
Tools and Techniques for Managing Virtual
Machine Images

H̊avard K. F. Bjerke1, Dimitar Shiyachki1, Andreas Unterkircher1, and Irfan
Habib2

1 CERN, 1211 Geneva 23, Switzerland
2 Centre for Complex Cooperative Systems (CCCS), University of the West of

England (UWE) Frenchay, Bristol BS16 1QY United Kingdom

Abstract. Virtual machines can have many different deployment sce-
narios and therefore may require generation of multiple VM images. OS
Farm is a service that aims to provide VM images that are tailored and
generated on the fly. In order to optimize generation of images, a layered
copy-on-write image structure is used, and an image cache ensures that
identical images are not regenerated.

Images can be several hundreds of megabytes large and thus can congest
the network and delay their transfer. Content-Based Transfer is a tech-
nique which transfers only the difference between the source image and
existing target client image data. We present an implementation which
achieves an observed bandwidth close to the theoretical maximum and
a significant reduction in network congestion.

1 Introduction

Virtualization can add agility to datacenters by providing flexible testing en-
vironments, failover with live-migration and satisfying different OS flavour re-
quirements with consolidation. In all these scenarios it is important to have an
infrastructure that efficiently handles the needed VM images. Sect. 2 presents a
real scenario for the application of image management techniques, as a motiva-
tion for this work.

Libfsimage is a library and a standalone application, which generates VM
images with a rich selection of Linux distributions. It is presented in Sect. 3.

OS Farm is a software application that aims to provide a user interface for
generating and managing VM images. For generating images, it uses Libfsimage.
It employs some techniques in order to optimize the generation and propagation
of images, as described in Sect. 4.

The large sizes of VM images is a hurdle for managing images, particularly in
image propagation. An implementation of the Content-Based Transfer technique,
which optimizes the propagation of VM images over the network, is presented
in Sect. 5.

This paper presents our work as a solution for image management with a
good degree of configuration flexibility and performance.



2 Application of image management techniques in the
EGEE/WLCG grid

The Enabling Grids for E-scienceE (EGEE)[1] project, funded by the European
Union, provides a seamless Grid infrastructure for e-Science. EGEE produces
the gLite[2] middleware for grid computing. Tightly coupled to EGEE is the
Worldwide LHC Computing Grid (WLCG)[3]. Its mission is to build and main-
tain a data storage and analysis infrastructure for the entire high energy physics
community that will use the Large Hadron Collider (LHC), which is currently
being built at the European Organization for Nuclear Research (CERN)[4].

2.1 Grid middleware certification

A section in CERN’s IT Department is responsible for the integration, testing
and release of the gLite middleware. This activity is carried out in collaboration
with several partners all over Europe within EGEE. Testing gLite faces the
problem that its components are under active development. To enable progress
in certification the turnaround time from feature submission to certified state
must be as small as possible.

Bug fixes and new features enter gLite via the concept of a patch. A grid
testbed is being operated so that new patches can be applied to the relevant
grid nodes. However, certification of several patches at the same time can cause
conflicts on the testbed. A non functional patch may spoil the whole testbed.
To cope with such problems an infrastructure of virtual machines based on Xen
was established so that certifiers can bring up grid nodes with a certain patch
independently.

GLite is available on different Linux flavors and architectures: Scientific Linux
CERN[5] 3 and 4 on i686 and x86 64 platforms. More Linux flavors (e.g. De-
bian) are under development. As all these combinations are found in production,
interactions of nodetypes with different operating systems and hardware must
be tested. To speed up the certification process we need to be able to quickly
produce pre-defined images of different gLite nodetypes to use with Xen. We
produce such images on a weekly basis in order to reflect the latest updates.
The tools libfsimage and OS Farm were developed at CERN to achieve the
aforementioned goals.

2.2 Usage of virtual machines on the grid

The EGEE/WLCG infrastructure lets users send jobs for execution to more than
250 sites. Using the information system a user can determine the operating sys-
tem provided by a site. However as more and more users from different scientific
communities join the grid it gets difficult for sites to fullfill all their requirements
in terms of operating systems and installed software. One way to deal with this
problem is to provide each job on the grid a virtual machine with a dedicated OS
setup. With thousands of users on the grid transferring images to sites becomes
an issue. The content based image transfer described in Sect. 5 shows how to
overcome this problem.



3 Libfsimage

Libfsimage is a library of Linux file system generation routines implemented
in Python. Its primary goals are the simultaneous generation of 32-bit and 64-
bit file systems for different Linux distributions in an isolated environment and
reuse of the common setup and configuration code between the distributions.
At present, the supported Linux flavors are Debian[6], Ubuntu[7], CentOS[8],
Scientific Linux CERN and Fedora[9]. The package installation and dependency
resolution for the first two are done with Debian package management tools. For
the RPM[10] based distributions this is achieved with Yum[11].

Libfsimage uses pre-built environments that reflect the hardware architec-
ture as well as the type and version of the package manager used in the relevant
version of the distribution being generated. When possible these pre-built envi-
ronments are shared between the different distributions. Prior to the generation
the appropriate environment is deployed and the library uses the chroot system
call to switch to a new root directory. The initial package installations in the
generated file system are done from there. Once the latter contains the basic li-
braries, a package manager and configuration tools, further package installations
and image configuration are performed from inside the new file system, again by
leveraging the chroot capability.

Libfsimage can be used both from the command line and as a python library.
In the latter case it manages a Workspace object that keeps track of the deployed
environments and their status in order to speed up the file system generation by
reusing them.

A consequence of the extensive use of the chroot system call by Libfsimage,
and Debian and RPM based package managers is the root privileges indispens-
ability. This is a major drawback in the scenario when Libfsimage is used for
simultaneous creation of images for different third parties that need to install
custom packages inside the generated file system. A harmful pre- or post-install
scriptlet that is run during the installation of a package could escape the chroot
jail and run arbitrary code with root privileges, thus compromising the host
and interfering with the generation of other parties’ images. To address this
issue a SELinux policy module is being developed for narrowing the standard
root capabilities to the required minimum and confining the concurrently run-
ning generation processes in dedicated SELinux domains, so that misuse of the
CAP CHROOT privilege can not lead to a system compromise.

4 OS Farm

OS Farm creates VM images and Virtual Appliances (VA) [12] that can sat-
isfy different needs. It provides a web interface through which users can choose
between a range of Linux distributions and yum repositories, with their corre-
sponding yum packages. Images are generated using libfsimage, which provides
a rich selection of Linux distributions, which in OS Farm are called classes.

The main interface to an OS Farm service is a web interface, which is shown
in Fig. 1. It provides several ways for the user to request a VM image. The most



basic method is a Simple request, which allows the user to select image class and
architecture.

Fig. 1. OS Farm user interface

Advanced request extends Simple request and gives the possibility of adding
yum packages to the image. A dropdown menu allows the user to choose between
a list of predefined yum repositories. Using Asynchronous JavaScript and XML
[13], a further list is returned which allows the user to select the corresponding
yum packages.

OS Farm also supports image requests by XML descriptions. An image de-
scription can be uploaded as an XML file. An example image description is
shown in Fig. 2.



Fig. 2. OS Farm VM image specification

4.1 Layered Generation and Caching

The generation of an image is divided into three layers or stages, core, base and
image. Core is a small functional image with a minimal set of software required
to run the image on a Virtual Machine Monitor or in order to satisfy higher



level software dependencies. Base is a layer on top of core, which provides some
additional software needed in order to satisfy requirements for VAs. An image

is also a layer on top of core and provides user defined software in addition to
the core software. A subclass of image is virtual appliance, which is an image
with an extra set of rules aimed to allow the image to satisfy requirements of
the deployment scenario. Fig. 3 shows that core can be shared between images,
while base can be shared between VAs.

Core

Base Image

Virtual
appliance

Fig. 3. Layers of a VM image

In order to accelerate the generation of images, core and base are always
cached the first time they are generated. The layers are cached in Logical Vol-
ume Manager (LVM) [14] volumes. This allows higher layers to continue instan-
taneously, using copy-on-write, with the snapshot feature of LVM. Images are
also cached and tagged such that if an image request matches that of a cached
image, the image is returned immediately.

The tag of a cached image is the checksum of its configuration parameters,
such as architecture and yum packages. Whenever an image is requested, a check-
sum is generated from the requested configuration and looked up in the cache.
If an image with the exact same configuration parameters already exists in the
cache, the image is returned immediately. A timeout value can be set on a cache
entry in order to limit the validity of it. If an entry has timed out, a request for
that entry results in a regeneration of it.

The cache also serves as a browsable repository for images. Instead of re-
questing images by parameters, images can be browsed and downloaded directly
from the cache.

Fig. 4 shows the recursive image generation process. A request for an image is
effectively a request for a layer, which in turn requires the presence of its inferior
layer core, which, if it does not exist, triggers its creation.

The speedup gained from using these techniques varies between image con-
figurations. We have measured the execution times of three simple example sce-
narios:

– the cache is empty, i.e. the image is generated from scratch: 254 seconds
– core is in the cache: 72 seconds
– image is in the cache: instantaneous

The results show that a significant speedup can be gained when an image or
one or more of its layers are cached.



Fig. 4. Flowchart of the recursive image request and generation process

5 Content-Based Transfer

Content Based Transfer (CBT) is a technique to efficiently transfer VM image
data from a source host to a target host. It takes advantage of knowing the struc-
ture of the image data to extract common data which need not be transmitted.

Most filesystems are aligned on a fixed boundary. For example, in the Ext2
filesystem, a file is aligned in blocks of size 1024∗2n, where 0 ≤ n ≤ 232 [15]. This
means that two identical files on two different ext2 volumes, will be contained in
a set of identical blocks on both volumes, even if they are fragmented. Moreover,
if block sizes are different on the two volumes, as long as the largest block size of
the two volumes is a multiple of the smallest block size, all files in both volumes
will be aligned on the smallest block boundary. In our experience, block sizes of
1024 and 4096 are most frequent.

[16] examines the commonality between filesystem volumes. In our experi-
ments we have analysed two different scenarios:

– two computer centre batch systems,
– two major versions of Scientific Linux CERN (SLC) VM images

Our experiments have shown that commonality ranges from moderate to signif-
icant. The commonality between some example volumes is shown in Tab. 1.

Before transmitting a volume, A, across the network, a comparison can be
done between an existing volume at the destination, B, and A. If any blocks in
A already exist in B, then those blocks need not be transmitted. Moreover, any
blocks in A which exist in any of the volumes at the destination, need not be
transmitted.

Content Adressable Storage [17] exploits commonality in order to reduce
storage load. In [18] this is exploited in order to reduce the load on the network



Table 1. Commonality between example volumes.

Scenario Commonality

Batch system to batch system 84 %
SLC4 to SLC3 48 %
SLC3 to SLC4 22 %

and storage. We present an implementation which exploits commonality in order
to reduce network load and speed up network transfer to close to the theoretical
maximum.

5.1 Implementation

Our implementation of Content-Based Transfer uses Java, as a good compromise
between efficiency and convenience. Most notably, it exploits Java’s hash digest
algorithms and thread-safe hash tables.

Identical blocks are identified with checksums, which are calculated using
the available hash digest algorithms in Java. In spite of discovered collisions in
the MD5 algorithm3 [19], for the results in this paper, we have used it because
it is the fastest available algorithm in the Java library. The choice of hashing
algorithm, however, is open to the user.

The implementation is split into several threads that pass checksums and
blocks among each other in a pipelined fashion. For example, one thread scans
the source image and generates a checksum for the current block. Immediately,
before continuing to the next block, the checksum is passed to the next thread.
Concurrently, another thread, at the destination node, receives a checksum and
looks it up in its hash table. If the block is not already at the destination, then it
is requested from the source, in a similar pipelined fashion. The key to achieving
good efficiency in this implementation is to allow the blocks that are already at
the destination be written simultaneously and at the same pace as they are read
from the source (which should be the disk read speed), and the other blocks be
transmitted at the pace which the network allows.

5.2 Hypothetical Maximal Observed Bandwidth

The information needed to be transmitted from the source to the target consists
of a differential, sD, and an identical, sI , part. In the differential part, all data is
different between the source and the target, so all source data must be transmit-
ted, and thus the transfer speed for the differential part is bound by the network
transmission bandwidth, vn, given that the disk speed is higher than the network
bandwidth. In the identical part, data is identical between the source and the

3 MD5 is not recommended for security application, since a collision can actively be
created. This concern is not that relevant for our application because the user is not
expected to actively create blocks that will collide with his or her own blocks.



target, so data must only be identified and only identification information needs
to be transmitted, and thus the transfer speed for the identical part is bound by
the disk read speed, vd.

Given an I/O bound only program (CPU speed is infinite, CPU time is 0),
the hypothetical best transfer time is

t =
sI

vd

+
sD

vn

, (1)

iff

vd > vn . (2)

The total transfer time of an image, using this technique, is different from
a non-optimized technique. With the optimized transfer time, we calculate an
observed bandwidth. The hypothetical best observed bandwidth is, given (2),

v =
s

sI

vd

+ sD

vn

. (3)

In general,

v =
1

∆I

vd

+ ∆D

vn

, where ∆j =
sj

s
∈ [0, 1] . (4)

The intent of the hypothetical best observed bandwidth is to determine the
performance of a hypothetical optimal CBT implementation to use as a bench-
mark for our CBT implementation. “Observed bandwidth” serves as a measure
of performance that is independent of image sizes and indicates the speedup
given by the CBT technique compared to a non-optimized technique.

On our test system we measured, using the Unix command “dd,” a disk
read speed of 35.6 MB/s. The test systems were also equipped with a 100 Mb/s
network interface card, and the theoretical max bandwidth of a 100 Mb/s line
is 11.9 MB/s. Using these vd and vn bandwidths, we calculated the hypothetical

observed bandwidths which are given in Fig. 5.

5.3 Experimental Analysis

Running our implementation of CBT on our test systems, we measured the ob-
served bandwidths which are given in Fig. 5. The results show that our CBT
implementation achieves an observed bandwidth which closely follows the hy-
pothetical maximum bandwidth. Also, the real bandwidth, which indicates the
network load produced by the actual amount of data transmitted, is reduced,
meaning a reduced load on the network.

It is worth noting that the observed bandwidth at the two extremes of ∆D, at
0 and 1, are close to vd and vn, respectively. In our example, vd > vn. If vn > vd,
as would be, for us, the case with a gigabit network, the disk read speed is the
limitation, and CBT does not give any speedup. CBT in this case still has the
advantage of reducing the load on the network.



Fig. 5. CBT bandwidth.

6 Related work

RPath[20] is a service that offers VAs, and provides a service similar to OS Farm.
RPath’s “recipe” approach to constructing a VA is a powerful method and gives
great opportunity for reuse of packages between VAs. The approach encourages
a VA developer, who develops recipes, and a VA user, who downloads the VAs,
as two separate roles. The user can choose between a set of predefined VAs, but
does not actively change the VA. In OS Farm, the user would normally also be
the author of an image, since it is a trivial exercise.

If VM images are to be deployed on a large scale, they need to be adapted to
their deployment context. Libfsimage allows paremeterized configuration of the
images, but a future goal is to allow for contextualization[21].

Rsync[22] is an application that uses commonality in order to speed up the
transmission of data. It uses SSH for authentication, which adds some overhead.
The observed bandwidth given by Rsync, as calculated from the time reported
by Rsync itself, which is lower than the total execution time including authen-
tication, is not as high as CBT. For example, for ∆D = 0.1, Rsync gives a 30
MB/s observed bandwidth, and ∆D = 0.5 gives a 13 MB/s observed bandwidth.
Another advantage CBT has is that it takes a set of images as a source for
commonality, as opposed to Rsync, which uses only one target file.

7 Conclusion

We have presented tools and techniques for managing images, which help to
overcome some of the problems that present themselves when managing an in-
frastructure of VMs. Libfsimage provides the different flavors and architectures
that are needed in our use case and has a basis which allows extension for further
flavors of Linux. It also lends itself as a library for external application, as in the
example of OS Farm.



OS Farm uses Libfsimage and provides a graphical user interface for gener-
ation of VM images. It also provides a repository for VM images, which also
serves to cache and optimize image generation through sharing layers of images.

CBT exploits commonality between images to optimize the transfer of images
across the network. It achieves an observed bandwidth close to the theoretical
maximal observed bandwidth. It can also help to avoid network congestion when
transferring large images.

References

1. About EGEE: http://public.eu-egee.org/intro/
2. gLite: http://glite.web.cern.ch/glite/
3. Worldwide LHC Computing Grid: http://lcg.web.cern.ch/LCG/
4. European Organization for Nuclear Research: http://public.web.cern.ch/public/
5. Scientific Linux CERN: http://linux.web.cern.ch/linux/
6. Debian home page: http://www.debian.org/
7. Ubuntu home page: http://www.ubuntu.com/
8. CentOS home page: http://www.centos.org/
9. Fedora home page: http://fedoraproject.org/
10. RPM home page: http://www.rpm.org/
11. Yum home page: http://linux.duke.edu/projects/yum/
12. Saputzakis, C., et al., Virtual Appliances for Deploying and Maintaining Software,

in proceedings of LISA ’03 (2003)
13. Wikipedia article on AJAX http://en.wikipedia.org/wiki/AJAX
14. LVM2 Resource Page: http://sources.redhat.com/lvm2/
15. Daniel P. Bovet & Marco Cesati, Understanding the Linux Kernel, 574 - 607.

O’Reilly, (2003)
16. Niraj Tolia et al, Using Content Addressing to Transfer Virtual Machine State

(2002), http://www.intel-research.net/Publications/Pittsburgh/050520030704 127.pdf
17. Niraj Tolia et al., Opportunistic Use of Content Addressable Storage for Dis-

tributed File Systems, In proceedings of USENIX 2003 (2003)
18. Partho Nath et al, Design Tradeoffs in Applying Content Addressable Storage to

Enterprise-scale Systems Based on Virtual Machines, in proceedings of USENIX 2006
(2006)

19. Ondrej Mikle: Practical Attacks on Digital Signatures Using MD5 Message Digest,
Cryptology ePrint Archive: Report 2004/356 (2004)

20. rPath home page: http://www.rpath.com/
21. Bradshaw, R. et al, A Scalable Approach To Deploying And Managing Appliances,

TeraGrid 2007, Madison, WI. June 2007
22. Rsync home page: http://samba.anu.edu.au/rsync/

Acknowledgements

This work makes use of results produced by the Enabling Grids for E-sciencE project,
a project co-funded by the European Commission (under contract number INFSO-RI-
031688) through the Sixth Framework Programme. EGEE brings together 91 partners
in 32 countries to provide a seamless Grid infrastructure available to the European
research community 24 hours a day. Full information is available at http://www.eu-
egee.org.


