Nehalem-EX scalability testing

Sverre Jarp, Andrzej Nowak

February 16th 2010

non-NDA version CERN openlab Minor Review 02.2010

Test description

- > Setup: Nehalem-EX BETA NDA APPLIES
 - 2.26 GHz, 64 GB memory, Bios #20
 - 8 cores per socket x 4 sockets = 32 cores
 - 32 cores x 2 threads per core = 64 threads
 - Scientific Linux CERN 5.4
- Multi-threaded Geant4 prototype
 - Author: Xin Dong (NEU), Gene Cooperman (NEU)
 - A multi-threaded prototype of the popular Geant4 particle simulation framework. Based on the FullCMS example, it resembles very closely a real LHC workload
 - 100 pi- events per thread @ 300 GeV
- > Multi-threaded ROOT minimization
 - Developer in charge: Alfio Lazzaro (INFN/CERN)
 - A multi-threaded MPI-based implementation of ROOT minimization. A real world example of a High Energy Physics analysis reducing latency
 - mpirun -np XX ./ShapeAll -nll x 2 (Elapsed time)

Multi-threaded Geant4 prototype

- > Results differ between BIOS versions
- > TP = throughput
- > Efficiency (% of max theoretical TP)
 - > 95% @ 8 cores
 - < 95% @ 16 cores</p>
 - ~90% @ 32 cores
 - nearly 29x speedup in a <u>multi-threaded</u> HEP program
- > SMT benefit @ 64 threads:
 - 27% more real TP than all cores loaded
 - 15% more real TP then theoretical all cores loaded
- Excellent and unprecedented scalability
 - However above average SMT results indicate that there is potential for core scaling to be better

Multi-threaded ROOT minimization

- > Up to 8 cores: scaling on par with Nehalem-EP
- > Excellent scaling up to 32 cores
 - > 90% efficiency @ 8 cores
 - ~90% efficiency @ 16 cores
 - > 85% efficiency @ 32 cores
 - Over 27x speedup
 - Analysis time drops from 38 minutes to less than 1.5 minutes

> SMT benefit @ 64 threads:

- ~40% efficiency: 2x performance drop
- Results suggest a different bottleneck and saturation with 64 threads – we may be at the limit of scalability

Q & A CERN openlab