

The challenge: stress a database engine by forcing it to do physics analysis:

- Store analysis data in relational database
- Complicated SQL queries
- Calls to external C++ libraries
- Let the database take care of parallelism

Analysis data in a relational database

- Test with root-ntuples (D3PDs) produced for ATLAS top-physics group
 - Sub-set of 7.2 million events (27 ntuples)
 - ~4000 variables ("branches") stored in event-tree
 - DB design uses different tablesfor different physics-objects
 - Many columns per table

DATA12_8TEV			
Table name	columns	M rows	size in GB
photon	216	89.9	114.4
electron	340	49.5	94.6
jet	171	26.8	26.3
muon	251	7.7	14.2
primary_vertex	25	89.5	11.9
EF (trigger)	490	7.2	7.9
MET_RefFinal	62	6.6	2.3
eventData	52	7.2	1.4
	1607		272.9

Physics Analysis in SQL

Make temporary tables using the WITH-AS statement:
WITH goodmuons AS (SELECT ... FROM muon WHERE pt>25.)

JOIN statements on the RunNumber, EventNumber put
information from the different selections together:
SELECT ... FROM good_muons INNER JOIN good_bjets USING
(RunNumber, EventNumber) WHERE goodmuons.N=2 AND goodbjets.N=2

- ✓ Simple calculations were written in (PL/)SQL
- ✓ Code from external C++ libraries was used for more complicated calculations

Benchmark 1.

Simplified Higgs+Z: compare simple root-macro with SQL-query returning same results

- In both cases limited by iowait!
 - I/O reads for root-ntuple analysis 10x less than for DB

Benchmark 2.

Ttbar cutflow: compare existing 'root-core' packages with modified version that constructs SQL-query

Conclusion

- SQL-based physics analysis using data stored in a relational database could reproduce results from root-ntuple analysis'
 - Database takes care of parallelism
 - Row-based storage in combination with wide tables limits performance by the I/O read speed of the system