Experiments with multi-threaded velopixel track reconstruction

DS@HEP 2016, Simons Foundation, NY July 6th, 2016

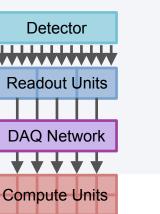
Omar Awile (omar.awile@cern.ch),

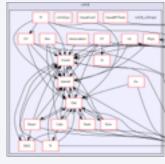
Background image: Shutterstock

Challenges for trigger and DAQ upgrade

L1 Trigger

- High efficiency despite overlapping collisions add tracking information
- Flexible, robust and easy to reproduce
- Algorithms must process ~10'000 events/s

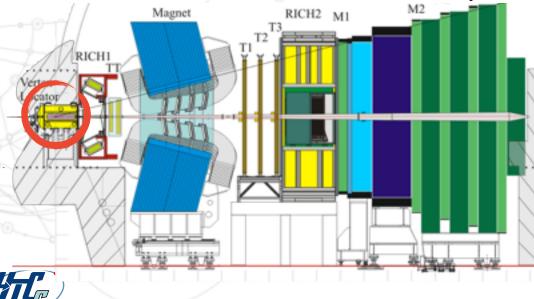

For the example of LHCb

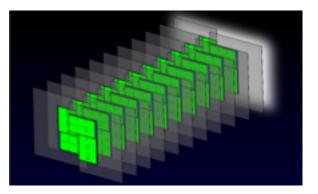

DAQ

- Collision data spread over 10'000 pieces
- Data gathered onto one of 1000s compute units
- Compute units run complex filter algorithms

High-Level Trigger

- large software infrastructure
- flat time profile
- complex and costly algorithms for reconstruction
- difficult to parallelize algorithms





Thread-parallel track reconstruction

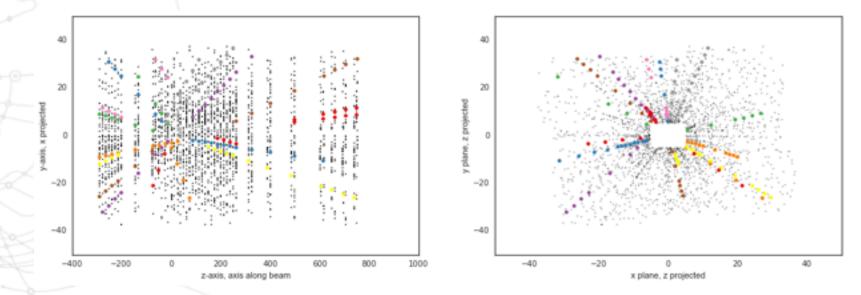
- Triggering is parallelized by running multiple (serial) instances of code
- We want to explore how track reconstruction for vertex locator data can be done on multi- and manycore CPUs using multithreading.

Thread-parallel track reconstruction

- Triggering is parallelized by running multiple (serial) instances of code
- We want to explore how track reconstruction for vertex locator data can be done on multi- and manycore CPUs using multithreading.

 Host-mode manycore processors (Knights Landing) with 100s of HW threads are around the corner, how can we scale that far?

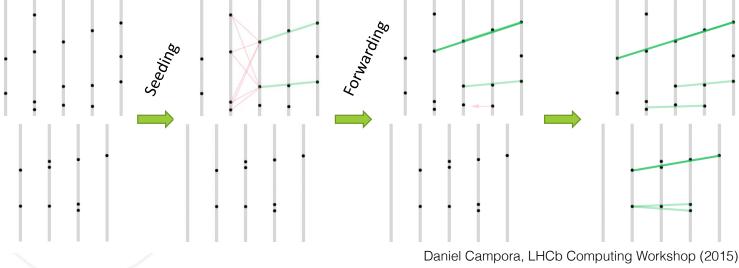
OpenMP

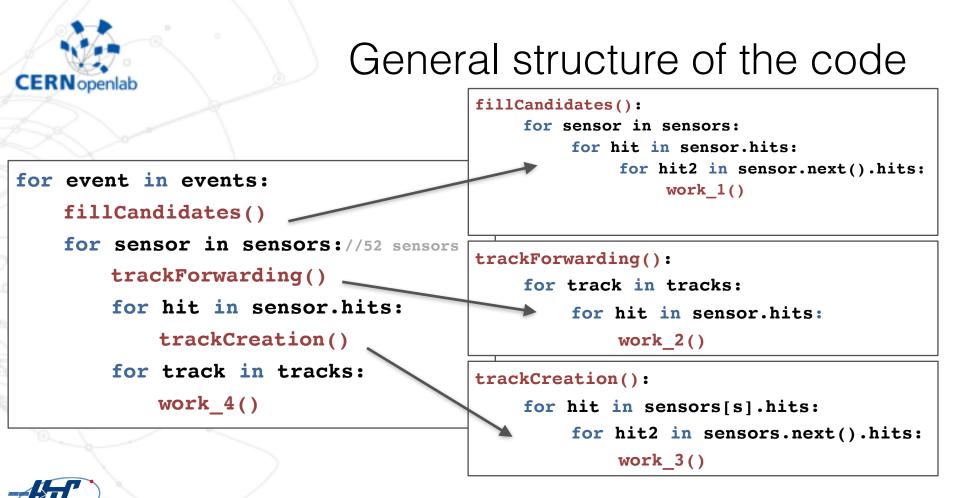


TBB

How does the data look like?

• For this example: 2560 hits, 325 tracks)





VeloPixel track reconstruction

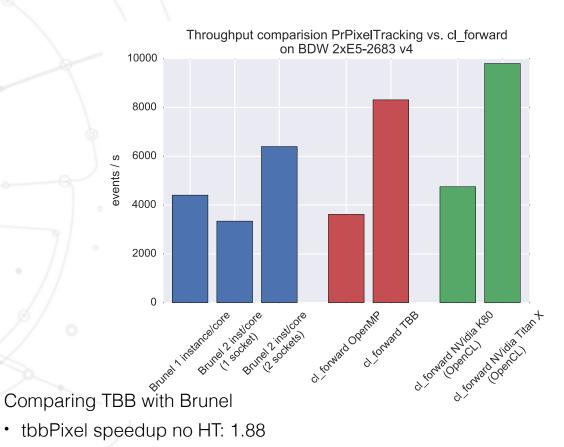
- Iterative algorithm that finds straight lines in collision event data in VeloPixel subdetector.
 - Triplets of hits with best criterion are searched (seeding)
 - Triplets are extended to tracks if a fitting hit can be found

Using OpenMP and TBB for multilevel parallelism

- We would like to be able to compare our parallel code with a typical production run.
 - --> we parallelize over events and within each event
- · OpenMP uses nested parallelism, parallel for
- TBB For now mostly based on parallel_for
 - Also tested pipelining
- Used lock-free parallel implementations
 - TBB thread-safe data-structures did not perform well!

Results and Timings

Recovering track reconstruction efficiency


Production code aka	аB	runel (v	50r0)	PrPixel												
2248492 tracks incl	Lud	ing 50	5641 g	hosts (2.5%)	. Even	t avera	age 1.	.9%							
velo	:	1937720	from	2105493	(92.	0%)	44013	clones	(2.27%),	purity:	(99.81%),	hitEff:	(9	5.40%)
long	:0	672751	from	678628	(99.	1%)	13556	clones	(2.02%),	purity:	(99.82%),	hitEff:	(9	6.72%)
long>5GeV	:	446458	from	448535	(99.	5%)	7731	clones	(1.73%),	purity:	(99.83%),	hitEff:	(9	7.25%)
long_strange	:	27383	from	27846	(98.	3%)	416	clones	(1.52%),	purity:	(99.33%),	hitEff:	(9	7.51%)
<pre>long_strange>5GeV</pre>	:	13436	from	13679	(98.	2%)	128	clones	(0.95%),	purity:	(99.16%),	hitEff:	(9	8.35%)
long_fromb	:	38897	from	39148	(99.	4%)	690	clones	(1.77%),	purity:	(99.78%),	hitEff:	(9	7.15%)
long_fromb>5GeV	+	32074	from	32196	(99.	6%)	537	clones	(1.67%),	purity:	(99.80%),	hitEff:	(9	7.36%)

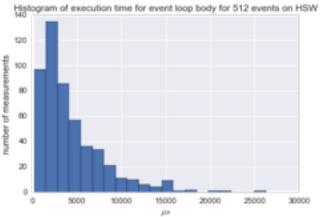
ou	r	COO	de
----	---	-----	----

• //

our couc															
2180404 tracks incl	ludi	ing 26	5268 g	jhosts (1.2%). E	Event aver	age 1.	0%							
velo	1.1	1923734	from	2105493	(91.4%)	30356	clones	(1.58%),	purity:	(99).77%),	hitEff:	(96.06%))
long	11	671727	from	678628	(99.0%)	8266	clones	(1.23%),	purity:	(99).74%),	hitEff:	(97.75%))
long>5GeV	1.1	445784	from	448535	(99.4%)	4672	clones	(1.05%),	purity:	(99).78%),	hitEff:	(98.26%)	
long_strange	:	27152	from	27846	(97.5%)	320	clones	(1.18%),	purity:	(99).21%),	hitEff:	(97.81%))
long_strange>5GeV	1	13365	from	13679	(97.7%)	116	clones	(0.87%),	purity:	(99).06%),	hitEff:	(98.55%))
long_fromb	-0-	38778	from	39148	(99.1%)	368	clones	(0.95%),	purity:	(99).70%),	hitEff:	(97.94%))
long_fromb>5GeV	:	31989	from	32196	(99.4%)	275	clones	(0.86%),	purity:	(99).73%),	hitEff:	(98.15%))

• tbbPixel speedup HT: 1.29

CERN openlab


Timings

- Scalability of tbbPixel (or ompPixel) is limited!
 - Event execution times vary by up to x50
 —> computational imbalance
- For now we mostly parallelized simple loops

--> we are limited by Amdahl's law

Scalability issues

 A majority of events are very small, loop trip-counts are very small

--> overhead from multithreading can be significant

Bits and pieces

Data Generation

- For rapid prototyping we want to break out of LHCb software stack.
 - Still work with "real" data
- PrEventDumper: https://gitlab.cern.ch/oawile/PrEventDumper
- The algorithm can be controlled with a Brunel configurable parameter to output only (velopix) data or MC particle and track data (e.g. for validation).

- Needed a simple track validation tool
- Also:
 - should be independent of Brunel
 - should be extendible
 - should work with flat data format
- EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
 - Written in python
 - returns validation in format similar to PrChecker

```
$ python2.7 validator.py -v -f results.txt
Reading data:
done.
2248492 tracks including
                           56641 ghosts ( 2.5%). Event average
                                                                  1.9%
              velo :
                    /1937720 from 2105493 ( 92.0%,
                                                     92.0%)
                                                              44013 clones
                                                                             2.27%), purity: (99.81%, 99.84%), hitEff: (95.40%,
                                                                                                                                    95.34%)
                      672751 from
                                    678628 ( 99.1%,
                                                     99.2%)
                                                             13556 clones
              long :
                                                                             2.02%), purity: (99.82%, 99.84%), hitEff: (96.72%,
                                                                                                                                    96.67%
         long>5GeV :
                      446458 from
                                    448535 ( 99.5%,
                                                     99.5%)
                                                              7731 clones
                                                                             1.73%), purity: ( 99.83%,
                                                                                                        99.86%), hitEff: ( 97.25%,
                                                                                                                                    97.18%)
                                                                                                        99.38%), hitEff: ( 97.51%,
      long_strange :
                       27383 from
                                     27846 ( 98.3%,
                                                     98.4%)
                                                               416 clones (
                                                                             1.52%), purity: (
                                                                                               99.33%,
                                                                                                                                    97.15%)
                                                                             0.95%), purity: ( 99.16%,
                                                                                                        99.21%), hitEff: ( 98.35%,
 long strange>5GeV :
                       13436 from
                                     13679 ( 98.2%,
                                                     98.2%)
                                                               128 clones (
                                                                                                                                    98.04%)
       long fromb :
                       38897 from
                                     39148 ( 99.4%,
                                                               690 clones
                                                                             1.77%), purity: (99.78%, 99.84%), hitEff: (97.15%,
                                                     99.4%)
                                                                                                                                    96.83%)
   long fromb>5GeV :
                       32074 from
                                     32196 ( 99.6%,
                                                     99.6%)
                                                               537 clones (
                                                                             1.67%), purity: ( 99.80%,
                                                                                                        99.86%), hitEff: ( 97.36%,
                                                                                                                                    97.04%)
```


Result validation

- Offers also a python API for reading event and simulation data
- modules/API can be used in jupyter to analyze and visualize data

- Xeon-Phi Knights Landing:
 - With 200+ threads scaling is a problem
 - TBB Flow Graph or HPX?
 - Express our algorithm in terms of small concurrent tasks
 - Leave the rest up to scheduler
 - Can the problem be expressed differently to allow global solutions that can be solved in parallel.

CERN openlab

Thank you!

Who are we:

CERN openlab High Throughput Computing Collaboration

Olof Bärring, Niko Neufeld Omar Awile, Paolo Durante, Christian Färber, Karel Hà, Jon Machen (Intel), Rainer Schwemmer, Srikanth Sridharan, Paweł Szostek, Sébastien Valat, Balázs Vőneki

