
ARM64 ISA
(Instruction Set
Architecture)

An Initial Encounter

20 November 2012
Sverre Jarp, CERN openlab

64-bit ISA
• What is an ”ISA” anyway ?
• ISA describes “only”

– what can be done
• “multiply two floating-point registers”

– scalar or vector mode

• µ-architecture adds:
– how is it done and what will it cost

• “One single execution unit can handle this instruction”
• “The Flp multiply itself takes 5 cycles”

• The µ-arch is not yet published
– and, will probably come in several flavours

20/11/2012 ARM64 overview 2

Some “tidbits” about µ-arch
• Initial info (Cortex A57 specs from ARM):

– 1 – 4x SMP on chip
– Increased peak instruction throughput via

duplication of execution resources.
– 3-wide decode bandwidth
– High-capacity register renaming provides 3-wide,

large-instruction rename bandwidth.
– Support for 8 issue slots and up to 128

instructions in flight
– 64KB page support

20/11/2012 ARM64 overview 3

Applied Micro:
X-Gene processor at 3 GHz
with 4-wide decode (?)

Some AArch32 Cortex-A9 DP latencies

• From FPU Technical Reference Manual:

20/11/2012 ARM64 overview 4

Instructions Latencies Throughput

FADD, FSUB 4 1

FMUL 6 2

FMAC, FNMAC 9 2

FCPY, FABS, FNEG 1 1

FDIV 25 20

FSQRT 32 28

FCMP 1 1
Not “fused”
but “chained”

AArch64 (A64) – a high-level view
• Not backwards compatible

– But, an enhanced AArch32 (A32) execution stage will co-exist
(see later)

• Almost all features are now integrated:
– With AArch32: FPU, SIMD, Neon, Cryptography were add-ons

• Load/Store architecture
– Multiple addressing modes

• Registers:
– 32 64-bit integer
– 32 128-bit packed vector

• Fixed instruction length
– 32 bits:

• opcode (10-bits?) + dest + src3 + src2 + src1
• <name>{subtype>} <containers>

• Instructions are typically “ternary”
20/11/2012 ARM64 overview 5

This would
imply 210
instructions
(100 pages with
10 each) !!!

Still optional

Changes from AArch32

• Floating-point entirely integrated
– Based on IEEE-754 (2008)

• Many new instructions
– Also, several modified instructions
– Instructions with more than one destination split in two:

• XXX1 and XXX2 (Vector permutations, for instance)

• Different register sets
– Bigger integer set (now: 32)
– Larger vector registers (size: 128b)

• No predication of instructions
– But, some conditional moves, etc.

20/11/2012 ARM64 overview 6

Exception Layers

• Four levels, in total:

20/11/2012 ARM64 overview 7

App1 App2 App3

Guest Operating System

Virtual Machine Monitor

TrustZone Monitor

EL0

EL1

EL2

EL3

AArch64 will support
AArch32 at a lower
privilege level.

The AArch64 ABI
• Register conventions:

20/11/2012 ARM64 overview 8

Register Special Role

SP Stack Pointer

R30 LR Link Register

R29 FP Frame Pointer

R28-R19 Callee-saved

R18 Platform Register

R17 IP1 Intra-procedural

R16 IP0 Intra-procedural

R15-R9 Temporary

R8 Indirect result
location

R7-R0 Parameters/Results

Register Special Role

V31-V16 Temporary

V15-V8 Callee-saved

V7-V0 Parameters/Results

Operand containers

• Usually the register type:
– Integer:

– Packed:

20/11/2012 ARM64 overview 9

Width

W 32-bit integer

X 64-bit integer

Width

B 8-bit: scalar

H 16-bit: scalar or float (HP)

S 32-bit: scalar or float (SP)

D 64-bit: scalar or float (DP)

Q 128-bit: scalar

Note the different
notation (compared
to x86) of “packed”
and “scalar” !

Packed operands
• Similar to SSE on x86:

20/11/2012 ARM64 overview 10

E3 E2 E1 E0

E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0 Bit 127

16 * Byte

8 * Half

4 * Single

2 * Double

E0 1 * Quad

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

Subtypes

• Instruction suffix:
– Load-Store
– Sign/Zero Extend

– Register Width Changes:

20/11/2012 ARM64 overview 11

Subtype

B Byte

SB Signed Byte

H Halfword

SH Signed Halfword

W Word

SW Signed Word

Subtype

H High (dst gets top half)

N Narrow (dst < src)

L Long (dst > src)

W Wide (dst == src1, src1 > src2)

Not discussed any further 

Working with integer registers
• Straight forward

– Example:
• “ADD X16, X14, X15”
• “ADD X16, X14, W15, SXT” // sign-extend
• “ADD X16, X15, #42” // immediate

– 32-bit mode:
• “ADD W16, W14, W15”
• Upper 32 bits:

– Ignored from a source
– Zeroed in a destination
– Right shifts/rotates inject at bit 31

– Register 31:
• Stack Pointer (SP)

– When used as a load/store base register: WSP|SP
• Zero otherwise:

– WZR|XZR
20/11/2012 ARM64 overview 12

0 31 32 63

FP/SIMD registers

• Holds both scalar floating-point and vector
operands:
– SIMD scalar registers: Bn, Hn, Sn, Dn, Qn

– SIMD vector registers: Vn.16B, Vn.8H, Vn.4S, Vn.2D
– Or, half the size: Vn.8B, Vn.4H, Vn.2S, Vn.1D

– SIMD vector element: Vn.B[i], Vn.H[i], Vn.S[i], Vn.D[i]

– SIMD register list: {V4.4S – V7.4S}
– Or ,element list: {V4.4S – V7.4S}[3]

20/11/2012 ARM64 overview 13

Addressing modes
• Multiple variants:

– Base register (no offset)
– Base plus offset

• Immediate offset (scaled 12-bit unsigned, unscaled 9-bit-signed)
• Base plus 32-/64-bit register (optionally scaled)

– Pre-indexed
• Unscaled 9-bit signed

– Post-indexed
• Unscaled 9-bit signed

– Literal (PC-relative), for loads of 32-bits or larger

• Not all modes available for a given LD/ST type:
– Exclusive/ Acquire/Release
– Register
– Register pair

20/11/2012 ARM64 overview 14

Control Flow Instructions
• Conditional Branch:

– B.cond label
– CB(N)Z Wn|Xn, label
– TB(N)Z Wn|Xn, #uimm6, label

• Unconditional Branch (and Link):
– B label
– BL label
– BR Xm
– BLR Xm
– RET {Xm} X30 (LR) as default

20/11/2012 ARM64 overview 15

LD/ST single register

• Multiple subtypes:

• Fewer stores:

20/11/2012 ARM64 overview 16

No change of
direction !

Mnemonic Operands

LDR Wt|Xt, addr

LDR(B|H) Wt, addr

LDRS(B|H) Wt|Xt, addr

LDRSW Xt, addr

Mnemonic Operands

STR Wt|Xt, addr

STR(B|H) Wt, addr

LD/ST register pair
(also: non-temporal)

• Limited subtypes:

• Addr:
– Base plus s-7-s offset
– Pre-indexed; not for N?
– Post-indexed; not for N?

20/11/2012 ARM64 overview 17

Mnemonic Operands

LD(N)P Wt1|Xt1, Wt2|Xt2, addr

n.a.

n.a.

LDPSW Xt1, Xt2, addr

Mnemonic Operands

ST(N)P Wt1|Xt1, Wt2|Xt2, addr

n.a.

Integer/Logical (immediate)

• ADD(S) Xd, Xn, #aimm // S sets the condition flag
– Variants with:

• SUB, replacing ADD
• W registers

• Aliases for providing: CMP and MOV

• AND(S) Xd, Xn, #bimm64
– Variant with W register and bimm32

• bimm is a repetitive pattern

• Also EOR and ORR
• TST (bitwise test) is aliased to ANDS

 20/11/2012 ARM64 overview 18

FLP/SIMD Scalar Memory Access

• LD/ST address
• Unscaled versions
• LD/ST Pair
• Non-temporal

versions

20/11/2012 ARM64 overview 19

Mnemonic Operands

LDR Bt|Ht|St|Dt|Qt, addr

LDUR Bt|Ht|St|Dt|Qt, [base,#simm9]

LDP St1|Dt1|Qt1, St2|Dt2|Qt2, addr

LDNP St1|Dt1|Qt1, St2|Dt2|Qt2,
[base, #imm]

Mnemonic Operands

STR Bt|Ht|St|Dt|Qt, addr

STUR Bt|Ht|St|Dt|Qt, [base,#simm9]

STP St1|Dt1|Qt1, St2|Dt2|Qt2, addr

STNP St1|Dt1|Qt1, St2|Dt2|Qt2,
[base, #imm]

Flp Move Register; Move Immediate;
Convert; Round

• FMOV (Register – register):
– 32-bits: Sd  Sn, Wd  Sn, Sd  Wn
– 64 bits: Dd  Dn, Xd  Dn, Dd Xn
– High-order 64-bits: Xd  Vn.D[1], Vn.D[1]  Xn

• Immediate:

– FMOV Sd, #fpimm8, but FMOV Sd, WZR
– FMOV Dd, #fpimm8, but FMOV Dd, XZR

• Convert precision:

– All combinations between Hn, Sn, and Dn

• Round to Integral:
– FRINTr Sd, Sn or FRINTr Dd, Dn

 20/11/2012 ARM64 overview 20

Rounding modes (r):
- N (nearest, ties to even)
- A (nearest, ties away
from zero)
- P (towards +inf.)
- M (towards –inf.)
- Z (towards zero)
- I (Use FPCR rounding)
- X (use FPCR with
exactness check)

Flp Convert to/from Int

• Convert Single/Double to Signed/Unsigned:
– FCVTr(S|U) Wd|Xd, Sn|Dn
– Rounding modes (r):

• NAPMZ

• Convert Signed/Unsigned to Single/Double:

– (S|U)CVTF Sd|Dd, Wn|Xn
• Using FPCR rounding mode

20/11/2012 ARM64 overview 21

Also: Convert to/from Fixed-point

FLP Arithmetic
• One source:

– FABS, FNEG, FSQRT (Single or Double)

• Two sources:
– FADD, FDIV, FMUL, FNMUL, FSUB

• Min/Max:
– FMAX(NM), FMIN(NM)

• Multiply-Add (three sources):
– FMADD, FMSUB, FNMADD, FNMSUB

 20/11/2012 ARM64 overview 22

FLP Arithmetic (cont’d)

• Flag-setting compare:
– FCMP, FCMPE Sn, Sm|#0.0 (same for D)
– FCMPP, FCMPPE Sn, Sm, #uimm4, cond

• Select:

– FCSEL Sd, Sn, Sm, cond (same for D)

20/11/2012 ARM64 overview 23

Vector Data Movement

• Duplicate (DUP) vector element
• Insert (INS) vector element
• Unsigned move (UMOV)
• Signed move (SMOV)

• Other moves (MOV) are mapped back

to one of the above.

20/11/2012 ARM64 overview 24

Vector Arithmetic
• Absolute difference
• Add, Sub (int or flp)
• Saturating Add (signed, unsigned)
• And, Exclusive Or, Or, Or Not, (8B or 16B)
• Bitwise operations
• Compare (sint, uint or flp)
• Absolute Compare (flp)
• Divide (flp)
• Halving Add, Subtract (int)
• Max and Min (sint, uint, flp)
20/11/2012 ARM64 overview 25

Vector Arithmetic
• Multiply & Add/Subtract (int or flp)
• Multiply (int or flp)
• Polynomial Multiply (bytes)
• Reciprocal divide/sqrt step (flp)
• Saturating Double Multiply High Half (int)
• (Saturating) (Rounding) Shift Left (int)
• Saturating Subtract (int)
• Rounding Halving Add (int)

20/11/2012 ARM64 overview 26

Let’s start to wind down
(otherwise we’ll be here until tomorrow)

• Hundreds of instructions still to go:
– Scalar Arithmetic
– Vector/Scalar Widening/Narrowing Arithmetic
– Vector/Scalar Unary Arithmetic
– Vector/Scalar-by-Element Arithmetic
– Vector Permute
– Vector Immediate
– Vector/Scalar shifts
– Vector/Scalar FLP/INT convert
– Vector/Scalar Reduce
– Vector Pairwise Arithmetic
– Vector Table Lookup
– Vector LD/ST Single/Multiple Structures
– Optional Crypto Extensions
– System Instructions

20/11/2012 ARM64 overview 27

Vector Unary Arithmetic
(only one source)

• Absolute Value (int, sint, flp)
• Negate (int, sint saturating, flp)
• Count Bits (sign, zero, non-zero)
• Bitwise Invert
• Add Long Pair (signed, unsigned)
• FLP Convert (H  S or S  D; and back)
• Integer Narrow (whole family)
• Recipical estimate (Int, Flp)
• Reciprocal SQRT estimate (Int, Flp)
• SQRT
• Reverse: RBIT, REV16, REV32, REV64

20/11/2012 ARM64 overview 28

Vector Permute

• From two input vector registers:
– Bitwise Extract (via immediate index)

• EXT

– Vector Element Transpose
• TRN1/TRN2

– Vector Element Unzip
• UZP1/UZP 2

– Vector Element Zip
• ZIP1/ZIP2

20/11/2012 ARM64 overview 29

Two
destination
registers need
two
instructions
(unlike
AArch32)

Conclusion
• (Very) large instruction set
• Multiple sub-sets:

– Integer or floating-point
– Individual scalar or vector
– Compute or manipulate
– “Special function”

• Need to wait for µ-arch to understand
“how”, rather than “what”
– Latencies
– Superscalar design

• Expect more information to be made
available over time

20/11/2012 ARM64 overview 30

Seems unlikely
that compilers
can “master”
the whole set!
But, expect
both gcc and
armcc to
provide
intrinsics (as
they do for
AArch32)

	ARM64 ISA (Instruction Set Architecture)
	64-bit ISA
	Some “tidbits” about m-arch
	Some AArch32 Cortex-A9 DP latencies
	AArch64 (A64) – a high-level view
	Changes from AArch32
	Exception Layers
	The AArch64 ABI
	Operand containers
	Packed operands
	Subtypes
	Working with integer registers
	FP/SIMD registers
	Addressing modes
	Control Flow Instructions
	LD/ST single register
	LD/ST register pair�(also: non-temporal)
	Integer/Logical (immediate)
	FLP/SIMD Scalar Memory Access
	Flp Move Register; Move Immediate; Convert; Round
	Flp Convert to/from Int
	FLP Arithmetic
	FLP Arithmetic (cont’d)
	Vector Data Movement
	Vector Arithmetic
	Vector Arithmetic
	Let’s start to wind down�(otherwise we’ll be here until tomorrow)
	Vector Unary Arithmetic�(only one source)
	Vector Permute
	Conclusion

