

Data & Storage Services

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Huawei Cloud Storage

Seppo S. Heikkila Maitane Zotes Resines **CERN IT**

Openlab Major Review Meeting 26th of September 2013 CERN, Geneva

CERN

Outline

- Huawei and benchmark setup
- Past phase results
- New S3 library Davix
- Front-end activity monitoring
- Testing infrastructure updates
- File system with Huawei back-end
- Long-term stability tests
- Conclusions and future plans

2

Timeline

www.cern.ch/it 3

Major Review	Major Majo Review Revi				Major Reviev	V	Major Reviev	
Minor Review	Board Spons	of ors	Mino Revi	or iew	E	Board c Sponso	of rs	
01/2012			(01/20	013		09/201	3
Project F starts t	irst ^l ests ^g	Jpgr of the syste	ade e em	Sti tes	ress sting	File-s integ	system Iration	
Commissi of the sys	ioning stem	Fai rec tes	ilure cover sting	У	Full-s stress testin	cale 5 g	CERM	X

1.5 years of Huawei...

Current Huawei setup

Storage __nodes

CERN IT Departmen CH-1211 Genève 2 Switzerlan **www.cern.ch/i** -ront-end nodes Storage nodes

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

5

eight storage nodes

Benchmark setup

Distributed C++ benchmark

Integrated with ROOT

- Client nodes connected with ssh
- S3 Python library to read and write files
- Histograms about specific metrics
 - Operation time, read/write speed, CPU/memory utilisation

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Previous phase results

- 1400 files/second metadata (4kB files)
- 2000 MB/second throughput (100MB files)
- Download performance
 - 18000 files/second metadata (4kB files)
 - 2300 MB/second throughput (100MB files)
- Recovery after powering off a chassis
 - Transparent disk failure recovery proven

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

8

Davix - new S3 library

- Problem: tested C++ S3 libraries
 - Not able to detect all upload failures

CERN Department

Problem: tested C++ S3 libraries
– Not able to detect all upload failures

- Solution: Davix HTTP library
 - Adapted to use together with CERN grid storage developers (IT-SDC group)
 - Targeted for high performance file access
 - Provides S3 support
 - Performed as expected (after few minor updates)

Front-end log analysis

- Problem: detailed cloud storage monitoring
 - Monitor S3 requests (GET, PUT, etc.)
 - Monitor internal state (overloading, etc.)

Front-end log analysis

- Problem: detailed cloud storage monitoring
 - Monitor S3 requests (GET, PUT, etc.)
 - Monitor internal state (overloading, etc.)
- Solution: front-end log analysis tool
 - Collect and archive logs from the front-ends
 - Summarise events from requested time range
 - Plot number of events vs time

Department

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 11

Front-end log analysis

Summary of front-end activity

Req range: '03/Aug/2013 01:47:39)' and '(93/Aug/20	913 01:47	7:40' (1	seconds).						
Front end node												
Number of	#1	#2	#3	#4	#5	#6	#7	=SUM				
⊤otal in range:	70	54	79	89	78	95	79	=544				
REST.DELETE.OBJECT	70	54	79	89	78	95	79	=544				
Unclassified:	Θ	Θ	Θ	Θ	Θ	Θ	Θ	=0				
Old entries:	3029652	1545741	13120	17494	20314	4881	24763	=24763				

Plotting of selected parameters

The plotting feature was part of the contribution of Openlab summer student Carolina Lindqvist (2013).

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Updates to testing infrastructure

- Practical problems
 - 1) Verify test results with another framework
 - 2) Remove millions of files between test runs
 - 3) Change access rights for millions of files
 - 4) Create hundreds or thousands of buckets

CERN IT Department CH-1211 Genève 23 Switzerland **WWW.Cern.ch/it** 13

Updates to testing infrastructure

- Practical problems
 - 1) Verify test results with another framework
 - 2) Remove millions of files between test runs
 - 3) Change access rights for millions of files
 - 4) Create hundreds or thousands of buckets

Solutions

- 1) Second test framework with C++11 threads
- 2) Multithreaded file deleting (200 files/s)
- 3) Scripts to modify permissions of multiple files
- 4) Scripts to create multiple buckets to multiple accounts

Department

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

CVMFS introduction

- What is CVMFS (CernVM File System)
 - Read only cached file system to deliver software
 - Widely used in WLCG (Worldwide LHC Computing Grid)
 - Mounted by clients and files are downloaded on demand

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

CVMFS introduction

- What is CVMFS (CernVM File System)
 - Read only cached file system to deliver software
 - Widely used in WLCG (Worldwide LHC Computing Grid)
 - Mounted by clients and files are downloaded on demand

- CVMFS challenges
 - Publishing new software should be fast (upload tens of thousands of files)
 - Files should be accessed with HTTP protocol

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

File system with Huawei back-end

CERN**IT** Department

Implementation

- Files are uploaded to multiple accounts and buckets in Huawei cloud storage
- Files are downloaded with a flat namespace, i.e. no bucket names in the addresses (mapping to correct buckets is done by Squid proxy servers)

Result

- Full publish procedure tested to work using 30,000 small files
- Upload speed 600 files/second (with 300 threads)

CVMFS partial uploads

Long-term upload stability

CERN**T** Department

Upload throughput performance

Uploading metadata (4kB) performance decreased from 1300 files/s to 800 files/s .

Emerged issues are being investigated.

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 19

Long-term upload stability

CERN**T** Department

Upload throughput performance

Uploading metadata (4kB) performance decreased from 1300 files/s to 800 files/s .

Emerged issues are being investigated.

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 20

Long term download stability

Conclusions

ERN**IT** Department

- Testing infrastructure updates
 - Cloud storage activity analysis
 - Davix S3 library adopted in use
 - Another C++ framework used to verify results
 - Concurrent file deleting, permission modification scripts
- File system (CVMFS) with Huawei back-end
 - Full publish procedure tested (download and upload)
 - Uploading of only new files feature tested (speedup)
 - Publish speed of 600 files/second

Future plans

Short term

- Benchmark CVMFS with real release data
- Investigate upload performance issues

Long term

- Second petabyte system with enterprise disks expected to arrive soon
- Upgrade old Huawei cloud storage software version
- Replication tests between two cloud storages
- Erasure code impact on performance and space overhead
- Prove total cost of ownership (TCO) gains of the system as part of a production service

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Data & Storage Services

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Huawei Cloud Storage

Seppo S. Heikkila Maitane Zotes Resines **CERN IT**

Openlab Major Review Meeting 26th of September 2013 CERN, Geneva

CERN