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Presentations/BOFs

Plenary:

The experiment offline systems after one year (R.Jones)

How to harness the performance potential of current Multi-Core CPUs and GPUs
(S.Jarp)

Computing Paths to the Future (R.Goff/DELL)

Parallel:

Multicore-aware Applications in CMS

Parallelizing Atlas Reconstruction and Simulation: Issues and Optimization Solutions
for Scaling on Multi- and Many-CPU Platforms

Multi-threaded Event Reconstruction with JANA
Track Finding in a High-Rate Time Projection Chamber Using GPUs

Fast Parallel Tracking Algorithm for the Muon System and Transition Radiation
Detector of the CBM Experiment at FAIR

Real Time Pixel Data Reduction with GPUs And Other HEP GPU Applications
Algorithm Acceleration from GPGPUs for the ATLAS Upgrade

Maximum Likelihood Fits on Graphics Processing Units

Partial Wave Analysis on Graphics Processing Units

Many-Core Scalability of the Online Event Reconstruction in the CBM Experiment

BOF 3:

GPUs: High Performance Co-Processors
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ol Plenary on Monday by Roger Jones(ATLAS)

openlab a™“The experiment offline systems after one year”

LANCASTE IA 10/18/10 RWL lones CHEP2010

Future Challenges

LANCASTE |A 10/18/10 RWL Jones CHEP2010 - 1

* We assume we can use growth in CPU

— But this implies changing architectures
— And handle the data throughput

ATLAS Tier 0/1/2 resources
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* Experiments already working to deal with m
— Many cores and GPGPUs are down the line

* We need to use them or be very clear why we cannot

Related developments M

10 challenges being (partly) addressed by fast merging

Re-write of Gaudi with stronger memory model pl

Down the line, we may need to parallize the code

— This could be either for many-core processors or for Graphical
Processing Units — but the development might address both
GPUs having big success & cost savings in other fields
* Harder for us to use, but funders will continue to ask
* We need the R&D to know which path to take

— Developments require O(3 years) to implement

— This includes Geant4 — architectural review this year

- T e
ulti cores
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Plenary on Monday by S.Jarp

“How to harness the performance potential

of current Multi-Core CPUs and GPUS”

CHEP 2010, Taipei \

Today:
Seven dimensions of multiplicative performance

= First three dimensions:
* Pipelined execution units

»
.“--
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CERN

openlab

* Large superscalar design

= Wide vector width (SIMD)
Superscalar

* Next dimension is a “pseudo”

dimension:
* Hardware multithreading [utnreaing |
= Last three dimensions:
= Multiple cores
»{ sockets |
* Multiple sockets /
* Multiple compute nodes

SIMD = Single Instruction Multiple Data ‘ Sverre Jarp - CERN

CHEP 2010, Taipei \

What are the multi-core options? =

.
CERN
* There is a discussion in the community about the best
way(s) forward:

openlab

1) Stay with event-level parallelism (and entirely
independent processes)

* Assume that the necessary memory remains affordable
*  Orrely on tools, such as KSM, to help share pages
g 2) Rely on forking:
= Start the first process; Run through the first “event”
= Fork N other processes
= Rely on the OS to do “copy on write”, in case pages are modified
3) Move to a fully multi-threaded paradigm

Still using coarse-grained (event-level) parallelism
— But, watch out for increased complexity

17

Sverre Jarp - CERN
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openiab ¢® “How to harness the performance potential
of current Multi-Core CPUs and GPUS”

Plenary on Monday by S.Jarp

CHEP 2010, Taipei

Today:

= First three dimensions:
* Pipelined execution units
* Large superscalar design
= Wide vector width (SIMD)

* Next dimension is a “pseudo”

dimension:
* Hardware multithreading

>
Seven dimensions of multiplicative performance SERN
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openlab

Shortlist
[Muttthreading 1) Broad Programming Talent

= Last three dimensions:
= Multiple cores
* Multiple sockets /
* Multiple compute nodes

SIMD = Single Instruction Multiple Data ‘ Sverre Jarp - CERN

30

Report from CHEP2010 — S.Jarp

CHEP 2010, Taipei

2) Holistic View with a clear split:
= Prepare to compute — Compute

3) Controlled Memory Usage
4) C++ for Performance

5) Best-of-breed Tools

Sverre Jarp - CERN
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M\j ;- Plenary on Tuesday by Roger Goff/DELL
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openlab

= Plenary “vendor” session:

Computing Paths to the Final Takeaways
Future @

CPU cores are not getting faster.
Roger Goff

Dell Global CERN/LHC Technologist Co-processors are here to stay.
+1970 672 1252 | Roger_Goff@dell.com Heterogeneous processors are inevitable.

Preparing applications for extreme parallelism will e
enable users to get the most out of future systems.

hrOwON~

B Dell CERN/LHC Program

Report from CHEP2010 — S.Jarp 6



Charles L

= “Parallelizing Atlas reconstruction and
simulation on multi-core platforms”

s— WORKER 0:
Maximize Events: [0, 4,

the shared 4
[WORKER 1:
Events: [1, 5, 9,...,97
[WORKER 2:
Events: [2, 6, 10,
[WORKER 3:
Events: [3, 7, 11,

- SERIAL:
PARALLEL: workers event loop

init ==—f 05 fork

memory use per process, Gb
- ]

nbr of processes

AthenaMP ~0.5 Gb physical memory saved per process

Report from CHEP2010 — S.Jarp 7
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Charles Leggett/ATLAS

= “Parallelizing Atlas reconstruction and
simulation on multi-core platforms”

Event Level Parallelism with AthenaMP =

Issues with Large OOP Code Bases Z2

Function calls result in added instructions
— Call and return

— Runtime address resolution (trampolines) required for position
independent code/ shared object cross invocations

* Indirect branches can be more costly
— Freeing & restoring registers for local use
— Setting and reading function arguments

Virtual function calls (function pointers) increase indirect
call instructions and associated pointer loads

— Virtual functions can't be inlined!

Atlas code has 2500 shared libraries!

> Athena.py --nprocs=4 -c EviMax=100 Jobo.py
— WORKER 0: Ll
Maximize > Events: [0, 4, 8,...96] |m—— ETP =
the shared { RE
memory! : .
. WORKER 1: output
firstEvnts > ] EEE (1,5, 9,97 e tmP |
init OS-fork
WORKER 2: ?utput
ey Events: [2, 6, 10, mp
..:93] = files
Input :
Files WORKER 3: ?utput
s Events: [3,7,11, | P
_..,99] files
SERIAL: ; SERIAL: .
-| parent.initfork l-l PARALLEL: workers event loop parent-merge and finalize
CHEP 2010 1
L ]
19023

CHEP 2010 AW15/10

Report from CHEP2010 — S.Jarp 8
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S.Eﬁﬂ = “Multi-core aware Applications in CMS”

Why Bother?

HEP processing is naturally parallelizable
We have billions of events
Each event can be processed independently

Memory is becoming a limitation

Historically GB/US$ increases at the same rate as number of transistors in a CPU CMS
tp://www.ijcmit.com/memoryprice htm

http:// i / ryp! z
Funding levels are not guaranteed to stay this high .M emor y Sﬁ/arlna B

e can afford 2GB/core now but may not in the future

Opportunistic use of grid sites improves if we lower our memory requirements 800000 I e LA 800000 P PN U]
Not all grid sites have 2GB/core )
Technical limitations on connecting many cores to shared system memory
http://www.intel.com/technology/it/2007 /v11i3/3-bandwidth/7-conclusion.htm TTEEED D
g g
- . - . |3 g
Mu.ltl—COfC awarec apphcatlons can HTIPIOVC memory Shaflﬂg 0 400000 0O 400000
Threading '% g — =
All threads share the same address space but have to worry about concurrent usagq &
Forkiné 200000 200000
ach child process gets its own address space
Untouched memory setup by the parent is shared between the child processes F
gxmmn 101:00.000 02:00.000 03:00.000 04:00.000 06:00.000 (9)1)‘1[”0 01:00.000 02:00.000 03:00.000 04:00.000 06:00.000
Time since start of process (minutes) Time since start of process (minutes)

Measurements done usinl% reconstruction with 64bit software on
Multi-core Aware Applications in CMS 3 CHH 4 CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128

Shared memory per child: ~700MB

Private memory per child: ~375MB

Total memory used by 32 children: |3GB

Total memory used by 32 separate jobs: 34 GB

Saved 62% of memory
Multi-core Aware Applications in CMS I CHEP 2010

Report from CHEP2010 — S.Jarp 9
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Multi-threading

thread
.-IIIIII.

¥ e %

o Each thread has a complete s :
set of factories making it . -
capable of completely = .
reconstructing a single event < : = :
(7 "'

o Factories only work with
other factories in the same
thread eliminating the need
for expensive mutex locking
within the factories

Processo
o All events are seen by all
Event Processors (multiple
processors can exist in a
program)

52510 JANA

- Lawrence - CLAS12 Software Workshop

=]

David Lawrence/JLab

‘Multithreaded event reconstruction with JANA”

Testing on a 48-core “Magny Cours”

Multlthreaded Event Reconstruction for GlueX

61223090 DL

[ v
s AT

Event Processing rate {He)

50

a—pTr Tl Sl Tres b ot A are gy | cours Al Opleran 2.2GHz 6174
N T | vy )

o
45:_ & Actual
40 4 Corrected for 10
35 : ; ;
30
[/
20—
15—
10
5
0% SN VDN AU U EPURE RN I B
0 & 10 15 20 25 30 35 40 45 50
Numbar of processing threads
* Occasionally some problems with inexplicably lower
rates.
* Program appears to simply run slower while not
operating any differently.
* Unclear if this is due to hardware or Linux kernel
Oct. 19, 2010 CHEP10, Taipei —

Event reconstruction using 48
processing threads on a CPU with
48 cores generally scales quite
well.

Eventually, an 1/0 limit will be
encountered

Memory Usage vs. time while repeatedly running the 35 threod
test. The marked area indicotes one test where the program ran
slower.

38 Thread Event Reconstructian far GluzX

Marnary Usage {3E|

David Lawrence, ILab 9
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Raw Data: .:

LCIusters x,y, z)l

initialized with

o4 5D Hough Transform for Helical Track Detection Ap

Implementation on a GPU using CUDATIVI

Felix Bohmer/PANDA

“Track finding in a high-rate time projection

Chamber using GPUs”

m

Technische Universitdt Minchen

{RiemannKernel
on GPU

send raw Data
calculates once

——————————— a
| Hough Space ]

Hardware setup:
I Hypersurfaces (5-D) I

panDA 5D Hough Transform for Helical Track Detection  Application in ou

. Glance at Performance

ittt @ CPU: Intel Core™2 Quad Q8400 2.66 GHz (single thread)
—. !
~ ! @ GPU: NVIDIA GTX 280 (1GB)
\ .'creare new
"\ maintains gengration of TEST FOR INTERSECTION Y
‘\ o _.——'}'—-"‘J EGPU 60.06
. | [ ~ 80 55.36
. | Nodes (5-D), . Hcpru -
N, A AN
‘.\ '.‘ * 50
. ! X
~.. 7 40
- IntersectKerne g
votes Tor
O on GPU & i
_________ — E
20
10
2.97 3.27
0
Felix Béhmer for the GEM-TPC Collaboration — Track Finding in a High-Rate Time Projection Chamber Using GPUs Time (5 Tracks) Time (10 Tracks)

Execution time comparison

Felix Bohmer for the GEM-TPC Collaboration — Track Finding in a High-Rate Time Projection Chamber Using GPUs

m

Technische Universitéit Miinchen

18.4x

Report from CHEP2010 — S.Jarp
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Niklaus Berger/IHEP

“Partial wave analysis at BES Il —

Harnessing the power of GPUs”

Parallel PWA on GPU

Events are independent - calculate
terms in the sum in parallel

Use many PCs

Use parallel hardware and make
use of Single Instruction - Multiple
Data (SIMD) capabilities

Very strong here: Graphics proces- .,

sors (GPUs): Cheap and powerful
hardware p.

PWA is embarassingly parallel:
Exactly the same (relatively simp-

le) calculation for each event

Every event has its own data, or]
fit parameters are shared

Ideal for GPU implementation
True for many HEP applications

nalysis on GPUs — Niklaus Berger

CHEP 2010, 1]

Performance

We use a toy model J/Y — y K*K ana- Using an Intel Core 2 Quad 2.4 GHz
lysis for all performance studies workstation with 2 GB of RAM and an

ATl Radeon 4870 GPU with 512 MB of
RAM for measurements

10 s+
FORTRAN
5 17 %150 Speedup
e GPUPWA
£ 01 SUW
@
= /
= 001 s-
GPUPWWA
Sums on GPU
Os 1 v
0 200000 400000

Number of Events

Partial Wave Analysis on GPUs — Niklaus Berger CHEP 2010, Taipeh

Report from CHEP2010 — S.Jarp
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" by Nobuhiko Katayama/KEK

Spéﬁﬂ = “HLT (and other things) with GPUs”

Belle Il High Level Trigger

This is option #3.

There is a plan to use
FPGA to reduce PXD
hits

l Other detectors

CPU/GPU Results

6144%6144 |12288%12288
(GFLOPS) | (GFLOPS)

erical recipes) 0.61 0.62
& = BGHz) MKL(6core) 68 72
\H'":: : code) 108 115
| : . . fode) 87 91
g Can we use GPUs? ks 190 %52 faster

Sorry. We have just started to work on GPU here and | don’t have much to ce_Of C2050is supposed 1o be >500 _GFLOPS
report ol d is suppressed to ¥ of C2050 (but is faster)

You've heard about Belle HLT in the morning ULA 2.1 are used

* Floats are faster as expected

* Copy from/to CPU to/from GPU not included (but is significant)
* Cholesky decomposition cannot saturate GPU

* Cannot do 24576%24576(not.encugh memory on one C2050)

Report from CHEP2010 — S.Jarp 13
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Spéﬁﬂ = “HLT (and other things) with GPUs”

Inflation

* |nflation started 1073 sec. after the birth

universe and lasted for 10-34 sec. CPU/GPU ReSUItS

X . : 6144%6144 |12288%12288
* During that period, the universe expande (GFLOPS) (GFLOPS)
60

order of e®®, from P.Iank scale to a meter{ cpy (-7 920) (numerical recipes)  0.61 0.62

(our observable universe) CPU(i-7 X980@3.33GHz) MKL(6core) 68 72
* Inflation was caused by a particle (field) ¢ GTX480 (our CUDA code) 108 115

energy scale of 10%® GeV C2050 (our CUDA code) 87 91
* Cosmic Microwave Background Radiation C2050 (CULA) 159 190 €5 faster

is the probe to measure its energy scale | + Peak performance of C2050 is supposed to be >500 GFLOPS
* GTX480 DP speed is suppressed to % of C2050 (but is faster)

* CUDA 3.1 and CULA 2.1 are used
* Floats are faster as expected

— Let me use the parameter “r” to represent {

* Copy from/to CPU to/from GPU not included (but is significant)
* Cholesky decomposition cannot saturate GPU
* Cannot do 24576%24576(not.enough memory on one C2050)

Report from CHEP2010 — S.Jarp 14
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EPEB..-!.}D' = “Algorithm acceleration from GPGPUs for the

ATLAS upgrade”

GPU Computing

t Edinburgh

Number of GPU related projects at Edinburgh over the
summer:

Z Finder

@ Chris Jones - "Porting the Z finder algorithm to GPU"

(MSc in High Performance Computing) .
@ Maria Rovatsou - "SIMT design of the High Level Trigger B rohiom
Kalman Fitter" (MSc School of Informatics) !
@ James Henderson - "An Investigation Into Particles 58
Tracking and Simulation Algorithms using GPUs" ~§ .
E
@ Project reports and source code available at: é 4
ATLAS Edinburgh GPU Computing § .
g 2
1 S8 0613
o A% — . — . o3 a” 0134 0.204
CcPU Tesla Fermi Tesla (stream) Fermi (stream)
@ Results for spacepoint pairs show up to 35x speed-up (Fermi). é
@ Initial results for spacepoint triplets also show speed-up.

12/22

Report from CHEP2010 — S.Jarp 15
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Alfio Lazzaro/CERN openlab
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CERN

openlab

PCs

GPU: ASUS nVidia GTX470 PCl-e 2.0

= CPU: Nehalem @ 3.2GHz: 4 cores — 8 hw-threads

= OS:SLC564bit-GCC 434
= ROOT trunk (October 11th, 2010)

Commodity card (for gamers)
Architecture: GF100 (Fermi)

Memory: 1280MB DDR5

Core/Memory Clock: 607MHz/837MHz
Maximum # of Threads per Block: 1024
Number of SMs: 14

CUDA Toolkit 3.1 06/2010

Developer Driver 256.40

Power Consumption 200W

Price ~$340

Test environment

“Maximum likelihood fits using GPUs”

openlab

O Fair comparison
O Same algorithm

calculations

CERN PDF-event-base: GPU VS OpenMP

O Algorithm on CPU optimized and parallelized (4 threads)
O CPU does the final sum of the NLL and normalization integral

O Check that the results are compatible: asymmetry less than 10712

GPU VS OpeniP (4 Threads)

=GPy
OpanbAP (£ Threads)
~#ratin

Alfio Lazzaro (alfio_lazzaro@cem.ch)

Processing time {s]

ra
11 -
L 68% GPU kerne

Is

OpenMP to GPU time ratio

21% CPU time
‘ 36% GPU kernels 11% transfers
60% CPU time . Lo
1000 1eon 4% transfers icaooo 1000000
# events

» Speed-up increases
with the dimension of
the sample, taking
benefit from the data
streaming on GPU
and the integral
calculation only on
the CPU

» ~3x for small
samples, up to ~7x
for large samples

Alfio Lazzaro (alfio.lazzaro@cemn.ch)

15
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Andrey Lebedev/CBM

‘Fast track reconstruction of the muon

system and transition radiation detector”

* Minimize access to global memory

Optimization of the algorithm

Report from CHEP2010 — S.Jarp

o Approximation of the 70 MB large magnetic field § -2
ER
map i}
= 7 degree polynomial in the detector planes was ;. -
the best 51 : :
proven the be B Track fit quality
S0
* Simplification of the detector geomet 4
P & v % ey Residuals Pulls
o Problem EiG
= Monte-Carlo geometry consists of 800000 nodes X[em] | Y[em] | Tx *10° | Ty *10° q‘,'p X Y Tx Ty qu
= Geometry navigation based on ROOT TGeo 3 3 103
= Take into account absorbers and staggered 7 positions of the [Gev]
stations
o Solution 0.38 0.39 9.1 8.7 34 1.02 0.99 1.08 1.08 0.92
= Create simplified geometry by converting Monte-Carlo
geometry
= Implement fast geometry navigation for the simplified Speedup of the track fitter
geometry
* Computational optimization of the Kalman Filter Time [us/track] Speedup
o From double to float Initial 1200 -
o Implicit calculation on non-trivial matrix elements .
o Loop unrolling Optimization 13 92
o Branches (if then else ..) have been eliminated SIMDization a.4 3
All these steps are necessary to implement SIMD tracking Multithreading 0.5 8.8
A_ Lebedev, “Track reconstruction in the muon system and transition radiation detector of the CBM experiment” N
Final 0.5 2400
Throughput: 2*10° tracks/s
Computer with 2xCPUs Intel Core i7 (8 cores in total) at 2.67 GHz
A_ Lebedey, “Track reconstruction in the muon system and transition radiation detector of the CBM experiment”
17
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S.E.'Sh' = “Fast track reconstruction of the muon
system and transition radiation detector”

Optimization of the algorithm

* Minimize access to global memory
o Approximation of the 70 MB large magnetic field § -2

map é
= 7 degree polynomial in the detector planes was ;.
proven the best 5
p |
* Simplification of the detector geometry be 0 o Simulation:

By,
o Problem ¢
= Monte-Carlo geometry consists of 800000 nodes

= Geometry navigation based on ROOT TGeo

+ 1000 UrQMD events at 25 AGeV Au-Au collisions + 5 p+ and 5 p-
embedded in each event

= Take into account absorbers and staggered 7 positions of the
stations . . .
o Solution ’m m Initial version Parallel version
= Create simplified geometry by converting Monte-Carlo -
geometry Efficiency [%] 94.7 94.0
= Implement fast geometry navigation for the simplified
geometry . .
e R Speedup of the track finder
= Computational optimization of the Kalman Filter station statidin
o From double to float Time [ms/event] Speedup
o Implicit calculation on non-trivial matrix elements —
o Loop unrolling Initial 730 -
o Branches (if then else ..) have been eliminated Optimization 7.2 101
All these steps are necessary to implement SIMD tracking SIMDization 4.8 1.5
A_ Lebedev, “Track reconstruction in the muon system and transition radiation detector of the CBM experiment”
Multithreading 1.5 33
Final 15 487

Computer with 2xCPUs Intel Core i7 (8 cores in total) at 2.67 GHz

A Lebedev, “Track reconstruction in the muon system and transition radiation detector of the CBM experiment™ 12

Report from CHEP2010 — S.Jarp 18
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S.E.'Sh' = “Many-core scalabllity of the online

reconstruction in CBM”

Performance of the KF Track Fit on CPU/GPU Systems

100 & 2eCell SPE (16 )
Data Stream Parallelism Task Level Parallelism :mdmn“{ i}
g {10) (100x) ' Dunnington ( 6 )
- %
3
3 %
g“‘" o Cellular Automaton, (CA) as Track Finder:

Track finding: Wich hits in detector belong to the same track? — Cellular Automaton (CA)

e 0. Hits (CBM} — avers ]
. Hi H &
Threads \-\ﬁ_\_‘ b | L & L] Hits ]
| :Com SIMD Cores and Threads Hoi s fa)
@
SIMD oo . T T T T T T &
eeninr doubie single -» 2 N 8 % hreads 3 ] | [l. Segments |
Scalability on different CPU architectures — speed-up 100
CPU GPU AN Cellular Automaton:
Type [ Cores | Clack, GGHz  Time/track. ns NVIDIA Unit | Clock. GHz | Throughpu 1000 Hits ) : 1.Build short track segments.
Corc 2| 2 266 260 SE0DGTS 312 L6 13. 2.Connect according to the rack model,
CorciT| 8 2.67 52 G1X 280 13 21, [(2. counters | ; 2 S mate arﬁtl’}':arﬁm on a track.
Real-time performance on different Intel CPU platforms Real-time performance on NVIDIA GPU graphic car ) collect segments inbz; track candidates.
The Kalman Filter algorithm performs at ns level 4-Select the best track candidates.

1 October 2010, CHEP-2010

Ivan Kisel, GSI

1

3. Track Candidates |

4. Tracks (CBM)
Cellular Automaton:
= local w.r.t. data !
= intrinsically parallel
- extremely simple [4, Tracks | ; -
- very fast M T

Perfect for many-core CPU/GPU ! +]

1000 Tracks
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S.E.'Sh' = “Many-core scalabllity of the online
reconstruction in CBM”

Performance of the KF Track Fit on CPU/GPU Systems

o 2 2xCell SPE (16)
Data Stream Parallelism Task Level Parallelism :mdmn“{ i}
g {10) (100x) ' Dunnington ( 6 )
S
B
E‘ 100 L“‘\-\.
CBM Cellular Automaton Track Finder
770 Tracks
0.10 _
Threads
| :Com SIMD Cores and Threads
SIMD o . T T T T T T
e double ngle - 2 4 8 ® rreads 2

Scalability on different CPU architectures — speed-up 100

GPU
Cores | Clock, GHz - Timeftrack. ns NVIDIA Unit | Clock, GHz | Throughput, 10

3 0h 360 8500 GTS 512 6 5.0 e e —— 1 o
8 267 52 GIX 280 1.3 1.7 :
- i Efficiency 00 ) ) Scalability
1 1 3 H H T T

Real-time performance on different Intel CPU platforms Real-time performance on NVIDIA GPU graphic cards

Finef % ; ;
. e F z H H
The Kalman Filter algorithm performs at ns level 2 gyl L H i i i
CO 7 = : demme
£ By 3 : ioom
o F + E HINL_ N
- |- by | '
L 3 .
= g ¥
a Fi E "
o - [ L
3 sl
L .
E L]
3 e a
= w_o.

n ' ' o [ o o

3.5 4 4.5 5 [ 2 4 13 a 1o 12 1+ 18
Mermentum [GeVic] WU BET of lagial cores

Highly efficient reconstruction of 150 central collisions per second

Report fr =
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bl I
E NVIDIA Compute Visual Profiler (OpenCl/CUDA)
open I ab (Runge-Kutta propagation Zcpy vs. Memcpy using

[ ] G P U S FERMI GTX 480)

D@ Diﬁlﬂ.

o0 AN

Cuda Toolkit

51055230.4-07) OUPLLIONSA YBTH :5NdD  01/12/01

ot/tefot

NVCC C compiler
CUDA FFT and BLAS libraries for the GPU

- s A vam eaw e e mew ol
a
e s rhe sew mem  wow wmam o osw msw o mem Ak
ann s v ieve 1t~ Corpate ¥oual Profiks - (10 Trk Zugy - Cuvive 0 - Sunean 0 [CUDAT =
Je B PR G AEIBRES G aE D
oo A" o, n
v 1o Furer v
" wal | . K5
cofan “ W30 T
- ——
I e . W 4

CUDA-gdb hardware debugger
CUDA Visual Profiler

CUDA runtime driver (also available in the
standard NVIDIA GPU driver)

CUDA programming manual

Summary

Cuda is an easy to learn and to use tool that allows
heterogeneous programming.
Depending on Fﬁfé use case one can wifi factors in
performance compared to CPU

‘l\ Tools
Texture memal used to solve problems that require

lookup tables effe 1vely
Pinned Memory £|plify some problems, g#s also better

performance.
With Fermi we are getting towards the end of the distinction
between CPUs and’ GPUs [

The GPU 1ncreasmgly/ takmg on the form of a masswa“ parallel cd-Ob S
processor

S1055920.14-07) SBUEW.J0fIad YRIH :SdD

ot/tzfot

510559904407 SoURWLIONad YSTH 51D
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openlab = More and more people are working on multi-core, many-
core, and accelerators

= Especially, in the on-line domain
= And, in new or upgraded experiments
= Positive outcome: Code is revisited and made more “C-like”

= But, many people forget to do a “fair” comparison:

= GPU code should expose “rich” loops for threading
» Transfer times must be included

= CPU code should exploit vectors + threads
= As usual it is important to perform a comprehensive
calculation of
=  Throughput/W/CHF

= EXxpect more activity in this domain in the coming
months/years

= In openlab we will continue to participate actively in
realistic and relevant evaluations
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