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64-bit ISA 
• What is an ”ISA” anyway ? 
• ISA describes “only” 

– what can be done 
• “multiply two floating-point registers” 

– scalar or vector mode 

• µ-architecture adds: 
– how is it done and what will it cost 

• “One single execution unit can handle this instruction” 
• “The Flp multiply itself takes 5 cycles” 

• The µ-arch is not yet published 
– and, will probably come in several flavours 
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Some “tidbits” about µ-arch  
• Initial info (Cortex A57 specs from ARM): 

– 1 – 4x SMP on chip 
– Increased peak instruction throughput via 

duplication of execution resources. 
– 3-wide decode bandwidth 
– High-capacity register renaming provides 3-wide, 

large-instruction rename bandwidth. 
– Support for 8 issue slots and up to 128 

instructions in flight 
– 64KB page support 
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Applied Micro: 
X-Gene processor at 3 GHz 
with 4-wide decode (?) 



Some AArch32 Cortex-A9 DP latencies 

• From FPU Technical Reference Manual: 
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Instructions Latencies Throughput 

FADD, FSUB 4 1 

FMUL 6 2 

FMAC, FNMAC 9 2 

FCPY, FABS, FNEG 1 1 

FDIV 25 20 

FSQRT 32 28 

FCMP 1 1 
Not “fused” 
but “chained” 



AArch64 (A64) – a high-level view 
• Not backwards compatible 

– But, an enhanced AArch32 (A32) execution stage will co-exist 
(see later) 

• Almost all features are now integrated: 
– With AArch32: FPU, SIMD, Neon,  Cryptography were add-ons 

• Load/Store architecture 
– Multiple addressing modes 

• Registers: 
– 32   64-bit integer 
– 32 128-bit packed vector 

• Fixed instruction length 
– 32 bits: 

• opcode (10-bits?) + dest + src3 + src2 + src1 
• <name>{subtype>} <containers> 

• Instructions are typically “ternary” 
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This would 
imply 210 
instructions 
(100 pages with 
10 each) !!! 

Still optional 



Changes from AArch32 

• Floating-point entirely integrated 
– Based on IEEE-754 (2008) 

• Many new instructions 
– Also, several modified instructions 
– Instructions with more than one destination split in two: 

• XXX1 and XXX2 (Vector permutations, for instance) 

• Different register sets 
– Bigger integer set (now: 32) 
– Larger vector registers (size: 128b) 

• No predication of instructions 
– But, some conditional moves, etc. 
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Exception Layers 

• Four levels, in total: 
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App1 App2 App3 

Guest Operating System 

Virtual Machine Monitor 

TrustZone Monitor 

EL0 

EL1 

EL2 

EL3 

AArch64 will support 
AArch32 at a lower 
privilege level. 



The AArch64 ABI 
• Register conventions: 
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Register Special Role 

SP Stack Pointer 

R30 LR Link Register 

R29 FP Frame Pointer 

R28-R19 Callee-saved 

R18 Platform Register 

R17 IP1 Intra-procedural 

R16 IP0 Intra-procedural 

R15-R9 Temporary 

R8 Indirect result 
location 

R7-R0 Parameters/Results 

Register Special Role 

V31-V16 Temporary 

V15-V8 Callee-saved 

V7-V0 Parameters/Results 



Operand containers 

• Usually the register type: 
– Integer: 

 
 

 
– Packed: 
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Width 

W 32-bit integer 

X 64-bit integer 

Width 

B     8-bit: scalar 

H   16-bit: scalar or float (HP) 

S   32-bit: scalar or float (SP) 

D   64-bit: scalar or  float (DP) 

Q 128-bit: scalar 

Note the different 
notation (compared 
to x86) of “packed” 
and “scalar” ! 



Packed operands 
• Similar to SSE on x86: 
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E3 E2 E1 E0 

E1 E0 

E7 E6 E5 E4 E3 E2 E1 E0 

Bit 0 Bit 127 

16 * Byte 

8 * Half 

4 * Single 

2 * Double 

E0 1 * Quad 

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 



Subtypes 

• Instruction suffix: 
– Load-Store 
– Sign/Zero Extend 

 
 

 
– Register Width Changes: 
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Subtype 

B Byte 

SB Signed Byte 

H Halfword 

SH Signed Halfword 

W Word 

SW Signed Word 

Subtype 

H High (dst gets top half) 

N Narrow (dst < src) 

L Long (dst > src) 

W Wide (dst == src1, src1 > src2) 

Not discussed any further  



Working with integer registers 
• Straight forward 

– Example:         
• “ADD X16, X14, X15” 
• “ADD X16, X14, W15, SXT”  // sign-extend 
• “ADD X16, X15, #42”      // immediate 

– 32-bit mode:  
• “ADD W16, W14, W15” 
• Upper 32 bits: 

– Ignored from a source 
– Zeroed in a destination 
– Right shifts/rotates inject at bit 31 

– Register 31: 
• Stack Pointer (SP) 

– When used as a load/store base register: WSP|SP 
• Zero otherwise: 

– WZR|XZR 
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0 31 32 63 



FP/SIMD registers 

• Holds both scalar floating-point and vector 
operands: 
– SIMD scalar registers:   Bn, Hn, Sn, Dn, Qn 

 
– SIMD vector registers:  Vn.16B, Vn.8H, Vn.4S, Vn.2D 
– Or, half the size:      Vn.8B, Vn.4H, Vn.2S, Vn.1D 

 
– SIMD vector element:  Vn.B[i], Vn.H[i], Vn.S[i], Vn.D[i] 

 
– SIMD register list:    {V4.4S – V7.4S} 
– Or ,element list:   {V4.4S – V7.4S}[3] 
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Addressing modes 
• Multiple variants: 

– Base register (no offset) 
– Base plus offset 

• Immediate offset (scaled 12-bit unsigned, unscaled 9-bit-signed) 
• Base plus 32-/64-bit register (optionally scaled) 

– Pre-indexed 
• Unscaled 9-bit signed 

– Post-indexed 
• Unscaled 9-bit signed 

– Literal (PC-relative), for loads of 32-bits or larger 
 

• Not all modes available for a given LD/ST type: 
– Exclusive/ Acquire/Release 
– Register 
– Register pair 
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Control Flow Instructions 
• Conditional Branch: 

– B.cond  label 
– CB(N)Z  Wn|Xn, label 
– TB(N)Z Wn|Xn, #uimm6, label 

 

• Unconditional Branch (and Link): 
– B label 
– BL label 
– BR Xm 
– BLR Xm 
– RET {Xm} X30 (LR) as default 
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LD/ST single register 

• Multiple subtypes: 
 
 
 

• Fewer stores: 
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No change of 
direction ! 

Mnemonic Operands 

LDR Wt|Xt, addr 

LDR(B|H) Wt, addr 

LDRS(B|H) Wt|Xt, addr 

LDRSW Xt, addr 

Mnemonic Operands 

STR Wt|Xt, addr 

STR(B|H) Wt, addr 



LD/ST register pair 
(also: non-temporal) 

• Limited subtypes: 
 
 
 

• Addr: 
– Base plus s-7-s offset 
– Pre-indexed; not for N? 
– Post-indexed; not for N? 
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Mnemonic Operands 

LD(N)P Wt1|Xt1, Wt2|Xt2, addr 

n.a. 

n.a. 

LDPSW Xt1, Xt2, addr 

Mnemonic Operands 

ST(N)P Wt1|Xt1, Wt2|Xt2, addr 

n.a. 



Integer/Logical (immediate) 

• ADD(S) Xd, Xn, #aimm  // S sets the condition flag 
– Variants with: 

• SUB, replacing ADD 
• W registers 

• Aliases for providing: CMP and MOV 
 

• AND(S) Xd, Xn, #bimm64 
– Variant with W register and bimm32 

• bimm is a repetitive pattern 

• Also EOR and ORR 
• TST (bitwise test) is aliased to ANDS 
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FLP/SIMD Scalar Memory Access 

• LD/ST address 
• Unscaled versions 
• LD/ST Pair 
• Non-temporal 

versions 
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Mnemonic Operands 

LDR Bt|Ht|St|Dt|Qt, addr 

LDUR Bt|Ht|St|Dt|Qt, [base,#simm9] 

LDP St1|Dt1|Qt1, St2|Dt2|Qt2, addr 

LDNP St1|Dt1|Qt1, St2|Dt2|Qt2, 
[base, #imm] 

Mnemonic Operands 

STR Bt|Ht|St|Dt|Qt, addr 

STUR Bt|Ht|St|Dt|Qt, [base,#simm9] 

STP St1|Dt1|Qt1, St2|Dt2|Qt2, addr 

STNP St1|Dt1|Qt1, St2|Dt2|Qt2, 
[base, #imm] 



Flp Move Register; Move Immediate; 
Convert; Round 

• FMOV (Register – register): 
– 32-bits: Sd  Sn, Wd  Sn, Sd  Wn 
– 64 bits: Dd  Dn, Xd  Dn, Dd Xn 
– High-order 64-bits: Xd  Vn.D[1], Vn.D[1]  Xn 

 
• Immediate: 

– FMOV Sd, #fpimm8, but FMOV Sd, WZR 
– FMOV Dd, #fpimm8, but FMOV Dd, XZR 

 
• Convert precision: 

– All combinations between Hn, Sn, and Dn 
 

• Round to Integral: 
– FRINTr  Sd, Sn or FRINTr Dd, Dn 

 20/11/2012 ARM64 overview 20 

Rounding modes (r): 
- N (nearest, ties to even) 
- A (nearest, ties away 
from zero) 
- P (towards +inf.) 
- M (towards –inf.) 
- Z (towards zero) 
- I (Use FPCR rounding) 
- X (use FPCR with 
exactness check) 

 



Flp Convert to/from Int 

• Convert Single/Double to Signed/Unsigned: 
– FCVTr(S|U)  Wd|Xd, Sn|Dn 
– Rounding modes (r): 

• NAPMZ 

 
• Convert Signed/Unsigned to Single/Double: 

– (S|U)CVTF   Sd|Dd, Wn|Xn 
• Using FPCR rounding mode 
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Also: Convert to/from Fixed-point 



FLP Arithmetic 
• One source: 

– FABS, FNEG, FSQRT   (Single or Double) 
 

• Two sources: 
– FADD, FDIV, FMUL, FNMUL, FSUB 

 

• Min/Max: 
– FMAX(NM), FMIN(NM) 

 

• Multiply-Add (three sources): 
– FMADD, FMSUB, FNMADD, FNMSUB 
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FLP Arithmetic (cont’d) 
 

• Flag-setting compare: 
– FCMP, FCMPE Sn, Sm|#0.0  (same for D) 
– FCMPP, FCMPPE Sn, Sm, #uimm4, cond 

 
• Select: 

– FCSEL Sd, Sn, Sm, cond  (same for D) 
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Vector Data Movement 

• Duplicate (DUP) vector element 
• Insert (INS) vector element 
• Unsigned move (UMOV) 
• Signed move (SMOV) 

 
• Other moves (MOV) are mapped back 

to one of the above. 
 

20/11/2012 ARM64 overview 24 



Vector Arithmetic 
• Absolute difference 
• Add, Sub (int or flp) 
• Saturating Add (signed, unsigned) 
• And, Exclusive Or, Or,  Or Not, (8B or 16B) 
• Bitwise operations 
• Compare (sint, uint or flp) 
• Absolute Compare (flp) 
• Divide (flp) 
• Halving Add, Subtract (int) 
• Max and Min (sint, uint, flp) 
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Vector Arithmetic 
• Multiply & Add/Subtract (int or flp) 
• Multiply (int or flp)  
• Polynomial Multiply (bytes) 
• Reciprocal divide/sqrt step (flp) 
• Saturating Double Multiply High Half (int) 
• (Saturating) (Rounding) Shift Left (int) 
• Saturating Subtract (int) 
• Rounding Halving Add (int) 
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Let’s start to wind down 
(otherwise we’ll be here until tomorrow) 

• Hundreds of instructions still to go: 
– Scalar Arithmetic 
– Vector/Scalar Widening/Narrowing Arithmetic 
– Vector/Scalar Unary Arithmetic 
– Vector/Scalar-by-Element Arithmetic 
– Vector Permute 
– Vector Immediate 
– Vector/Scalar shifts 
– Vector/Scalar FLP/INT convert 
– Vector/Scalar Reduce 
– Vector Pairwise Arithmetic 
– Vector Table Lookup 
– Vector LD/ST Single/Multiple Structures 
– Optional Crypto Extensions 
– System Instructions 
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Vector Unary Arithmetic 
(only one source) 

• Absolute Value (int, sint, flp) 
• Negate (int, sint saturating, flp) 
• Count Bits (sign, zero, non-zero) 
• Bitwise Invert 
• Add Long Pair (signed, unsigned) 
• FLP Convert (H  S or S  D; and back) 
• Integer Narrow (whole family) 
• Recipical estimate (Int, Flp) 
• Reciprocal SQRT estimate (Int, Flp) 
• SQRT 
• Reverse: RBIT, REV16, REV32, REV64 
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Vector Permute 

• From two input vector registers: 
– Bitwise Extract (via immediate index) 

• EXT 

– Vector Element Transpose 
• TRN1/TRN2 

– Vector Element Unzip 
• UZP1/UZP 2 

– Vector Element Zip 
• ZIP1/ZIP2 
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Two 
destination 
registers need 
two 
instructions 
(unlike 
AArch32) 



Conclusion 
• (Very) large instruction set 
• Multiple sub-sets: 

– Integer or floating-point 
– Individual scalar or vector 
– Compute or manipulate 
– “Special function” 

• Need to wait for µ-arch to understand 
“how”, rather than “what” 
– Latencies 
– Superscalar design 

• Expect more information to be made 
available over time 
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Seems unlikely 
that compilers 
can “master” 
the whole set! 
But, expect 
both gcc and 
armcc to 
provide 
intrinsics (as 
they do for 
AArch32) 


	ARM64 ISA (Instruction Set Architecture)
	64-bit ISA
	Some “tidbits” about m-arch 
	Some AArch32 Cortex-A9 DP latencies
	AArch64 (A64) – a high-level view
	Changes from AArch32
	Exception Layers
	The AArch64 ABI
	Operand containers
	Packed operands
	Subtypes
	Working with integer registers
	FP/SIMD registers
	Addressing modes
	Control Flow Instructions
	LD/ST single register
	LD/ST register pair�(also: non-temporal)
	Integer/Logical (immediate)
	FLP/SIMD Scalar Memory Access
	Flp Move Register; Move Immediate; Convert; Round
	Flp Convert to/from Int
	FLP Arithmetic
	FLP Arithmetic (cont’d)
	Vector Data Movement
	Vector Arithmetic
	Vector Arithmetic
	Let’s start to wind down�(otherwise we’ll be here until tomorrow)
	Vector Unary Arithmetic�(only one source)
	Vector Permute
	Conclusion

