Tools and scalability at openlab CERN **Andrzej Nowak** openlab June 21st 2010

2nd Workshop on adapting applications and computing services to multi-core and virtualization CERN

> Architecture outlook and performance

> Shifts in performance tuning

> Tools used for performance optimization

- Platform usage efficiency
 - perfmon2
 - VTune and PTU
 - Piersol HE (upcoming)
- Threading performance
 - Thread profiler
 - Piersol HE (upcoming)
- Correctness
 - Thread Checker
 - Cantua HE (upcoming)

Architecture outlook

> Current Intel microarchitecture: "Westmere"

- 32nm, Nehalem based
- Up to 6 cores per chip, we use 2 sockets: 24 threads

> Current Intel multiprocessor architecture: "Beckton"

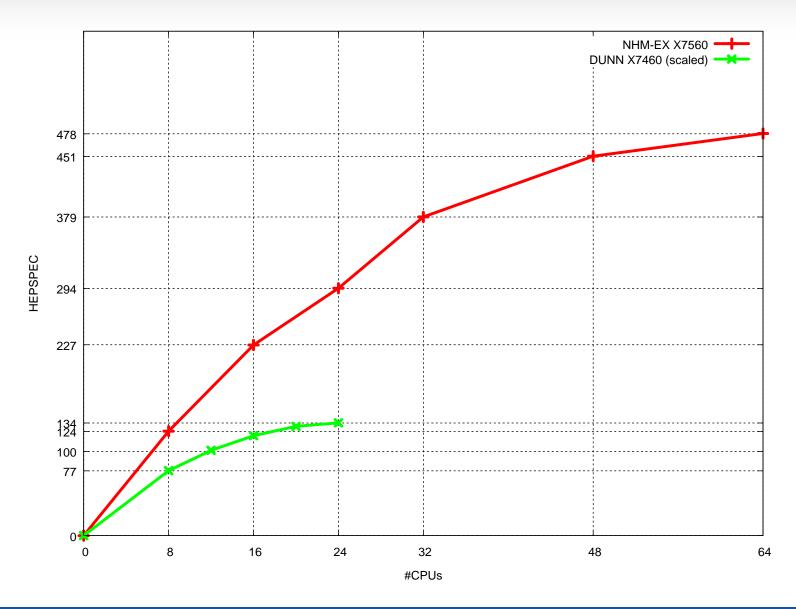
- 45nm, Nehalem-EX
- Up to 8 cores per chip, up to 8 sockets per platform: 128 threads

> Forthcoming developments:

- 2010/2011: "Sandy Bridge" 256 bit SSE (AVX), 8 cores
- 2011/2012: "Ivy Bridge" shrink to 22nm
- 2012/2013: "Haswell" possible uarch redesign, further integration, FMA

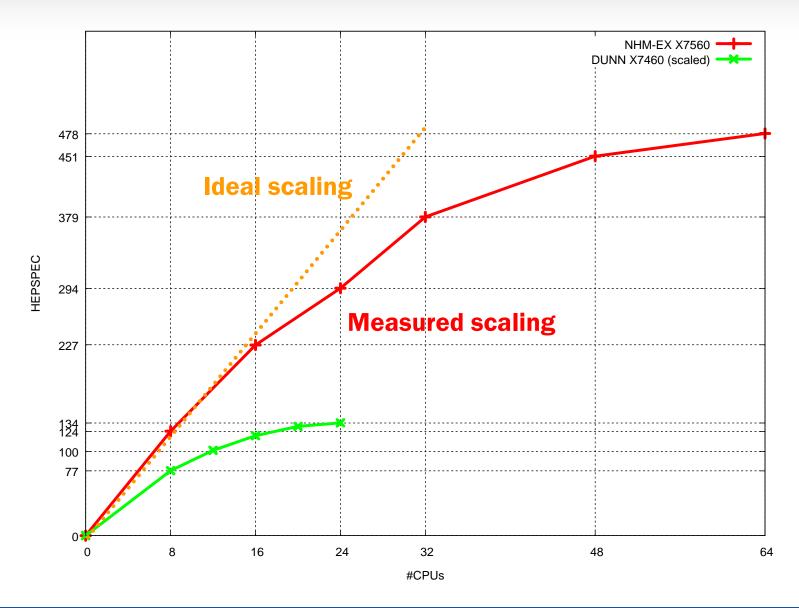
Architecture and platform performance (1)

- > Openlab tested a Westmere-EP system and a Nehalem-EX system: papers available at <u>http://cern.ch/openlab</u>
- > Westmere-EP (12 cores)
 - 50% core increase, but HEPSPEC06 numbers only 32% better
 - Core Clock-per-clock throughput comparison very close to Nehalem
 - Overall improvements between 39% and 61% (mostly due to core increase) wrt Nehalem
 - SMT benefit mostly unchanged, 10-23% performance per Watt improvement
 - Some multi-core effects inhibit scalability

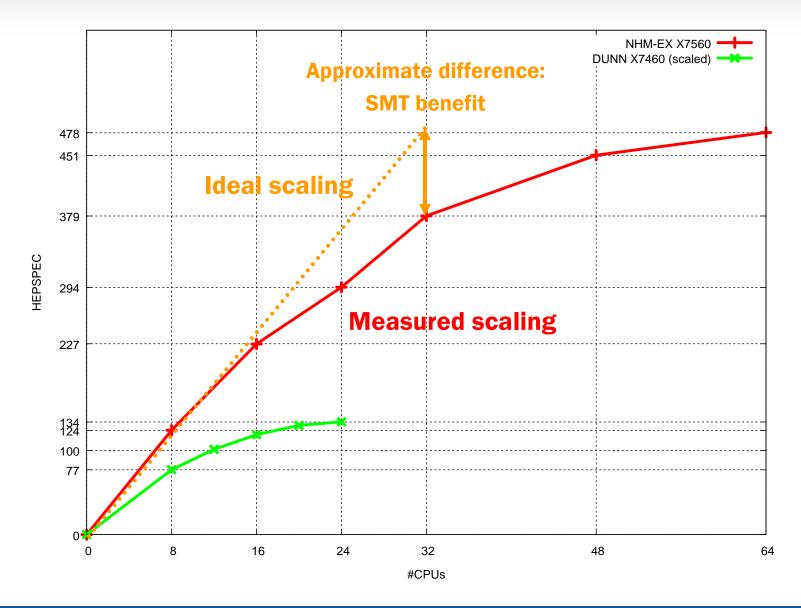

Architecture and platform performance (2)

> Nehalem-EX (32 cores)

- 33% core increase reflected in performance
- 29.7x speedup obtained with a multi-threaded Geant4 prototype (FullCMS simulation) compared to 1 thread
 - Minor memory usage per thread
- "Top of the line" CPU comparison w/ Dunnington (24 cores), unscaled
 - 3x more throughput on HEPSPEC06
 - 11%-60% more throughput elsewhere
- SMT advantage: 19%-28%
 - More than expected; might be related to the fact that SW doesn't scale well to 32 cores
- Significant power consumption
- Some multi-core effects inhibit scalability scalability lines on graphs should be straight, but are not


Nehalem-EX – HEPSPEC06 curve

Andrzej Nowak – Tools and scalability at openlab


Nehalem-EX – HEPSPEC06 curve

Andrzej Nowak – Tools and scalability at openlab

Nehalem-EX – HEPSPEC06 curve

Andrzej Nowak – Tools and scalability at openlab

Mainstream architecture and platform trends

> Core development:

- X86-64 remains the architecture of choice
- Continued <u>incremental</u> core increase
 - Decreasing relative cache advantage: smaller size, larger distances, increased penalty risk, lower predictability
- Added functional units
 - i.e. Crypto, AVX, FMA, Graphics
- 4-way hardware threading unlikely on OOO

> Platform development:

- Many-core scaling effects already noticeable
- NUMA effects already noticeable large impact on multi-threading and SHM-based software, impact on multi-processing
- Increasing memory demand and pressure
 - More memory capacity expected (increasing part of the cost and power!)
 - More memory levels
 - More system memory does not guarantee more bandwidth, throughput or performance
- DP likely to remain the platform of choice and develop well for the next several years – market "sweet spot"
 - Pricing on more developed systems is prohibitive

Sood news:

- Our window onto the hardware (performance counters) is being improved and systematized
 - The importance of hardware counters has been understood by the industry
 - openlab has direct links to HW/SW architects and other key people
- Counter-level software becoming more widespread, growing adoption and understanding in the HEP community
- Software is becoming more robust and accessible (i.e. GUIs)

> Bad news:

- The complexity of performance analysis is growing
 - Architecture complexity is increasing (i.e. NUMA)
 - Language complexity is increasing (C++, Java proliferation)
 - It's harder to implement the tools because of the above and because of the increased complexity of the environment (kernel, etc)
- And it was already hard in the first place
- > Where Linux "PCL" will miss, private companies (like Intel) will hit
- > Hardware counters can be used to measure I/O, but it's hard

> A Linux interface to the performance monitoring counters

Supports counting, flat profiles and sampling in intervals

> Pros:

- Lightweight, robust and open source
- Long running project with extensive experience
- Relatively stable and reliable, even with HEP software (in part thanks to efforts at openlab)
- Easy to modify, easy to use to instrument HEP code (see CMS)
- Direct link with the main architect

> Cons:

- SLC-based kernel is provided in binary form, but is not standard SLC
- Limited analytical capabilities in the package:
 - counting, flat profiles, sampling in intervals
- Little hopes of further extensive development "PCL" hijacked the functionality (far from being ready)

perfmon2 – obtaining and using

> Restrictions:

- Kernel is modified SLC based config but different version
- Superuser access needed for installation
- > Profiles available for managed SLC5
- > RPMs available for manual installation on SLC5
- > Manual installation: complicated but possible
- > Successfully used at CERN in many contexts
 - Extensive monitoring in the computing center
 - Framework analysis and debugging
 - Snippet analysis
 - CMS instrumentation

> All resources:

twiki.cern.ch/twiki/bin/view/Openlab/Perfmon2

VTune and PTU

> PTU – "VTune on steroids"

- The tool of choice of a performance monitoring expert
- Supports counting, profiles, comparisons, memory profiling, call graphs (statistical and instrumentation based), basic block analysis, call count
- Supports graphing: Events over time, events over IP, Memory traffic (heap profiler, data access profiling)
- > Pros:
 - Very robust tool with a variety of analytical capabilities
 - Code instrumentation possible
 - Does not need a special kernel, works fine with SLC5
 - Direct link with the main architect (coming to CERN in July)

> Cons:

- Might be too sophisticated for occasional users
- Proprietary license needed (although we have plenty at CERN)
 - Free support and <u>discounted/free licenses</u> for academic institutions
- No source, modifications impossible
- Official support very limited
- Stability with HEP software sometimes leaves room for improvement
 - To be fixed in an upcoming future version 4.0

		Intel(R) Performance Tuning Utility					
<u>F</u> ile <u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un	<u>W</u> indow <u>H</u> elp						
] █┱ 📓 👌 🚱 ▾ 👌 🗢 ▾ ⇔▾					Ē	⊠Intel(R)	*
🛛 Tuning Navigator 🛚 🗖 🗖	🕞 Loop-Analysis-2010-05-10-13-15-22	libm-2.5.so 🛙				,	
	Source Assembly Control Graph	🛙 🖓 🤪 🧶 🗊 Event of Inte	rest: CPU CLK U	NHALTED.THREAD			
					1.0011.01		
🖺 Loop-Analysis-2010-05-10-1			Address 0x112FF	Assembly	CPU_CL	INST_R	
🔀 Loop-Analysis-2010-05-10-1	Block 159	Block 59	→ Block 61	jnbe Block 108	81 956	135,226	
▶ 🍓 testing-g4				mov qword ptr [rsp+0x8], rdi	2,097		
	Block 21	Block 60		lea rax, ptr [rip+0x4b82f]	1,387		
		$ \rightarrow $		movsd xmm0, qword ptr [rsp			
	Block 158	Block 108		cvtsi2sd xmm13, edx	1,306	2,251	
			0x1131C	movapd xmm1, xmm0	973	1,889	
	Block 22	Block 61	0x11320	addsd xmm0, qword ptr [rip	1,098	1,951	
				movapd xmm15, xmm1	1,323		
	Block 23 Block 125	Block 130		movsd qword ptr [rsp+0x8],			
				mov rdi, qword ptr [rsp+0x8]	907		
	Block 24	Block 62		sar rdi, 0x20	2,723		
				movapd xmm7, xmm13	700		
	Block 157	Block 128	UXII541	mov ecx, edi	223	417	
				Total Selected (55 instructio	81.956	135,226	
			Niew)	•	•		
	🖻 Console 📴 Experiment Summary 🕅 Adva		ne view				
	Function :ieee 7 54_log						
	Event		Samples	Events Issue	≜ Ex	plain Issue	
	CPU_CLK_UNHALTED.THREAD		179,603 359,2	206,000,000 Hot Function = 0.2833			- L
	CPU_CLK_UNHALTED.THREAD max(ICPU)		179,603 359,2	206,000,000	EX	plain Event	
	INST_RETIRED.ANY		259,866 519,7	32,000,000 Clocks per Instructions	Retire	atio Details	
	UOPS_EXECUTED.CORE_STALL_CYCLES			108,000,000 Execution Stall Cycles =			
	UOPS_RETIRED.STALL_CYCLES			04,000,000 Retirement Stall Cycles			
	RESOURCE STALLS.RS FULL			500,000,000 RS Full = 0.4554			
	UOPS_RETIRED.ANY		296.256 592.5	12,000,000 Ucode Retired = 0.1400)		
	RAT_STALLS.ROB_READ_PORT		11.944 23.8	388,000,000 Rob read port Stall Cyc	les =		
	RESOURCE_STALLS.ROB_FULL			224,000,000 ROB Full = 0.0507			
	BR_MISP_EXEC.ANY			750,880,000 Mispredicted Branches	= 0.0		
	UOPS_ISSUED.STALL_CYCLES			376,000,000 FE Stall Cycles = 0.045			
	ARITH.CYCLES_DIV_BUSY			564,000,000 Divide Busy = 0.0380			
	MEM_LOAD_RETIRED.L2_HIT			235,200,000 Load driven MLC hits =	0.00		
				76 000 000 STORE Buffers Full - 0			
4					<u> </u>		
() ∎≎							

File Edit Navigate Project Run Window Help

Intel(R) Performance Tuning Utility - /root/workspace/mtg4/Loop-Analysis-2010-05-10-13-15-22 - Eclipse Platform

A - 8 X

- -

A

🖹 🔀 Intel(R)...

Į.	<u>+</u>	 			T	<u></u>	
	53-		9 ∎∙	⇔ ∙	\$.		

🔀 Tuning Navigator រ

• 33

🗢 📣 mtg4

Atesting-g4

Tuning Navigator 🛚 🗖 🗖	🕞 Loop-Analysis-2010-05-10-13-15-22 🛚 📄 libm-2.5	i.so			
	Function	RVA	Module	CPU_CL C	INST_R
🗞 mtg4	<unknown(s)></unknown(s)>	0x0	vmlinux	230,699 3	7,093
📙 Loop-Analysis-2010-05-10-1	_ieee754_log	0x1	libm-2.5.so	179,603 1	259,866
Loop-Analysis-2010-05-10-1	G4VRangeToEnergyConverter::RangeLogSi			68,277 6	39,152
&testing-g4	G4PhysicsLogVector::FindBinLocation(dou	0x8	ParmainApplication	27,938 2	49,061
	G4hPairProductionModel::ComputeDMicro	0x1	ParmainApplication	15,299 1	15,766
	_ieee754_log10	0x1	libm-2.5.so	13,349 1	17,717
	_ieee754_exp	0xD	libm-2.5.so	10,944 1	13,132
	G4MuPairProductionModel::ComputeDMicr	0x1	ParmainApplication	10,296 1	10,976
	G4ProductionCutsTable::ScanAndSetCoupl	0x6	ParmainApplication	9,820 9	20,210
	log10	0x2	libm-2.5.so	8,645 8	2,622
	_isnan	0x2	libm-2.5.so	7,451 7	2,600
	log	0x2	libm-2.5.so	4,372 4	3,426
	G4MuBremsstrahlungModel::ComputeDMic	0x1	ParmainApplication	3,433 3	4,449
	G4hBremsstrahlungModel::ComputeDMicr	0x1	ParmainApplication	3,228 3	3,390
	G4eBremsstrahlungRelModel::CalcLPMFun	0x1	ParmainApplication	2,444 2	1,622
	exp	0x2	libm-2.5.so	2,369 2	4,595
					. 1
	Limit 95% 🔹 Granrity Function 💌 Process	All	▼ Thread All	▼ Module All	▼ Cpu
	💷 Console 🔚 Experiment Summary 🛚 🔀 Advanced	Profile In	nfo 🖾 Overtime View		
	12 Event Based Complian		2	2 620 126 complet	
	12 Event Based Sampling			3,628,136 samples	
				uration: 461.36s	7 200 0
	OFFCORE_RESPONSE.DATA_IN.ANY_DRAM_ANI	J_REMO		2 samples x 100000	J = 1,200,00

OFFCORE RESPONSE.DATA IN.REMOTE DRAM 0

BR INST RETIRED.NEAR CALL

RESOURCE STALLS.STORE

CPU CLK UNHALTED.THREAD

MEM_UNCORE_RETIRED.LOCAL_DRAM_AND_REMOTE_CACHE_HIT

BR INST RETIRED.ALL BRANCHES

UOPS ISSUED.ANY

4

MEM LOAD RETIRED.LLC MISS

2,352 16,048 1... 2,928 8,840 9... 4. 2,768 9... 1,560

UOPS RETI ... U...

1,073,810 1... 6.

80,952 9... 6.

45,488 4 ... 2.

3,304 6... 3.

6,040 6... 3.

864 3... ! 2,992 2... 32

1,832 2... 1.

2,072 2... 1.

2,248 2... 1.

1,304 1... 1. .

2,344 3...

2,784 5...

UOPS EX

548,944

31,704

12,856

1,376

2,048

432

704

496

576

512

728

968

208

•

- Cpu Total

•

- 8

100000 = 7,200,000 events (user)248 samples x 100000 = 24,800,000 events (kernel) 80 samples x 100000 = 8,000,000 events (user)200 samples x 100000 = 20,000,000 events (kernel)15,464,712 samples x 1000 = 15,464,712,000 events (user)

391,928 samples x 1000 = 391,928,000 events (kernel) 448 samples x 2000000 = 896,000,000 events (user)1,984 samples x 2000000 = 3,968,000,000 events (kernel)402,237 samples x 2000000 = 804,474,000,000 events (user) 231,829 samples x 2000000 = 463,658,000,000 events (kernel) $96 \text{ samples } x \ 20000 = 1,920,000 \text{ events (user)}$ $80 \text{ samples } x \ 20000 = 1,600,000 \text{ events (kernel)}$ 636,384 samples x 200000 = 127,276,800,000 events (user) 14 320 complex x 200000 - 2 864 000 000 events (kernel)

$$568,448 \text{ samples x } 200000 = 2,864,000,000 \text{ events (kerner)}$$

$$568,448 \text{ samples x } 2000000 = 1,136,896,000,000 \text{ events (kerner)}$$

$$27,144 \text{ samples x } 2000000 = 54,288,000,000 \text{ events (kerner)}$$

136 samples x 10000 = 1,360,000 events (user)

4 []≎

•

•		Intel(R) Performance Tuning Utility - /	root/workspace/mtg4/Loop	-Analysis-2010	05-10-13-15-22 -	Eclipse Platform							*
<u>F</u> ile <u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un	<u>W</u> indow <u>H</u> elp											Close	e Window
│ ◘ ▾											1	Intel(R) »
🗹 Tuning Navigator 🛚 🗖 🗖	🕞 Loop-Analysis-	2010-05-10-13-15-22	libm-2.5.so 🛛 🔀 Lo	op-Analysi	s-2010-05-1	0-13-15-22 (2) 🛛							- 0
	Function			Module		Colle Refs LL	C Misses	Ay	Total Late	ency	- C.	# P	# L –
	G4VRangeToEr	nergyConvertele, doເ	ıble, double, int)	ParmainA	pplication		10,000			300,0			
Loop-Analysis-2010-05-10-1	G4ProductionC	CutsTable::SlCutsCoup	ole*, G4Region*)	ParmainA	pplication	34,840,000	(0 13	457,	600,0	00 16	7 13	8
Loop-Analysis-2010-05-10-1:	basic_string			libstdc++	.so.6	12,900,000	20,000	29	382,	200,0	00 22	25 200	02
▶ Atesting-g4	_ieee754_exp			libm-2.5.s	0	29,960,000	(0 10	304,	400,0	00 10	4 !	5
r 😋 testing-g4	_ieee754_log			libm-2.5.9	0	29,520,000	(0 10	298,	800,0	8 00	1	7 -
	G4LogicalVolur	neStore::Getring con	st&, bool) const	ParmainA	pplication	2,040,000	(25	51,	600,0	00 3	0 3	0
	<unknown(s)></unknown(s)>			vmlinux		1,780,000	20,000	18	33,	400,0	00	1 :	12
	G4PhysicsLog\	/ector::FindBinLocation	(double) const		pplication	1,210,000	10,000	0 11	14,	500,0	00	4 :	31
	G4RToEConvFc	orElectron::Ble, G4Ph	ysicsLogVector*)	ParmainA	pplication	1,200,000	(0 10	12,	000,0	00	4 4	4
		ePhdrCallback		libgcc_s.s		320,000	(21	6,	800,0	00	5 4	4
		CrossSection double		ParmainA	pplication	410,000	10,000			500,0	00	4 4	41
		etMaterial(G4String, bo			pplication	160,000		40		400,0			5
		uctionModel:double,		ParmainA	pplication	600,000		0 10		000,0	00		3
	xercesc_2_8::R	efHashTabled const*	, unsigned int&)		c.so.28.0	90,000	10,000			700,0			21
	4			1:1		440.000		10	-	~~~~~			
	Total Selected:	:				77,130,000	10,000	0 10	777,	300,0	00		10,
	Granularity Fun	nction 💌 Process Parmai	nApplication 🕞 Th	read All	[✓ Module All		[- Filter	b y sele	ction	3	×
	🗉 Console 🖼 Exp	eriment Summary 🔀 Adv	anced Profile Info 🗖	Overtime	liew loop-A	nalysis-2010-05-	10-13-15-	22 🔳	Memory H	otspots	53		
				1 o verenne	nem. Loop /	(indigo10 2010 00	10 10 10		-		-	[X
					room 1				юр	by C	Shecte	:q ▼ ®	*
)10-05-10-13-15-22 (2) Gr		ata Objects									
	Variable Name		End Address	Si)	Module	Source File.		L A.		C ≢ P.			
	<unknown(s)></unknown(s)>					vn> <unknown< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>409</td></unknown<>							409
	fine	0x00000033cfe570c0						0 10			2 0		3
	coar	0x00000033cfe55a80						0 10			3 0	Concession of the local division of the loca	1
	Lv.2494	0x00000033cfe59de0						0 10				58	1
	Lu.2493	0x00000033cfe5b480	0x00000033cfe5	bfe0 2,91	2 libm-2.5	.so <unknown< td=""><td>> 51</td><td>0 10</td><td>570</td><td>26</td><td>1 0</td><td>49</td><td>2</td></unknown<>	> 51	0 10	570	26	1 0	49	2
	4												•

, Total Select...

59 0 10 620

0 58 1

ile	Edit Nav	vigate Pr	roject <u>R</u> un <u>W</u> indow <u>H</u> e		ce Tuning Utility - /root/work	space/mtg4/Loop-Ana	Iysis-2010-05-10-1.	3-15-22 - Eclipse Pla	attorm		
	· 🔲 🍈 🛛 😵		0.02								🗈 🗹 Intel(R)
			iment Summary 🔀 Advar	nced Profile Info 🛓	g Overtime View: Loo	op-Analysis-20	📕 Memory Ho	tspots 航 Mem	ory Access and Lat	ency Hist 🛄 Eve	
			-						-	-	
7	3E4										
	2 E4										
	1E4										
	104										
							11				
							11.			.h.a	
	0 Ox) <u> </u> D1BF	<u></u>	0x10E14	0x112ED 0x2	11625 0x11	D3D 0x1	2437 0x1		. 0x3E9A0	0x3F3A0
			R - Process: ParmainAr								
			······································								

PTU – obtaining and using

> Practical restrictions:

- Superuser access needed for installation
- Works best with the GUI, command line obscure
- Rather sluggish there are some overheads which are still being investigated

> Obtaining PTU:

- Download from the Intel website
- Source the license file in your shell as described here:
 - twiki.cern.ch/twiki/bin/view/Openlab/IntelTools
- Install PTU by running the installer
- Run script to compile and install the kernel driver

> Running:

- Use GUI or refer to user guide for numerous command line options
- > Successfully used at CERN for several projects
 - Framework and snippet analysis and debugging
 - CMS monitoring and source annotation
 - ATLAS, Geant4 monitoring and analysis

> A promising next-generation performance monitoring tool from Intel

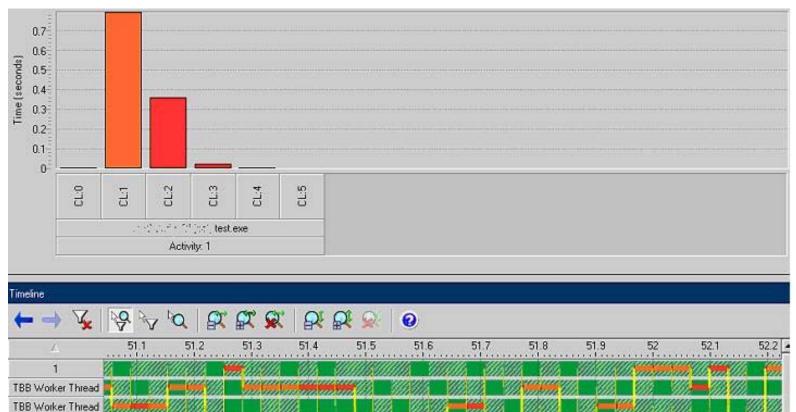
- A fusion of PTU and Thread Profiler, will support threaded profiling
- Simplified and modernized GUI, without sacrificing functionality
- Several levels of analysis depth available
 - Many PIN-based engines (http://pintool.org)
- Linux native
- Kernel driver will be needed (but no kernel change required)
- More in H2 2010 possible workshops

Threading performance – Thread Profiler

> Thread Profiler from Intel

- Bottleneck analysis
- Synchronization issues
- Locates inefficiencies and sub-optimal resource usage

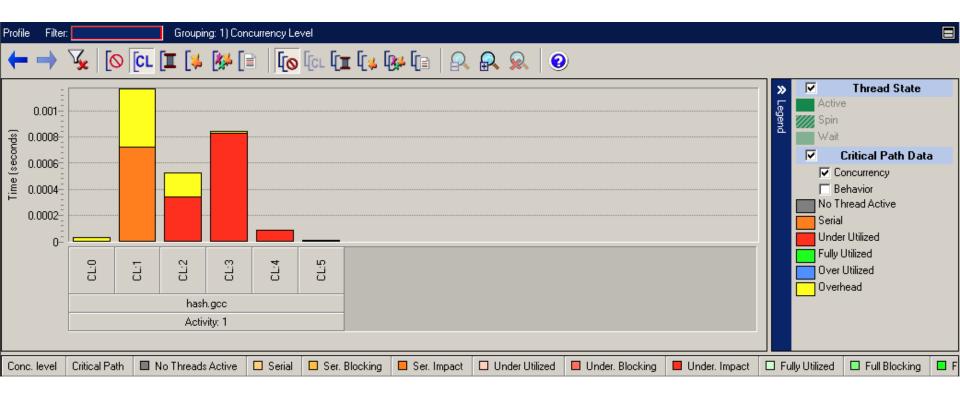
> Visual representation of threading performance issues


- Concurrency and thread state graph ("profile view")
 - Different breakdowns available
- Transitions graph and timeline ("timeline view")
- Supports OpenMP and pthreads (and Windows API threads)
- **>** Source instrumentation and binary instrumentation
- > Remote data collection possible
- > Used successfully for debugging prototype multithreaded applications at CERN

Thread profiler – view

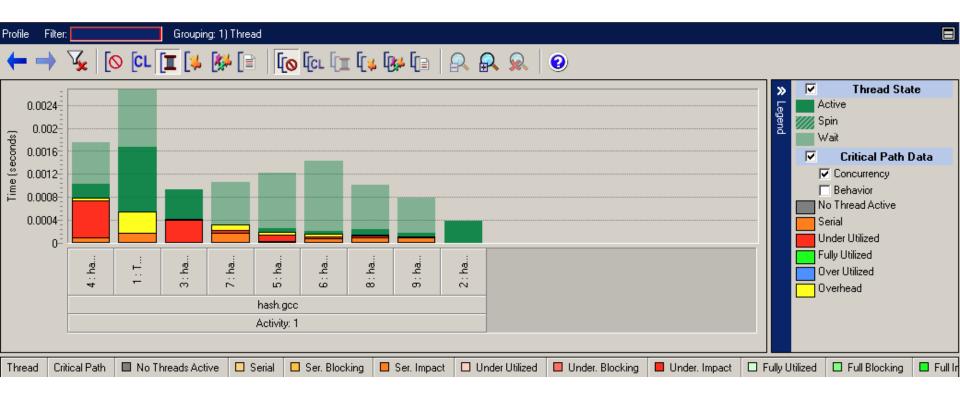
> Dark green = good work, light green = no work, waiting, idle

- > Orange/red critical path
- > Yellow transitions



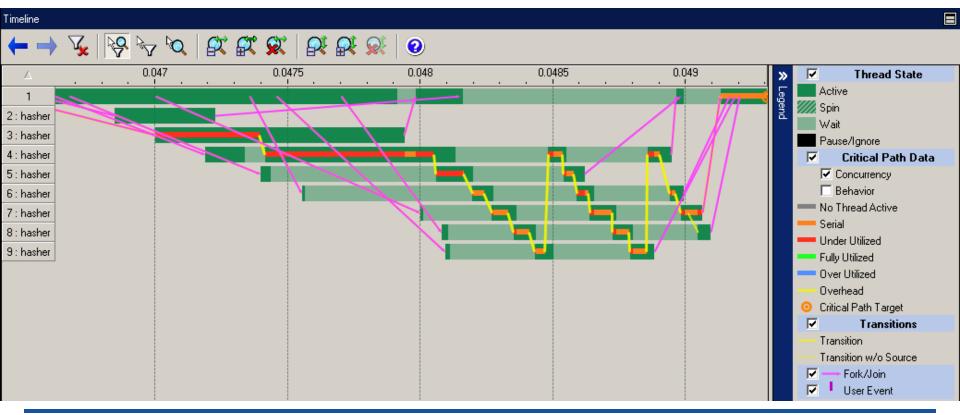
TBB Worker Thread

Thread profiler – profiler view


>Concurrency level grouping

Thread profiler – profiler view

>Thread grouping



Thread profiler – timeline view

>Critical path display

>Light green portions show wait time, dark green show work

Andrzej Nowak – Tools and scalability at openlab

Thread Profiler - typical workflow

1. Collect on Linux

- Either compile with -tprofile or openmp_profile (source instrumentation - better option)
- Or just run tprofile_cl yourprogram (binary instrumentation)
- **2.** Copy bistro/.tp output files over to Windows and analyze in the GUI

Checking for correctness

>Intel Thread Checker

- Rather old tool with interesting capabilities
- Anomaly detection: Deadlocks, Stalls, API usage violations, Race conditions, Memory overwrites, Abandoned locks

> Data analysis:

- Data collection and text analysis in Linux
- The trace file can later be opened in the Windows version of the tool for detailed analysis

Thread Checker screenshot

ID Short De Sever C Contex Description	1st Acc	2nd Acc
scriptio ity o t[Best	ess[Bes	ess[Bes
n Name u]	[t]	t]
		I I
t		I I
<pre> 1 Read -> Error 3 "datar Memory write at "dataraces.c":26</pre>	"datara	"datara
Write da aces.c conflicts with a prior memory read	d ces.c":	ces.c":
ta-race ":20 at "dataraces.c":26 (anti	26	26
dependence)		I I
<pre> 2 Write -> Error 3 "datar Memory read at "dataraces.c":26</pre>	"datara	"datara
Read dat aces.c conflicts with a prior memory	ces.c":	ces.c":
a-race ":20 write at "dataraces.c":26 (flow	26	26
dependence)		
<pre> 3 Write -> Error 3 "datar Memory write at "dataraces.c":26</pre>	"datara	"datara
Write da aces.c conflicts with a prior memory	ces.c":	[ces.c":
ta-race ":20 write at "dataraces.c":26 (output	26	26
dependence)		

Andrzej Nowak – Tools and scalability at openlab

Thread Checker – typical workflow

1. Collect on Linux

- Either compile with -tcheck (source instrumentation better option)
- Or just run tcheck_cl yourprogram (binary instrumentation)

2. Analyze

- 1. Either directly use the text output produced by the program
- Or copy files over to Windows and analyze in the GUI (more information available, "clickable" source)

Upcoming tool from Intel: Inspector

> Next-generation correctness checking tool from Intel

- Threading support: pthread, OpenMP, TBB
- Detects race conditions, memory conflicts, locking conflicts and other issues
- Robust memory correctness checker

> Several levels of analysis depth available

- Many PIN-based engines (http://pintool.org)
- > Linux native
- > No kernel driver needed, no privileges needed
- > Successfully tested at openlab, feedback provided
 - ROOT
 - Geant4
- > Public beta in H2 2010

		Inters Cantua HE Checker - New Cantua HE Checker Result	
<u>F</u> ile Inspect Hel	p		
🔁 📓 Memory Er	rrors 💽 😰 🕕		
r006mi r003ti	New Cantua HE Checker Result 🗷		

Configure Tar	get and Analysis Type		Intel's Cantua HE checke
🖲 Target 🔺 Analysis	: Туре		
A Memory Errors A Threading Errors Custom Analysis Ty	Memory Errors Choose a preset configuration designed to h custom configuration using another configur	elp you control analysis cost (duration). You can fine-tune a preset configuration or create a ration as a template.	Analyze Stop Take snapshot
	Analysis scope: Medium Detect resource leaks: Yes Stack frame depth: 12		
	,	Yes Yes Yes No No 1 Mb No 32 bytes 12	

🔨 🖬 🕷

🔁 📔 Memory Errors - 🛛 😂 🕕

r006mi 🗵

📒 Memory Errors

Summary & Details

Obse	rva	ations							?
ID	۹	Description	Problem	Source	Function	Mod	Object	State	-
X5556	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	▶ Not fi	
X5557	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5558	۲	Allocation	Memory leak	vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5559	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5560	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X556	۲	Allocation	Memory leak	vector.tcc:357	_M_fill_insert	test40	32	▶ Not fi	
X5562	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5563	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5564	۲	Allocation	Memory leak	vector.tcc:357	_M_fill_insert	test40	32	▶ Not fi	
X5565	۲	Allocation	Memory leak	vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5566	۲	Allocation	Memory leak	🗈 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5567	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5568	۲	Allocation	Memory leak	vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5569	۲	Allocation	Memory leak	🖻 vector.tcc:357	_M_fill_insert	test40	32	🎙 Not fi	
X5570	۲	Allocation	Memory leak	🗈 vector.tcc:357	_M_fill_insert	test40	32	Not fi	
X557	۲	Allocation	Memory leak	vector.tcc:357	_M_fill_insert	test40	32	▶ Not fi	

Intel's Cantua HE Checker - r006mi

Me	emor	ry leak: Obser	vations in Prob	lem Set					Observations / Timelin	e ?
ID		Description 🔺	Source	Function	Module	Object Size	State	Offset		
∀X 5	566	Allocation site	vector.tcc:357	_M_fill_insert	test40	32	Not fixed			
	355 356	_len = thi	s->max_size();							
-	357	iterator	_new_start(this->	_M_allocate(len));					
-	358	iterator	new_finish(new	w_start);						
3	359	try								

Summaries/Subsets	Sort + X
🗂 Severity	
Error	33381 it
Description	
Allocation site	33226 it
Read	155 items
Problem	
Invalid memory access	4 items
Memory leak	33221 it
Uninitialized memory access	156 items
Source	
DetectorConstruction.cc	650 items
enginelDulong.cc	27 items
G4AllocatorPool.cc	470 items
G4Alpha.cc	1 item
G4AntiBMesonZero.cc	1 item
G4AntiBsMesonZero.cc	1 item
G4AntiDMesonZero.cc	1 item
G4AntiKaonZero.cc	1 item
G4AntiLambda.cc	1 item
G4AntiLambdacPlus.cc	1 item
✓ more	
Function	
cxa_atexit	1 item
libc_start_main	2 items
_M_fill_insert	625 items
_M_insert_aux	1393 ite
AddData	104 items
AddElement	156 items
AddElementByWeightFraction	26 items
AddEmModel	780 items
AddMaterial	95 items
AddRootLogicalVolume	13 items
✓ more	
Module	
test40	33381 it
State	

🔨 🗖 🕺

Intel's Cantua HE checker

Ŧ

		Intel's Cantua HE Checker - New Cantua HE Checker Result	
<u>F</u> ile Inspect Help			
📔 📓 Memory Errors	 ✓ 😂 Φ 		
r006mi r003ti New	Cantua HE Checker Result 🗷		
📕 Configure Ta	rget and Analysis Type		
🛛 \varTheta Target Å Analysi	s Туре		
A Memory Errors	Threading Errors		
A Threading Errors	Choose a preset configuration des	igned to help you control analysis cost (duration). You can	fine-tune a preset configuration or create a

Custom Analysis Ty custom configuration using another configuration as a template.

Analysis scope:	Very wide	•
Terminate on deadlock:	No	•
Stack frame depth:	12 🗘	
┌		
runtc SettingsDetect lock hierarchyTerminate on deadlocDetect potential privaStack frame depth:Detect data races:Memory access byte	:k: ac y infringements:	Yes No Yes 12 Yes 1 byte
Detect data races on	stack accesses:	Yes

۱.

4

🔼 🗖 🗗 💌

Ŧ

Intel's Cantua HE checker

& Analyze

🗢 Take snapshot)

Stop

•	😧 💦 🗛 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓									
<u>F</u> ile Ins	spect Help									
🛛 🖾 🕅	Memory Errors	s 🔹 🖬 📾								
	r003ti 🗷									
									ntel's Cantua HE checker	
Threading Errors										
Summary # Details										
Problem Sets							Summaries/Subsets	Sort • * ?		
	ources				Modules			▲ Severity		
	UnitsTable.cc				test40			Error	125 items	
			Messenger.cc; G4	InitsTab					120 Items	
		ectorAndUnit.cc	in lobben genee, e.		test40			Problem Data race	125 items	
	ctor.tcc				test40				125 Items	
	UlcontrolMes	senaer.cc			test40			Source	- 11	
	UlcontrolMes				test40			[Unknown]	3 items	
	UlcontrolMes	2			test40			DetectorConstruction.cc	20 items	
	UlcontrolMes				test40			enginelDulong.cc	2 items	
	UlcontrolMes				test40			G4AllocatorPool.cc	1 item	
	UlcontrolMes				test40			G4BlockingList.cc	1 item	
	UlcontrolMes				test40			G4DataVector.cc	2 items	
	UlcontrolMes				test40			G4DecayTableMessenger.cc	10 items	
	nknown]	Jengenee			test40			G4Element.cc	8 items	
-	st40.cc				test40			G4EventManager.cc	5 items	
Par					G4EvManMessenger.cc	17 items				
	st40.cc				test40			⊻ more		
					2			Module		
Data ra	ace: Observ	ations in Proble	m Set			Obs	ervations / Timeline	test40	125 items	
ID	Descrip 🔺	Source	Function	Module	State			State		
▶X1073			my_slave_thread		Not fixed			Not fixed	125 items	
▶X1097		test40.cc:58	G4_main		Not fixed					
▶X1101▶X1103		Itest40.cc:60 Itest40.cc:62	G4_main G4_main		Not fixed Not fixed					
▼X1239			my slave thread							
51										
	52 pid t myselfPid = gettid();									
	53 printf("The worker thread pid: %d\n", myselfPid);									
	54 threadRank = *(int *)rank_ptr;									
55										

Food for thought– loose propositions for possible future activities

> Expand scope of automated performance collection

- Every CPU has a performance monitoring unit that for the better part is unused
- Adopting a wide, common strategy for performance feedback
- Nightly build runs for instant performance feedback and regression monitoring
- Annotated source a la CMS (Peter Elmer)
- Background monitoring of batch servers for live and historical data
- Extending the availability of readily available performance monitoring C++ classes (Daniele Kruse)
- > Increasing the common availability of low level performance monitoring
 - Simplification of performance monitoring processes and outputs a long and hard task
- Most of the discussed scenarios could be deployed via our management system (possibly with Intel's help – if needed)
 - Some ideas already are on the table at openlab

Questions? Andrzej.Nowak@cern.ch