0-20 bar  | 2200  |
| LT (level)            | Various   | 540   |
| EH (heaters)          | Various   | 2500  |
| CV (Control Valves)   | 0 - 100 % | 3800  |
| PV/QV (On Off Valves) |           | 2000  |





Manuel Martin Marquez

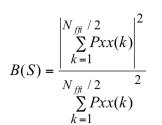
Intel IoT Ignition Lab – Cloud and Big Data Munich, September 17th 30

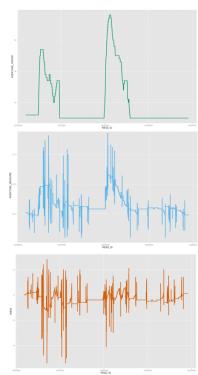
### Largest Cryogenics Installation

- Study based on sectors
  - L4, R4, L8 and R8.
- Sensor Outputs
  - aperture order (%)
  - aperture measured (%)
- Three different status:
  - Faulty,
  - Not faulty
  - Unknown






### Largest Cryogenics Installation


**Automatic Faulty Valves Detection System** 

- Signals used:
  - S = aperture order aperture measured
- Features extractions based on S

**SVM - Support Vector Machine** 

- Variance
- Percentile 99.9
- Rope distance R(S)  $R(S) = \frac{1}{N} \sum_{i=2}^{N} |S(i) S(i-1)| = B(S) =$
- Noise Band B(S)









www.cern.ch