
N T U 
A

S  E  C E
D  C S

Extending an asynchronous messaging
library using an RDMA-enabled

interconnect.

D T
of

Konstantinos S. Alexopoulos

Supervisor: Georgios Goumas
Assistant Professor N.T.U.A.

C S L
Athens, October 2017

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science
Computing Systems Lab

Extending an asynchronous messaging
library using an RDMA-enabled

interconnect.

D T
of

Konstantinos S. Alexopoulos

Supervisor: Georgios Goumas
Assistant Professsor, N.T.U.A.

Approved by the committee on October 30th 2017.
(Signature) (Signature) (Signature)

.............................
Georgios Goumas Nektarios Koziris Dimitrios Soudris
Assistant Professor N.T.U.A. Professor N.T.U.A. Associate Professor N.T.U.A.

Athens, October 2017

(Signature)

...

Konstantinos S. Alexopoulos
Electrical and Computer Engineer N.T.U.A.
© 2017 – All rights reserved

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science
Computing Systems Lab

Copyright ©–All rights reserved Konstantinos S. Alexopoulos, 2017.

Copying, storage and distribution of this work, on full or partial, is
prohibited for commercial purposes. Reprinting, storage and distribution
for the purpose of non-profit, educational or research nature, is permitted,
provided that the source of origin is mentioned and the existing message
is maintained. Questions concerning the use of labor for profit should be
addressed to the author.

The views and conclusions contained in this document express the au-
thor and should not be interpreted as representing the official position of the
National Technical University of Athens.

Acknowledgments

I would like to thank Associate Professor Georgios Goumas, for the trust he
showed in me and the opportunity he gave me to carry out my diploma thesis
as part of the Computing Systems Laboratory of NTUA. I would also like to
thank PhD candidate, Stefanos Gerangelos for his resolute guidance during
the last phases of my work.

I want to thank my former colleagues at CERN, Olof Bärring, Sima Baymani,
Alexandru Grigore and Aram Santogidis, for eagerly communicating their
wisdom and experience to me, helping me to become a better professional.

I thank my family for their support during the years I spent studying, my
father, Spiros, for teaching me to have foresight and my mother, Sandy, for
teaching me the values of resilience and grit, but first and foremost I thank
my grandmother, Vana, who has always supported me unconditionally and
to which I will be eternally grateful for helping me become the person I am
today.

Furthermore, I want to thank my classmates, who taught me the value of
cooperation and eased the burden of my academic endeavour.

Lastly, I want to thank Eleni, who patiently stood by my side during the
difficult process of compiling the contents of this thesis, constantly offering
her encouragement.

1

Abstract

As computing power and I/O performance is increasing at an aggressive rate
several RDMA enabled interconnect technologies have been entering the mar-
ket, promising low latency and high throughput. RDMA concepts are based on
the support for zero-copy operations and CPU-offloading by supporting writes
directly to remote memory areas. However, the majority of distributed, network
intensive, applications today are designed around socket interfaces, which are
inherently incompatible with the RDMA approach.

The purpose of this thesis is to address this incompatibility between the well-
established, and emerging, communication paradigms, and to offer an interface
for exploiting memory coherent communication in an HPC context. This is
achieved by extending ZeroMQ, a high-performance asynchronous messaging
library, to use the RapidIO transport, a high-performance, packet-switched,
RDMA-enabled interconnect technology. ZeroMQ lends itself well to the scope
of this thesis, as its transport layer is abstracted and has already been ex-
tended to a number of different protocols. Moreover, it allows for trivial
employment regardless of transport used, facilitating the effortless application
of an extension.

Through this work, the effort of extending a distributed application, heavily
reliant on socket interfaces, is documented, while evaluating the challenges
that accompany the aforementioned, paradigm translation. Conclusions are
drawn concerning performance differences as well as limitations in the devel-
opment process, that come with the employment of a new technology, in our
case an RDMA-enabled interconnect.

3

4

Keywords

Interconnect Networks, High Performance Computing, Distributed Systems,
Remote Direct Memory Access, ZeroMQ, RapidIO

Contents

Acknowledgments 1

Abstract 3

Contents 5

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 Thesis Objective . 12

1.1.1 Contributions . 13
1.2 Document Structure . 13

2 Background 15
2.1 Interconnect Technologies . 15

2.1.1 Bus and Fabric Architectures 16
2.1.2 Interconnection in High Performance Computing 18

2.2 RapidIO . 20
2.2.1 Protocol . 22
2.2.2 RDMA . 24
2.2.3 Challenges in RDMA . 26
2.2.4 Link Speed . 28
2.2.5 Experimental Approach . 39
2.2.6 Software Stack . 40

2.3 ZeroMQ . 41
2.3.1 Internal Architecture of ZeroMQ 42

5

6 Contents

2.3.2 Overview & Critical Parts . 45

3 Design & Implementation of the RapidIO extension of ZeroMQ 47
3.1 Introduction . 47
3.2 Architecture Extension . 47
3.3 Implementation Details . 52

4 Evaluation 61
4.1 Hardware & Software Setup . 61
4.2 Benchmarks & Measurements . 62

4.2.1 Latency . 63
4.2.2 Throughput . 64
4.2.3 Circular Buffer Length . 66
4.2.4 DMA Cell Size . 68

4.3 Breakdown Analysis . 69
4.3.1 Send . 69
4.3.2 Receive . 69

5 Prior Art 75
5.1 Introduction . 75
5.2 RapidIO . 75
5.3 ZeroMQ . 76
5.4 RDMA-enabled interconnects . 76

6 Conclusions and Future Work 77
6.1 Concluding Remarks . 77
6.2 Future Work . 78

Bibliography 79

List of Figures

2.1 Typical shared bus architecture . 17
2.2 Switched Fabric . 18
2.3 Interconnect application domains where RapidIO is applicable . . 21
2.4 RapidIO exploitation in heterogeneous systems 21
2.5 RapidIO protocol specification layers and their corresponding

OSI layers. 25
2.6 Memory mapping when using RDMA 26
2.7 Sequence diagram for DMA Tx . 37
2.8 Sequence diagram for DMA Rx . 37
2.9 Speed of DMA operations . 39
2.10 I/O Thread Overview . 44
2.11 Internal Architecture . 46

3.1 Mailbox functions overview . 54
3.2 Memory Scheme Overview . 58
3.3 Sequence for single RDMA Buffer Transfer 59

4.1 Latency over RapidIO and TCP/IP [Small] 63
4.2 Latency over RapidIO and TCP/IP [Large] 64
4.3 ZeroMQ Throughput over RapidIO 65
4.4 ZeroMQ Throughput over RapidIO - Multiple clients 66
4.5 RapidIO Circular Buffer Length Scan 67
4.6 RapidIO DMA Cell Size Scan . 68
4.7 Breakdown analysis for the ZeroMQ sender [Small] 70
4.8 Breakdown analysis for the ZeroMQ sender [Large] 71
4.9 Breakdown analysis for the ZeroMQ receiver [Small] 72
4.10 Breakdown analysis for the ZeroMQ receiver [Large] 73

7

List of Tables

2.1 PCIe Max Completion Size - Speed correlation 36
2.2 RapidIO Packet . 38
2.3 PCIe Packet . 38
2.4 Miscellaneous Values . 38
2.5 DMA Operations Speeds . 40

9

Chapter 1

Introduction

As Moore’s law predicted, processing capabilities in modern computers con-
tinue to meet growth in an exponential manner. However, an interpretation of
Amdahl’s law states that the efficiency of a system can only be assessed as the
balance between CPU processing power, memory bandwidth and input/output
performance. Interconnection networks exhibit design constraints greater than
those found in semiconductor design. A bottleneck is therefore exhibited. At
the same time the component number that needs to be networked is increasing
rapidly. Current I/O architectures are not optimally designed to support this.
[1]

To try and mitigate this, system designers have lately started to abandon the
traditionally used shared bus design, in favor of a switched fabric, which
favors bandwidth and scalability. [2]

With the latest developments in the Cloud and Internet domains, data centers
are more relevant than ever. An increasing number of services and applica-
tions are run in a data center context. This has exhibited an unprecedented
need for scaling, causing the High Performance Computing field to define new
performance requirements. Furthermore, data centers today often also em-
ploy FPGA, GPU, or Storage systems, which may employ their own, exclusive,
proprietary interconnects. [3]

Several interconnect architectures have been proposed, aspiring to bridge intra-
and inter-chassis communications and to support heterogeneosity. These switched
fabric architectures usually support memory coherency schemes, which require

11

12 Chapter 1. Introduction

the respective coding effort to be applied. Additionally, the upgrade costs
are a problematic factor, as new hardware across the fabric needs to be em-
ployed.

1.1 Thesis Objective

The objective of this thesis, is to provide a communication interface for a
distributed, multi-node environment, that operates over an RDMA-enabled
transport, consistent with modern, cutting-edge interconnect technologies. By
doing so, the coding effort is concealed in the interface implementation, al-
lowing for seamless employment in already existing systems. Additionally, the
bandwidth and scalability capabilities of an RDMA-enabled interconnect can
be utilized in an HPC context.

Modern networking applications are designed around the use of socket inter-
faces. Sockets provide a convenient and reliable interface for network com-
munication. However, this comes at the cost of processing power. Protocols
like TCP/IP traverse the network stack and consume the CPU cycles of both
the local and remote endpoints. This negatively affects both latency and scal-
ability.

These aspects are of importance in an HPC context, were performance out-
weighs the need for convenience. There, a memory coherency scheme can
achieve better latencies for inter-node communication, by off-loading the CPU.
RDMA-enabled interconnects also excel in multi-node systems, where lower
transaction overhead is translated to higher bandwidth. However, RDMA-
enabled transports require programming effort to implement and maintain,
as special setup and memory operations need to take place. They are thus
employed only when performance is crucial.

Consequently, an inherent incompatibility between socket interfaces and mem-
ory coherence schemes is observed. In the scope of this work, an solution that
bridges the two is investigated.

To address these issues, ZeroMQ [4], a distributed messaging library, has
been extended to use the RapidIO [5] transport. ZeroMQ offers a messaging
interface, which allows the user to choose the transport used in a trivial

1.2 Document Structure 13

way. On top of that it is optimized to overcome major messaging overhead,
maintaining overall system performance. Lastly, it is strongly tied around
socket programming, allowing us to propose a scheme to tie the socket and
memory coherency communication paradigms.

1.1.1 Contributions

Contributions done as part of this diploma thesis can be summarized as fol-
lows:

• The ZeroMQ library has been extended to use the RapidIO transport,
based on an RDMA-enabled interconnect

• The RapidIO protocol has been applied in a multi-node, HPC context,
outside of its usual embedded setting.

• The application of RDMA concepts is investigated in a practical context.

1.2 Document Structure

The structure of this thesis is described as follows.

In Chapter 2 the reader is introduced to the necessary theoretical background
on which this thesis is based, as well as key points of the technologies and
frameworks used.

Chapter 3 focuses on the design of the library’s extension, as well as its
implementation details.

The benchmarks used to collect performance results, and their evaluation are
presented in Chapter 4.

Related work is then presented in Chapter 5, before Chapter 6, where conclu-
sions and possible future work is discussed.

Chapter 2

Background

This chapter aims to introduce the reader to the terms and concepts, which are
necessary to follow the presentation of this paper. These are divided into three
parts: The first one introduces concepts related to interconnect networks in
general. The second is about RapidIO, the interconnect protocol and technology
used in the scope of this project. The third refers to ZeroMQ, the messaging
framework that was extended.

2.1 Interconnect Technologies

The term interconnection refers to the networking of two or more computer
components, or endpoints. These can be anything from integrated circuits,
boards and computer chassis to wide area networks. Interconnects define the
I/O capabilities of every component, like the CPU and the memory. However,
the efficiency of the system is dictated by the balance between CPU perfor-
mance, memory bandwidth as well as the speed of I/O operations, as stated
by Amdahl’s law. In other words, even if individual components can achieve
high throughput, it will not be beneficial until that component can be efficiently
linked with the rest of its system. According to Moore’s law, semiconductor
speed and size tend to improve faster compared to the electrical and mechani-
cal limitations of interconnect design. Conclusively a fundamental imbalance
presents itself to system design, where component power cannot be used ef-
ficiently as part of a system. In order to overcome these limitations, several

15

16 Chapter 2. Background

high performance interconnects have been introduced.

The most established system-level interconnect is PCI (Peripheral Component
Interconnect). PCI supports a bus architecture which has been dictating elec-
trical and mechanical design of computer parts for the better part of the last
30 years. Due to the effect PCI has had in design, it has gathered significant
inertia as the industry standard, making it very difficult for new technologies
to seize one of its application domains.

However, an interconnect does not need to only target the system level. Out
of the box connections could also be improved as a part of a unified intercon-
nection fabric. This prospect paves the road to other application contexts. A
number of applications today is run by high performance cluster topologies,
where load is distributed among the system’s servers most often as part of
a data center. The performance of such a system could be further improved
by employing the same interconnect both on the PCB (Printed Circuit Board)
and the networking level. Maintaining a single protocol across nodes favors
scalabality, by significantly lowering routing overhead between components.
Conclusively, a high performing interconnect could benefit the whole hard-
ware stack, currently present in the rapidly evolving HPC (High Performance
Computing) field. [1]

2.1.1 Bus and Fabric Architectures

The most common interconnect architecture today is the shared bus architec-
ture. Although shared buses are imposing many limitations in system design
today, their traditional use has allowed them to stay prevalent through inertia.
Modern server clusters require throughput as well as reliability, that current
PCI revisions are not able to support. This problem has been addressed by
the introduction of interconnects that are based on a fabric architecture, that
enable high speeds and scalable physical network topologies.

In a system that employs a bus architecture, all components are connected to
the same bus. Therefore, all transactions will share the same communication
medium. As a direct consequence, increasing the number of connections on
the same bus decreases the bandwidth per capita. In order to mitigate this con-
straint shared bus hierarchies have been utilized, separating high- performance

2.1 Interconnect Technologies 17

components from their low-performing counterparts, see figure 2.1. However a
bottleneck still persists, since these two groups will again have to be connected
through a central bus. Such design techniques impose mechanical and elec-
trical limitations which soon lead to congestion, keeping the possible number
of connected endpoints low and undermining fault tolerance. Moreover buses
cannot be extended to external communication, requiring the use of a separate
interconnect. [6, 7]

CPU

MemoryController

High-Speed
Peripheral

High-Speed
Peripheral

Low-Speed
Peripheral

Low-Speed
Peripheral

BridgeBridge

Figure 2.1: Typical shared bus architecture

Switched fabric architectures are point-to-point switch-based interconnect de-
signs. Every component employs a link with exactly one device on the other
end. This guarantees much higher performance compared to a bus archi-
tecture, while also maintaining low complexity for producing and detecting
errors. Furthermore the switched architecture allows for better scalability, as
the bandwidth of the overall system will not be hindered when new nodes are
added, given a sufficiently-performing number of switches. This scheme also
allows for multiple paths between devices, enhancing robustness in case of
failure. [7]

18 Chapter 2. Background

Endpoint Endpoint

EndpointEndpoint

Switch

Endpoint Endpoint

EndpointEndpoint

Switch

Switched Fabric

Chassis

GPU

Storage Network

To another part of
 the fabric...

Figure 2.2: Switched Fabric

2.1.2 Interconnection in High Performance Computing

High Performance Computing, or HPC for short, is a term that is used to de-
scribe the computing domain responsible for computationally intensive tasks.
Such tasks often stem from fields than involve physics, forecasting, simula-
tions and modeling, among others. In the context of HPC, supercomputers are
used, as opposed to consumer, general-purpose computers. The first supercom-
puters were manufactured in the 60s and were essentially boosted versions
of their consumer-grade counterparts. As years went by an increasing level
of parallelism was introduced, with supercomputers having a large number of
processing cores. As is natural, at one point the number of cores were inter-
connected, by using multiple chassis in conjunction with one another. And
thus supercomputers started to be clusters of units, with each one of them
contributing a number of processing cores. It was at this step that the inter-
connect performance started being critical at the chassis-to-chassis level. A

2.1 Interconnect Technologies 19

chassis-to-chassis level interconnect in the context of HPC, need not only offer
high bandwidth, but also extremely low latency, as commands may also need
to be propagated between units. Of course, scalability and fault tolerance are
also important requirements when designing a large-scale system.

In response to these developments several interconnect technologies have hit
the market in recent years, the most widespread of which is Infiniband. At the
same time, other technologies that already have a market share are evolving
to adapt to the new data. An example of this is the upgrade of Ethernet to
speeds of 10, 40 and 100 Gbps. An interconnect standard that has also evolved
to claim a share of this market is RapidIO. Following are some details about
the aforementioned interconnects.

Infiniband

Infiniband (IB) is a switch-based serial I/O interconnect architecture. It sup-
ports high throughput and low latency, with link speeds ranging from 10Gb/s to
56Gb/s. It mainly finds application in data interconnection between computers.
Due to its performance it is usually used in an HPC context, like computa-
tional intensive tasks or storage. Infiniband uses RDMA and messaging for
operations, compared to TCP/IP over Ethernet. This could mean the potential
need for development effort, in order for previous software to be able to take
advantage of Infiniband’s performance.

10Gb/40Gb/100Gb Ethernet

The 10Gb,40Gb and 100Gb Ethernet, most commonly refered to as 10GbE,
40GbE and 100GbE, are the updated standards of the Ethernet technologies.
Some of these high speed Ethernet versions support backward compatibility.
In other words, the cables and switches used for these technologies may be
compatible with previously used versions of the protocol. Since, most HPC
contexts will already be set up with some kind of mainstream Ethernet back-
bone, this translates to significantly lower upgrade costs.

The next chapter introduces RapidIO, a system-level interconnect that is also

20 Chapter 2. Background

targeted to the System Area Network field. A System Area Network (SAN) is
another term for describing a “local” network, usually found in the context of
a data center, which is designed for high speed interconnection in both cluster
and multiprocessing environments. However, it’s possible that SAN may also
refer to intra-chassis interconnection.

2.2 RapidIO

RapidIO is a high-performance, low pin count, packet-switched system level
interconnect standard.

Contrary to shared memory bus designs, like PCI, RapidIO is a switched fabric
interconnect technology. Infiniband also falls in this category. Switched fabric
interconnects are similar to switched network architectures. Every endpoint in
the system has exactly one link to another component, which may be another
endpoint or a switch element. Operations in switched fabric interconnects
normally include a mechanism to exchange messages and send events, in the
context of the network. Memory-mapped I/O, or MMIO, is usually defined as
an optional communication means in this domain.

RapidIO is an open standard and its applications include the interconnection
of microprocessors, memory, memory mapped I/O devices, storage and com-
puting systems. It originally intended to function as a front side bus, but
has since evolved into a prominent system level interconnect, with wide ap-
plications in an embedded context. At the time of writing, more than 200
million RapidIO fabric ports have been deployed worldwide. Primarily in the
field of telecommunications, RapidIO is present at every 4G base station in
the world. However, the protocol is independent of a physical implementation,
and thus the architecture is a great candidate for interconnecting systems that
would traditionally be found in different positions of the shared bus hierar-
chy. Essentially RapidIO can be applied to any domain, from chip-to-chip
communication to cluster connection in data centers. see Figure 2.3 [8].

This presents the opportunity to seamlessly integrate FPGAs, GPUs, CPUs and
storage system, as part of the same fabric, making RapidIO ideal for hetero-
geneous systems, see Figure 2.4. RapidIO is currently implemented natively

2.2 RapidIO 21

Figure 2.3: Interconnect application domains where RapidIO is applicable

on-chip and on PCIe bridge cards.

Its latest specification [9] was released in June 2016, stating that speeds of up
to 25Gbaud per lane can be achieved. This translates to a RapidIO network
speed of 100Gb/s.

Figure 2.4: RapidIO exploitation in heterogeneous systems

22 Chapter 2. Background

2.2.1 Protocol

RapidIO is primarily hardware implemented. Error handling mainly takes
place at the physical level and hardware termination is offered. This allows
for the achievement of low latencies and, most importantly, offloads the CPU.
By transferring the protocol overhead to the hardware, CPU cycles are freed,
lowering power consumption and allowing the application of the technology on
realtime systems, as well as the scale-up of the system. The protocol supports
destination based routing and permits the deployment of any network topology.
Most importantly, the specifications of the protocol may be partitioned, in order
to meet the specific needs of the physical implementation in question. In this
way, the complexity of the system and the component may be limited, while
simultaneously allowing for future expansions.

The RapidIO architecture is specified as a three-layer hierarchy, comprised of
the logical, the transport and the physical specification. [5]

- Logical Layer

The Logical Layer defines the overall protocol and packet formats, in other
words, the manner in which transaction are handled by the endpoints. The
transactions types defined in this layer are too.

The first one is a message-based access to devices. A hardware port that can
send and received messages is defined as the mailbox. Messages conveyed in
this manner can consist of up to 16 packets, of up to 256 bytes each. This
makes out to a maximum message size of up to 4KB. Another port accepting
messages is the doorbell. These lightweight messages are commonly used for
event notifications, in a way similar to the signals and interrupts. They are
able to carry information in a 16-bit software definable field. This transaction
type can also be referred to as the message passing programming model of the
protocol.

A globally shared distributed memory programming model is also supported.
This allows for the use of memory mapped I/O operations. This transaction type
enables the access of local memory space to perform read/write operations that
are translated to the respective operations on the remote memory space. This
concept can most commonly be refered to as Remote Direct Memory Access

2.2 RapidIO 23

or RDMA. This model is the one that enables RapidIO, an RDMA-enabled
interconnect, to find application in multi-processing, multi-node systems that
exhibit HPC needs.

- Transport Layer

The Transport Layer provides the necessary information for the successful
routing of the RapidIO packets from one endpoint to an another. RapidIO
packets are routed based on a unique ID assigned to each device. The assign-
ment of IDs is done through a process that is called enumeration, which takes
place in software when setting up the system. The ID can take a maximum
value of 65535, allowing for 65536 devices to coexist in the same system.

It is important to note, that the RapidIO protocol does not care for the topology
of the physical interconnect. It can be configured to function in the context
of virtually any network topology, from trees and meshes, to hypercubes and
toroids. RapidIO employs source routing. Each packet has a destination
address that is specified by the source. This information is then handled ap-
propriately by the fabric, which will route the transaction. In this manner only
resources at the source and destination endpoints will be occupied, allowing
for concurrent transactions to take place unburdened. This contradicts the
broadcast scheme, found in traditional bus-based systems like PCI, in which
a packet is sent to all devices.

- Physical Layer

The Physical Layer offers the, nowadays, serial implementation of the physi-
cal interconnect. This includes the mechanism to transport the packets, flow
control information, hardware error management as well as the electrical char-
acteristics of the device. The packets of the physical layer are small, with low
protocol overhead, allowing for fast processing and CPU offloading. When
error recovery takes place in hardware, acknowledgment and retransmission
of corrupted or lost packages are commenced immediately. The above provide
for a swift and reliable delivery of individual packets.

Flow control is also defined in the physical layer, and special care is taken to
ensure that overhead and complexity is limited. Three types of flow control
mechanisms are defined, so that higher priority transaction take precedent over
lower priority ones; retry, throttle, and credit based. The retry mechanism, the

24 Chapter 2. Background

simplest one, simply states that when a receiver cannot receive a packet for
any reason, can reply with a “retry” control symbol to the source endpoint.
Then the source may retransmit the packet. The throttle mechanism utilizes
the “idle” control symbol, allowing for the insertion of packets that act as wait
signals. Lastly, the credit based mechanism exploits certain control symbols
to communicate buffer state between endpoints. In that manner, a transaction
can be initiated only when a buffer becomes available.

RapidIO provides a rich set of maintenance and error management functions.
A dedicated maintenance port can be found in every device. It offers access to
registers that contain information about the device, including capabilities and
memory information, error detection and status registers. These registers can
also be used to reset a device if need be. The physical layer specification also
handles error coverage. Error detection is managed through the exchange of
control symbols between the endpoints. In case re-synchronization o retrans-
mission is not successful the RapidIO hardware can generate a software trap,
interrupting the software, handing over the responsibility.

The protocol is defined in a way to be physical layer independent. This means
that RapidIO can be used over serial or parallel interfaces, copper or fiber
media. RapidIO addresses power consumption concerns by employing LVDS,
Low Voltage Differential Signaling.

A rough correspondence to the layers presented above and the Open Systems
Interconnection (OSI) model, can be seen in Figure 2.5.

2.2.2 RDMA

RapidIO is RDMA-enabled. This is another way of stating that the RapidIO
protocol supports memory mapped I/O operations. Generally RDMA-enabled
interconnects refer to the group of interconnects that employ techniques for
maintaining memory coherency. This enables memory that is physically located
in different places in or outside of the machine, to be shared among different
processing components.

RDMA stands for Remote Direct Memory Access. RMDA-enabled intercon-

2.2 RapidIO 25

Figure 2.5: RapidIO protocol specification layers and their corresponding OSI
layers.

nects share three characteristics that make them attractive for HPC related
applications.

- Zero-copy The term Zero-copy refers to the ability to move a piece of data
from a buffer residing in node A to a buffer residing node B without the
involvement of the network software stack. This is obviously possible with
memory mapped I/O operations if the programmatical interface allows for it.
Normally a send/receive operation should involve the following. The sender
has to pass the source buffer address pointer, and an address of the shared
memory to the interface, and the receiver simply has to read from that address
in shared memory. This eliminates the need for an intermediate buffer, and
the memory copying overhead that accompanies it.

- Kernel bypass Kernel involvement is not required to perform a transfer. In
other words, a context change will not necessarily take place in order for a
buffer to be successfully written/read on/from the remote end. Any necessary
information is exchanged during the setup phase of a connection. This includes
the exchange of memory addresses to be used between the endpoints and their
respective mapping to local physical memory and application address space.
Consequently a system call does not need to take place when a transaction is
performed for an established connection.

- CPU offloading By bypassing the network stack and the kernel, the CPU
cycles consumed as a result of a transaction are effectively lowered. At the
same time CPU cycles of the remote system do not need to be consumed. This

26 Chapter 2. Background

side-effect is refered to as CPU offloading.

2.2.3 Challenges in RDMA

Memory setup

RDMA can have many upsides, however the respective effort has to be put in
from the programmer to tackle its use.

First and foremost, certain memory areas have to be reserved beforehand, to
be used exclusively for RDMA operations. For a regular Linux system this will
happen at boot time, by modifying the kernel boot command-line. There, a
parameter needs to be added that specifies the beginning address of the memory
to be reserved, as well as its size. After the required memory is reserved, the
application that intends to use it has to map it to its process address space. For
example, when utilizing RapidIO, the physical memory will have to be mapped
to the address space that is visible to the RapidIO device. This memory scheme
is depicted in Figure 2.6.

Figure 2.6: Memory mapping when using RDMA

The mapped memory address then has to be communicated to remote end, or
ends, in order to perform RDMA operations. This is something that has to be
done manually by the running application.

2.2 RapidIO 27

Orchestration

RDMA is often described as ”one-way communication”. This stems as a com-
parison to the ”two-way communication” of a Send/Receive model. In the
Send/Receive model, the sender will send data to a target, with that target
waiting to receive this data and in turn save it at a specified location. For
RDMA operations this is not the case, as one end will make a direct access to
memory, which does not require the involvement of the remote system’s CPU.
The obvious and direct side-effect of this is that the remote end has to some-
how be notified about the memory access. In other words, RDMA operations
require orchestration as part of the user’s involvement.

In normal circumstances, setting up the RDMA environment, in order to per-
form a single transaction would abstractly require the following steps:

On the receiving side:

1. Map Reserved Physical Memory to process address space

2. Allocate inbound window

3. Send inbound window target address to the remote end

4. Wait for write completion notification

5. Read memory

On the sending side:

1. Receive RapidIO target address from the remote end

2. Perform write operation to remote memory

3. Notify remote end about completion of write operation

For RapidIO this orchestration can be done through the message passing pro-
gramming interface introduced previously. The possibilities include messages
which use a sub-performing mailbox port interface, and doorbells, which are
hardware events. Alternatively even the polling of RDMA memory could be
exploited, by waiting until some pre-agreed alteration takes place, such as the
value change of a certain bit. Similar methods are normally used for other
interconnects of comparable design.

28 Chapter 2. Background

Another important aspect is data preservation. Memory can and will be over-
written if a locking mechanism preventing operations is not in place. This
weight falls to the programmer and can be proven quite challenging when
handling a large number of memory chunks, especially when these are origi-
nating from multiple nodes.

2.2.4 Link Speed

Theoretical Approach

The network interface cards used for the purposes of this research are PCIe to
RapidIO bridge cards. They offer a line rate of up to 16Gbps. Both the PCIe
and RapidIO sides support:

– 5 GBaud link speed

– x4 link width

– 8b\10b encoding : 8bit words are mapped to 10bit symbols

Thus, the link speed in bits is calculated as follows:

Link Speed =
(linkwidth) ∗ (linkspeed) ∗ (#bits)

(#symbols)
Gbps =⇒

Link Speed =
(4) ∗ (5) ∗ (8)

(10)
= 16Gbps

Nevertheless, the PCIe to RapidIO translations, and vice versa, also have to be
accounted for. This means that the speed calculated in the previous equation
is never observed in reality. The actual link speed falls to around 13.4Gbps.
However, this is only true in regards to the transmit operations. Due to better
protocol mapping for the receive operations, the overhead is lower, and the
receive operations can reach 14.6Gbps.

The above values refer to DMA reads and writes, since these operations require
the least overhead, and can support transactions of sufficient size to observe
high throughput.

The analysis of both of these operations is presented below. Each action is

2.2 RapidIO 29

referred to later by an action step number in brackets. This part refers to both
the PCI [10] and RapidIO [11] specifications.

DMA Transmit

For a DMA Transmit operation the data starts from the CPU, it is then for-
warded to the Tsi721 card, which then pushes it to the RapidIO network. A
description of this procedure follows, with detailed calculation of the number
of bytes every transaction requires. This clears up the percentage of the link
speed occupied by overhead.

– The CPU wants to write to the Tsi721 –

CPU -> Tsi721

The CPU does a register write to trigger Tx on the PCIe side of the Tsi721.
[1]

Sc = (PCIeRegisterWrite+RegisterWritePaylaod) = 28Bytes

CPU <- Tsi721 [2]

PCIe responds with a PCIe Acknowledgment and Credit Update. [2]

Sp = (PCIeAcknowledgment+ PCIeCreditUpdate) = (8 + 8) = 16Bytes

– Tsi721 requests a read descriptor from the CPU –

CPU <- Tsi721

PCIe makes a read request to the CPU. [3]

Sp0 = (PCIeReadRequest) = 24Bytes

CPU -> Tsi721

The CPU acknowledges the request. [4]

30 Chapter 2. Background

Sc0 = (PCIeAcknowledgment+ PCIeCreditUpdate) = (8 + 8) = 16Bytes

And then sends the descriptor. [5]

Sc1 = (PCIeReadCompletionOverhead+DescriptorSize) = (24 + 64) = 88Bytes

Sc = Sc0 + Sc1 = 104Bytes

CPU <- Tsi721

PCIe acknowledges the last operation. [6]

Sp1 = (PCIeAcknowledgment+ PCIeCreditUpdate) = (8 + 8) = 16Bytes

Sp = Sp0 + Sp140Bytes

– Read the data from the CPU –

CPU <- Tsi721

PCIe makes read requests. [7]

Sp0 = ((MTU/PCIeMaxReadSize) ∗ ReadRequestSize) = (65536/4096) ∗ 24 =

384Bytes

CPU -> Tsi721

The CPU acknowledges the requests [8]

Sc0 = ((MTU/PCIeMaxReadSize)∗(PCIeAcknowledgment+PCIeCreditUpdate)) =

(655636/4096) ∗ (8 + 8) = 256Bytes

And sends the data [9]

Sc1 = MTU/PCIeEfficiency = 65536/84.21% = 77824Bytes

2.2 RapidIO 31

Sc = Sc0 + Sc1 = 77824 + 256 = 78080Bytes

CPU <- Tsi721

PCIe acknowledges the data. [10]

Sp1 = (MTU/PCIePayload) ∗ (PCIeAcknowledgment + PCIeCreditUpdate) =

(65536/128) ∗ (8 + 8) = 8192Bytes

Sp = Sp0 + Sp1 = 8576Bytes

– Tsi721 sends the data to the RapidIO network –

Tsi721 -> RIO

Tsi721 sends the data. [11]

Sp0 = MTU/RIOEfficiency = 65536/94.12% = 69630Bytes

And a control symbol for every packet sent. [12]

Sp1 = (MTU/RIOPayload)∗RIOControlSymbolSize = (65536/256)∗4 = 1024Bytes

Sp = Sp0 + Sp1 = 70654Bytes

Tsi721 <- RIO

RapidIO acknowledges every packet received with a control symbol [13].

Sr = (MTU/RIOPayload)∗RIOControlSymbolSize = (65536/256)∗4 = 1024Bytes

– Tsi721 has to inform the CPU of the completion –

CPU <- Tsi721

PCIe performs a write completion to the CPU [14]

32 Chapter 2. Background

Sp = (PCIeTotal − PCIePayload + WriteCompletionSize) = 152 − 128 + 64 =

88Bytes

CPU -> Tsi721

The CPU Acknowledges the write. [15]

Sc = PCIeAcknowledgment+ PCIeCreditUpdate = 16Bytes

DMA Receive

For a DMA Receive operation the data is Received from the RapidIO network
to the Tsi721, and is then forwarded to the CPU.

For this operation the direction of the data is: RapidIO Network -> Tsi721 ->
CPU.

– Tsi721 receives data from the RapidIO network –

Tsi721 <- RIO

This is exactly the same as the opposite direction from the data transmission
step on DMA Tx.

Data, [1]

Sr0 = MTU/RIOEfficiency = 65536/94.12 = 69630Bytes

And a control symbol for every packet sent, [2]

Sr1 = (MTU/RIOPayload)∗RIOControlSymbolSize = (65536/256)∗4 = 1024Bytes

Sr = Sr0 + Sr1 = 70654Bytes

Tsi721 -> RIO

2.2 RapidIO 33

As before, the same as the opposite direction from the data transmission step
on DMA Tx.

Tsi721 acknowledges every packet received with a control symbol. [3]

Sp = (MTU/RIOPayload)∗RIOControlSymbolSize = (65536/256)∗4 = 1024Bytes

– Tsi721 sends the data to the CPU –

CPU <- Tsi721

Tsi721 sends the data from the RapidIO packets on the PCIe link to the CPU.
[4]

S = (MTU/PCIeEfficiency) = (65536/0.8421) = 77824Bytes

CPU -> Tsi721

And the CPU acknowledges. [5]

S = (MTU/RIOPayload)∗(PCIeAcknowledgment+PCIeCreditUpdate) = (65536/256)∗
(8 + 8) = 4096Bytes

All the numbers used in the above calculations can be found in the specifi-
cations for RapidIO and PCIe, as well as the relevant table under Supporting
Materials.

Speed Calculations

DMA Tx

By summing up every Sc and Sp on the PCIe bus side of the DMA Tx opera-
tion we get the following:

sumSc = 28 + 104 + 78080 + 16 = 78228 ∗ 8 = 625824bits

sumSp = 16 + 40 + 8576 + 88 = 8720 ∗ 8 = 69760bits

34 Chapter 2. Background

Now the number of transactions performed on the PCIe bus per second can be
calculated:

numTc = (PCIeSpeed ∗ 1G)/sumSc = 16000000000/625824 = 25566

numTp = (PCIeSpeed ∗ 1G)/sumSp = 16000000000/69760 = 229358

The speed for this part of the transaction will be dictated by the lowest number
of transactions, as that will be the limiting factor. Thereafter, the PCIe bus
speed will be limited by the traffic originating from the CPU.

PCIeBusSpeed = (MTU ∗numTc) ∗ 8/1G = (65536 ∗ 25566) ∗ (8/1G) = 13.40Gbps

Repeating the procedure for the RapidIO network side:

sumSp = 70654 ∗ 8 = 565232bits

sumSr = 1024 ∗ 8 = 8192bits

numTp = (RIOSpeed ∗ 1G)/sumSp = 16000000000/565232 = 28306

numTr = (RIOSpeed ∗ 1G)/sumSr = 16000000000/565232 = 1953125

Following the same reasoning, traffic originating from the Tsi721 is limiting
the speed on the RapidIO network.

RapidIONetworkSpeed = (MTU ∗ numTp) ∗ (8/1G) = (65536 ∗ 28306) ∗ (8/1G) =

14.84Gbps

It is clear that the PCIe bus side is considerably slower than the RapidIO side,
shaping the maximum DMA Tx speed at 13.40 Gbps.

DMA Rx

2.2 RapidIO 35

On the RapidIO network side:

Sr = 70654 ∗ 8 = 565232bits

Sp = 1024 ∗ 8 = 8192bits

Which give:

numTr = (RIOSpeed ∗ 1G)/Sr = 16000000000/565232 = 28306

numTp = (RIOSpeed ∗ 1G)/Sp = 16000000000/8192 = 1953125

The lower one dictates the maximum speed on this portion of the network:

RapidIONetworkSpeed = (MTU ∗numTp)∗(8/1G) = (65536∗1953125)∗(8/1G) =

14.84Gbps

On the PCIe bus speed:

Sp = 77824 ∗ 8 = 622592bits

Sc = 4096 ∗ 8 = 32768bits

Yielding:

numTp = (PCIeSpeed ∗ 1G)/Sp = 16000000000/622592 = 25700

numTc = (PCIeSpeed ∗ 1G)/Sp = 16000000000/32768 = 488281

And the speed for this part of the transaction:

PCIeBusSpeed = (MTU ∗ numTp) ∗ (8/1G) = 13.47Gbps

36 Chapter 2. Background

As before the PCIe side shapes the speed of the DMA Rx operation at 13.47
Gbps

Conclusively, the PCIe bus is always outperformed by the RapidIO network
irregardless of transaction type. However the previous calculations were made
with the assumption that the PCIe Max Completion size for our system was
128 Bytes. The next table also contains the respective results for a system that
supports 256 Bytes of PCIe Max Completion size.

128 Bytes 256 Bytes
DMA Tx Speed 13.40 Gbps 14.55 Gbps
DMA Rx Speed 13.47 Gbps 14.63 Gbps

Table 2.1: PCIe Max Completion Size - Speed correlation

Supporting Materials

In figures 2.7 and 2.8 the sequence diagrams for the DMA Tx and DMA Rx
scenarios, respectively, are given. The objects in these diagrams are comprised
of:

• The main memory and CPU [CPU]

• The Tsi721 chip [Tsi721]

• The RapidIO network, including endpoints and switches [RIONET]

It is worth noting that in the CPU side of the Tsi721 all transactions are PCIe,
while on the RIO network side all transactions are RapidIO.

2.2 RapidIO 37

Figure 2.7: Sequence diagram for DMA Tx

Figure 2.8: Sequence diagram for DMA Rx

38 Chapter 2. Background

SWRITE RapidIO Efficiency Bytes
Physical Header 2
Transport Header 2
Address 6
Data 256
CRC 4
PAD 2
Total 272
Efficiency 94.12%

Table 2.2: RapidIO Packet

PCIe Efficiency Bytes
Address Size 64
Header 16
MAX Completion Data 128
LCRC 4
ECRC 4
Total 152
Efficiency 84.21%

Table 2.3: PCIe Packet

Bytes
PCIe Read Request 24
PCIe Register Write Overhead 20
PCIe Register Write Payload 8
PCIe Acknowledge 8
PCIe Credit Update 8
PCIe Read Completion Overhead 24
RapidIO Control Symbol 4
RapidIO MAX Payload 256
MAX Completion Data 128
Descriptor Size 64
MTU 65536

Table 2.4: Miscellaneous Values

2.2 RapidIO 39

2.2.5 Experimental Approach

We can check the above results, by measuring time around the dma_write and
dma_read operations. 512MB of data were repeatedly sent, scanning through
increasing DMA sizes. The DMA buffers tested ranged from 4K up to 256MB,
which was the size of the reserved memory of the running system, and thus
the maximum possible DMA buffer to be used. The result of the plot can be
seen in figure 2.9.

Figure 2.9: Speed of DMA operations

The figure above shows that at approximately 8MB a plateau is reached of
around 12.5 Gbps for the Write operation, while the read operation is bound
at 11.16 Gbps. These speeds dictate the overhead introduced by the library and
the driver, which is presented in table 2.5

40 Chapter 2. Background

Write Read
Theoretical 13.40 Gbps 13.47 Gbps
Experimental 12.50 Gbps 11.16 Gbps
Overhead 1.10 Gbps 2.31 Gbps

Table 2.5: DMA Operations Speeds

2.2.6 Software Stack

The RapidIO software stack available today, consists of Linux kernel drivers
[12] and the RRMAP libraries [13], developed by IDT. The software package is
under active development.

User-space programs interface with the interconnect through library calls,
which in turn interface with the underlying driver. Library calls will han-
dle all management and transaction operations.

The transport layer messages are called Channelized Messaging within this
stack. Library calls which are responsible for the following operations, are
available; Initializing a “socket” which is related with a specific mailbox chan-
nel. Listening for connections to that socket. Accepting connections on that
socket. Connecting to a remote endpoint’s socket at a specific channel. Send-
ing and receiving in the context of a given socket. Channelized Messages will
always consist of buffers of 4096 bytes. Of these 2o bytes are required for
protocol overhead, lowering the payload size to 4076 bytes.

As discussed before, doorbells carry the source device ID, the destination device
ID and a 16-bit user-defined value field. Additionally, a callback function has
to be registered in the event of a doorbell. Before an endpoint can accept and
serve incoming doorbells a value range has to be allocated. Unless an incoming
doorbell belongs that range, the doorbell is dropped. All these operations are
executed through specific functions offered by the software stack.

RDMA operations can take place with arbitrarily large memory spaces. How-
ever these spaces are dependent to the size of the reserved RDMA memory,
discussed in the protocol section. When executing an RDMA transaction, one
end will have to make a library call, and one a simple memcpy. This depends
on the way the connection was set up, and is essentially interchangeable.

2.3 ZeroMQ 41

2.3 ZeroMQ

ZeroMQ, or 0MQ, is a high-performance asynchronous messaging system.
Message-oriented middleware is used in diverse settings where distributed
or concurrent systems are present, ranging from financial services to physics
simulation. ZeroMQ is used as a messaging library, that allows for the dif-
ferent components of the system to exchange messages between them. These
messages can be arbitrarily larger, ZeroMQ is oblivious of the payload it trans-
fers and thus imposes no limitations on possible applications. Unlike other
messaging systems, ZeroMQ is a library, meaning that it does not employ the
use of a message broker. This lowers the complexity and lifts the need for
maintenance.

While initially ZeroMQ was targeted towards stock trading, focus shifted to
make it a generic system supporting application in distributed and concurrent
contexts. The library has found use in a wide number of applications in
organizations like Cisco, NASA, Samsung and CERN. ZeroMQ is an open
source project and has been forked, see JeroMQ, Crossroads I/O, which later
evolved to Nanomg.

ZeroMQ has two attractive qualities. The first one revolves around perfor-
mance. The absence of a server in the middle has a direct impact on perfor-
mance, as a message’s path is essentially halved. It does not need to go from
the sender to the broker and then from the broker to the receiver. The second
one has to do with usability and employment. By eliminating the need for a
broker the effort the set up the system and run it falls significantly. Addition-
ally, the ZeroMQ API closely resembles Berkeley sockets, which makes setting
up a distributed system with certain requirements easier. An example would
be employing a server that would route messages from group A to group B
according to a set of rules, without burdening components from the two groups
with the respective logic.

The internal architecture of the ZeroMQ library is abstracted in a way that
it lends itself well to porting to other technologies, without interfering with
other parts of the system. [14]

42 Chapter 2. Background

2.3.1 Internal Architecture of ZeroMQ

Context

ZeroMQ uses the Context class, ctx_t, for holding the global state of the library.
This is created by the user explicitly, as the first action when setting up the
infrastructure. The context holds information about sockets, I/O threads and
endpoints.

Concurrency Model

ZeroMQ is a multithreaded application with each object living in its own thread.
In order for two objects to communicate with each other, commands (not to be
confused with user messages) will be exchanged. This eliminates the need for
any concurrency orchestration to be regulated through locks. Consequently no
mutexes, semaphores or conditional variables can be found within ZeroMQ.
In order to be able to exchange commands, a class has to be derived from the
object_t class. Available commands can be found in command.hpp. Commands
can also carry arguments.

Threading Model

There are two ways to approach ZeroMQ threads, from the OS’s point of view
and from ZeroMQ’s point of view.

The OS sees two kind of threads. The first kind is ”application threads”.
These threads are created outside ZeroMQ and are used to access the API. The
second kind is ”I/O threads”. These are created inside a ZeroMQ context and
are utilized to perform send and receive operations in the background. For
threads, the OS-agnostic portability class thread_t is used.

From ZeroMQ’s perspective, any object that has a mailbox is considered a thread.
The mailbox is the struct implemented in the mailbox_t class that is used in
order to queue the commands destined to any object currently residing in said
thread. The commands are processed in a sequential manner.

2.3 ZeroMQ 43

However, both I/O threads as well as sockets have a mailbox. Each I/O thread
corresponds to an OS thread, and has a single mailbox to process incoming
commands. On the other hand, multiple sockets can be residing in a single
OS thread, or, in certain cases, migrate between OS threads.

I/O Threads

I/O threads are running in the background, and are responsible for handling
network traffic in an asynchronous way. The iothread_t class is derived from
thread_t, which was mentioned earlier. It is also derived from object_t enabling
the exchange of commands with other objects for its orchestration.

Moreover, each I/O thread owns a poller object. The poller (poller_t) offers an
abstraction for different polling mechanisms provided by the OS, such as poll
and select.

Furthermore, each object living in an I/O thread is derived from the io_object_t

helper class. An io_object_t allows for the registration of a file descriptor to
the poller of the thread, with the add_fd function. This means, that when a
file descriptor event takes place (e.g. POLLIN, POLLOUT) a callback will be
invoked. Thereafter, every io_object implements the in_event() and out_event()

functions, to handle file descriptor events. When the file descriptor is no more
needed, it can of course be unregistered, using the rm_fd() function. Timers
can also be registered in a similar manner.

Another significant remark, is that the io_thread itself will register a file de-
scriptor with its poller. This file descriptor is the thread’s mailbox file de-
scriptor. When a command arrives, the poller will trigger an in_event() on
the io_thread_t, which will proceed to forward the incoming command to the
destination object that lives within it.

The following figure, see 2.10, presents an overview of the above.

In the above image the object X for example, may have registered a file de-
scriptor with the poller. Let’s assume that this file descriptor is the handle to
a file. When someone performs a write to that file a POLLIN event will take
place, which will be caught from the poller. Subsequently the poller will call
the in_event() function of object X, to handle the event.

44 Chapter 2. Background

Figure 2.10: I/O Thread Overview

Object trees

The objects that are created within the ZeroMQ library are organized in a tree
hierarchy, with its root always being the socket. As explained earlier, each
object can live in a different I/O thread, with the exception of the socket which
resides in an OS thread. The purpose of this design choice, is the provision
of a deterministic shutdown mechanism. Generally speaking, when an object
is asked to shut down, it will send shut down commands to all its children
before shutting down itself.

In order to account for edge cases, like a simultaneous shut down decision
from both parent and child, when an object wants to shut down, it will ask its
parent to shut it down.

The object tree mechanism is implemented in the own_t class, which is derived
from object_t, enabling the exchange of commands between the tree’s objects.
This own_t class also implements the function launch_child() which will asso-
ciate the child object with the current I/O thread, effectively launching it.

Messages & Pipes

ZeroMQ fulfills complex requirements for its messages, which are scheduled
through efficient implementations of pipes, contributing to its performance.
However, these data structures are not of particular interest in the context of
this thesis and therefore this matter is not inspected.

2.3 ZeroMQ 45

2.3.2 Overview & Critical Parts

The context is the first interaction of the user with ZeroMQ. It needs to be cre-
ated so that it can assume ownership of the socket, or sockets, to be used.

The socket object lives in an OS thread. Depending on the socket’s role, the
socket will create a child that is either a listener or a connecter. The listener
is the result of a bind() operation while the connecter is the result of connect()
command.

The listener is waiting for connection requests on the bound interface/address.
In case a connection request is successful the listener will create a session
object, which will in turn create an engine object. Information is exchanged
between socket and session through pipes. The engine object is the object that
handles communication with the network. Session and engine live in an I/O
thread, and are thus derived from io_object_t.

In an analogous way, the connecter requests a connection to an interface/ad-
dress, which will result in the creation of a session/engine object in case it
gets accepted.

The above are summed up in figure 2.11.

46 Chapter 2. Background

Figure 2.11: Internal Architecture

Chapter 3

Design & Implementation of the
RapidIO extension of ZeroMQ

3.1 Introduction

The RapidIO extension of ZeroMQ, introduces a new transport layer to the
messaging library. The purpose is to present a Proof of Concept for an ab-
straction layer around an RDMA-enabled interconnect, that allows the use of
a well-established, socket interface.

This enables ZeroMQ users to take advantage of the benefits RapidIO has to
offer, in an effortless way. Existing ZeroMQ users only need to change the
address in their programs, in order to employ a different transport. The user
does not have to be familiar with any RDMA-specific concepts nor with the
RapidIO protocol. This eliminates the need for coding effort, allowing for the
use of any structures and methods in place, as well as seamless swapping
between transport layers.

3.2 Architecture Extension

In order to extend ZeroMQ to use the RapidIO transport, certain RapidIO-
specific classes need to be implemented in addition to changes in some basic
classes of the library’s engine.

47

48 Chapter 3. Design & Implementation of the RapidIO extension of ZeroMQ

Below, a list of the core classes that need additions can be found, as well as
a quick description of the necessary changes.

The Address Class

The ZeroMQ address class needs to know that an address could possibly be
for RapidIO, and thus have a different format. This will allow for address
resolution to be done by the appropriate class, in this case the RapidIO address
class.

The Socket Class

The ZeroMQ socket class is called socket_base. Certain functions will be im-
plementing by the socket type classes. However other functions like bind()

and connect() share the same base implementation for every socket type and
transport.

For binding, the base socket class will check the type of transport, and will
accordingly create a listener object, passing the address as an argument. From
that point forward the transport specific listener class is responsible for the
rest of the procedure.

For establishing a connection, the socket class will correctly resolve the ad-
dress, before creating a session object. That session object will be responsible
for the new connection. It will also set up pipes between the socket and the
newly created session according to transport restrictions.

The above operations had to be extended in the socket_base class to add support
for the RapidIO transport.

The Session Class

The transport type-specific part of the ZeroMQ session class refers to the con-
nection. The connection attempt is initiated indirectly when the socket class
creates the session object. The session is then responsible for creating the
appropriate connecter object, which will handle the rest.

3.2 Architecture Extension 49

If the address passed down to the session from the socket matches the RapidIO
format, the rio_connecter object will be instantiated.

The following text describes the RapidIO classes that were implemented, to
allow for ZeroMQ to exploit the RapidIO transport. To fulfill the requirements
imposed by the architecture of ZeroMQ the following types of classes need to
be implemented:

• An address class

• A listener

• A connecter

• An engine

On top of these four classes, a fifth one was implemented. The RapidIO
mailbox’s function is described in detail below.

The RapidIO Address Class

ZeroMQ mobilizes an address class is order to resolve an address, as this is
passed down in the form of a string, from the API. Let’s assume the user
will use an address like ”tcp://192.168.1.2:4545”. This string contains three
identifiers that are necessary. The first is the protocol identifier, i.e. tcp.
This will instruct ZeroMQ to use the appropriate classes for the subsequent
operations. The second and third identifiers are the IP address and the port,
which of course translate to a specific endpoint in the system. This is covered,
among others, by the tcp_address class in ZeroMQ.

In a completely analogous way, the rio_address class was implemented. For
RapidIO, no strict addressing scheme is specified, like there is for TCP/IP. An
endpoint is made up by a pair of a destination id and a channel. In order to
retain a resemblance to the TCP/IP addressing, a RapidIO address in a ZeroMQ
context is expected to have the following form: rio://[destination id]:[port].
This will then be parsed by the rio_address class, which will resolve the address,
holding the relevant identifiers. Other parts of ZeroMQ will use this address
class to get endpoint information, whenever needed.

50 Chapter 3. Design & Implementation of the RapidIO extension of ZeroMQ

The RapidIO Mailbox

ZeroMQ has mailbox classes, as these are described in Chapter ??. The
rioh_mailbox class is in no way related to them. Its purpose is to simulate
file descriptor events, which normally manifest as a result to socket opera-
tions. For this simulation to take place, the rioh_mailbox spawns a dummy file
descriptor, which is associated with the respective object. Such objects would
be the listener, the connecter or the engine, in other words an open connec-
tion. An event on this file descriptor is triggered through a doorbell, whose
value is uniquely tied to the descriptor. The simulated fd event will then be
picked up wherever was anticipated. For this scheme to operate successfully
the rioh_mailbox class holds the dummy file descriptor and the destination ID of
the related endpoint. For the doorbell handling, it runs a background thread
to catch and process incoming doorbells, if necessary. Functions to send a
doorbell to remote rioh_mailboxes are also available through this class.

More details and a figure which help understand the above can be found under
section 3.3.

The RapidIO Listener

The listener class in ZeroMQ is the one that is responsible for listening to
incoming connection requests, approving them and creating a session/engine
pair for every new connection. The listener will initially create a RapidIO
socket and then start listening on that socket. The first event that will then
take place, will be the arrival of a doorbell, which will be handled by the
rioh_mailbox of the listener, triggering a file descriptor event on the fd associated
with the listener, in turn triggering an in_event on the listener. There, necessary
initializations for the new connection will be made, before spawning the linked
session/engine pair.

At this point, it necessary to stress the following points. The RapidIO socket
that is created here only supports Channelized Messaging. The RapidIO sub-
system uses sockets like this to set up the connection and trade necessary
information like target RDMA addresses. After this kind of information has
been exchanged a bound socket only serves subsequent connection requests,

3.2 Architecture Extension 51

repeating the same handling process, until the user cleans up before exiting
the program.

The RapidIO Connecter

The connecter class is responsible for connecting to the remote end. As a first
step it creates a RapidIO socket, which will serve as the socket for the new
connection. Next, it will send a doorbell to the listener, so that it triggers
an in_event, entering an accepting state. After that, the RapidIO connect
operation will take place. Following this, the relevant initializations will be
made, before creating the session/engine pair for the connecting part. After
that, the connecter will exit.

Same as before, the RapidIO socket is a Channelized Messaging socket, that
is exclusively used for connection setup.

The RapidIO Engine

The engine is the part of the system that interfaces with the RapidIO network
for any data transfer needs. It will handle sending and receiving data, assum-
ing both roles, regardless of whether its creation was the result of a connect
or an accept operation.

On send, the engine will perform an RDMA write, directly to the memory
of the remote end. After the write call has returned, the engine will send a
doorbell to the remote engine, in order to trigger a file descriptor event on the
remote end. This procedure takes place within the out_event function.

In order to receive, the engine utilizes a thread, as part of the rioh_mailbox object
which is constantly waiting for a doorbell, in order to trigger a file descriptor
event. This triggering will cause the callback of the in_event function, so that
the engine can read the newly written data.

The above read/write operations need to be done under a very strict orchestra-
tion, so that memory corruption does not occur. These matters are discussed
in the next section.

52 Chapter 3. Design & Implementation of the RapidIO extension of ZeroMQ

The RapidIO Helper Functions

Certain functions and data structures that are common for some or all of
the above classes are concentrated in a single header file. The rio.hpp file
includes functions supporting the necessary actions, to successfully initialize
a new RapidIO connection, for both the listening and the connecting side.
These actions include the following; Initialization of the Channelized Messag-
ing socket, the allocation of RDMA-enabled memory and the exchange of the
inbound and outbound memory addresses that are a result of this operation.
The header file is also provides functions for the allocation and the proper al-
lotment of doorbell ranges. A struct carrying the necessary information about
a RapidIO connection is also defined in this file. It is this struct that carries
crucial information about the new connection, which is passed down from the
listener/connecter to the engine. Proper shutdown functions are also part of
this file. Lastly, various global RapidIO-specific values, such as the RDMA
reserved memory base address, its size, the size of the DMA cell size or the
length of the circular buffer are also defined here.

3.3 Implementation Details

File Descriptor Event Simulation

The biggest challenge in porting ZeroMQ to use RapidIO is the inherent need
of the former for file descriptor events. The ZeroMQ framework is strongly
tied to file descriptor events for triggering virtually any operation. This need
stems from the use of sockets for an endpoint representation for any TCP/IP
connection. Since sockets are essentially treated as open files the file descriptor
describing them is prominent across the ZeroMQ codebase.

Fundamentally, an RDMA-enabled interconnect does not provide, support nor
need a socket interface and by extension a file descriptor. This is also the main
problem for the use of RDMA today. Existing applications do not provide a
fitting place for importing a new, non-standard, transport layer. This is, as
well, the case for RapidIO. A socket interface is not provided, introducing
the need to simulate file descriptors if it is to be incorporated in a standard

3.3 Implementation Details 53

setting.

In the scope of the current extension, this complication is encountered in the
following way. The linux kernel offers a way to create a ”dummy” file descriptor
which can be used as a wait/notify mechanism, through the eventfd(2) call.
eventfd() returns a file descriptor on which the write(2) and read(2) operations
can be performed, respectively increasing and decreasing a counter of the
eventfd object which is maintained by the kernel. Through this counter the
number of file events can be tracked and, in a way, queued, effectively creating
a dummy file descriptor, over which we can have full control. This allows us to
exploit it and use it interchangeably as a “socket interface” for our needs.

Consequently, in order to simulate a file descriptor event, we can simply send a
doorbell to the concerning endpoint, which will already have a doorbell handler
in place. The handler will process the incoming doorbell event, and according
to the value communicated, a write(2) operation will be performed for the
corresponding file descriptor. This will trigger a file descriptor event, which
will be handled by the poller (poll(2)) object, with which the file descriptor
is associated. Afterwards, the poller will issue a callback, on par with the
codebase’s logic.

Doorbell Handling

In order for the file descriptor events described in the previous subsection to
function correctly, doorbell operations are implemented as part of the RapidIO
Mailbox class, as described before. Each of the connecter, listener and engine
classes will initialize a RapidIO Mailbox on creation. The newly created mail-
box will create a file descriptor through an eventfd(2) call, which will act as
the class’ file descriptor. On top of that the rioh_mailbox will create a thread
which will run in the background as the doorbell handler, catching incoming
doorbell events and taking the necessary action. Every class will check the
doorbell’s source and payload. If any one of those two are not correct, the
doorbell event will be ignored.

When the rioh_mailbox of the listener receives a valid doorbell, it will perform
a write(2) to the file descriptor, which will subsequently trigger the in_event()

function of the rio_listener. In the callback, the accept() call will take place

54 Chapter 3. Design & Implementation of the RapidIO extension of ZeroMQ

for the new connection.

The rio_connecter is never expected to receive a doorbell. Its rioh_mailbox is only
used to send a doorbell before issuing a connection request. It does not create
a thread listening for doorbells, and does not enable any doorbell range.

The doorbell handling for the rio_engine is tied to the memory handling logic
and will be discussed in the next subsection.

Figure 3.1: Mailbox functions overview

Doorbell Allocation

Doorbell events carry the following information; The destination ID of the
source endpoint, the destination ID of the target endpoint and a uint64_t value.
Since different components from the same endpoint are listening for doorbells,
it is important to have a mechanism to differentiate between them. In the next
paragraphs the scheme for the doorbell range allotment is presented.

The listener object will only care about a doorbell with the proper target desti-
nation ID carrying a value of RIO_ACCEPT. The RIO_ACCEPT is defined as a magic
number in the rio.hpp header file. A doorbell with the same value should not
be observed in any other scenario, except from when a connection attempt is
being made. The connecter object follows the same rule, but expects a value
of RIO_CONNECT, which is also defined in the rio.hpp file. In the current imple-
mentation these two magic numbers are the first two numbers, namely 0 and
1, in the available doorbell range.

3.3 Implementation Details 55

For the RapidIO engine, things are more complex. The ZeroMQ instance must
be able to hold many parallel connections open at the same time. Every one of
those connections should allow for the transfer of data even if some or all of
the other connections are operating. This part is tied to the memory handling
logic which is presented just below. The RDMA memory is initially divided
into as many parts as there are possible connections. In other words if the
system consists of four nodes, one node (A) should have incoming memory
for the other three (B, C & D). Consequently the reserved memory on node A
will be split to three, equal parts. Each part will then be further partitioned
to individual RDMA cells, which are part of a circular buffer structure, also
explained in the next part.

In order to support the scheme described above, doorbell ranges are mapped
to memory positions in the following way. For node A the first connection
established will always refer to the first of the three pieces of reserved memory.
The engine object that will be created to handle this connection will drop any
doorbells, whose values are not tied to the cells within that region. The same
logic applies for subsequent connections and subsequent engine objects.

Doorbell values are calculated as follows. The initial values of 0 and 1, re-
served for the listener and connecter, are skipped. The doorbell range for the
first connection will start at 2. It will end at a value equal to the total po-
sitions of the circular buffer, divided by the expected number of connections.
Applying the same logic every subsequent doorbell range can be calculated, as
follows.

range_start = prev_range_end
range_end = prev_range_end+ cbuf _length/num_conns
prev_range_end = range_end

Where cbuf _length is the length of the circular buffer and num_conns is the
maximum number of connections. For the first range group the initial value
of prev_range_end is 2, which is RIO_CONNECT+1. The actual allocation would be
[range_start, range_end)

In order for this to become more understandable, let’s assume that we have
the following values:

56 Chapter 3. Design & Implementation of the RapidIO extension of ZeroMQ

num_conns 8
cbuf_length 16

In that case the doorbell allocation would be the following:

RIO_ACCEPT [0]
RIO_CONNECT [1]
CONNECTION_0 [2-18)
CONNECTION_1 [18-34)
CONNECTION_2 [34-49)
CONNECTION_3 [49-65)
CONNECTION_4 [65-81)
CONNECTION_5 [81-97)
CONNECTION_6 [97-113)
CONNECTION_7 [113-129)

Message & Memory Handling

When a ZeroMQ user wants to make a transfer, the relevant data will be
passed, in a raw fashion, to a zmq_send() API call. The user will be sending a
batch of data and will be expecting the same exact batch of data to be available
at the remote end. For this subsection, this batch of data will be referred to
as ”the message”.

When RapidIO is about to make a data transfer, it is concerned with the bytes
that are available for sending, and making them available at the predetermined
memory area of the remote endpoint. It is common for the message size to be
larger than the available RDMA memory, introducing the need to splice the
initial message to smaller parts, in order to carry out the transfer. It is also
possible, that multiple connections are active at a given moment in time, in-
troducing a second need to assign RDMA memory exclusively to each of them.
It is thus necessary to implement a scheme that allows for such scenarios.

We begin with two RapidIO endpoints, that have the same amount of RDMA
memory. When establishing the connection, the two endpoints exchange in-
bound memory addresses, so that every endpoint knows where to write. The

3.3 Implementation Details 57

RDMA memory is split into an arbitrary number of RDMA buffers. Each
send/recv operation will take place for the number of bytes that is equal to
an RDMA buffer. Each engine object holds two arrays of flags. The first one
represents whether an inbound memory position holds data that has been read
or not. The second one represents whether an outbound memory position is
available for writing. The engine also has two indexes, one for each of these
arrays. Let’s examine three occasions.

Firstly, let’s assume that the message to be transmitted is smaller or equal
the RDMA buffer size. In that case, the sender will perform a check to see if
the current outbound index’s slot is available for writing. If it is, the sender
performs a dma write, updates its outbound array to mark the position as
unavailable for writing and sends a doorbell to the receiver to inform it of the
new data. After this action, the receiver will be ”woken up” by the doorbell,
which will be carrying the outbound index of the sender (i.e. the inbound
index of the receiver), as its payload, and will update the respective flag in its
inbound memory array. The receiver will then check whether the corresponding
memory position is indeed set, and if it is, it will continue to read the data,
before pushing the message to the RapidIO session, to be later return through
the API zmq_recv() call. It is noted, that at this step, no memory copying takes
place. The system component waiting for the data is simply passed the pointer
to memory. Just after the data is ”read”, i.e. is no longer need, the receiver
will send a doorbell back to the sender, so that the sender updates its records,
making the just-read memory position available to write to again. However,
this is not happening in sync. This allows the sender to “queue” subsequent
data chunks, before the previous ones have been processed.

Now, let’s assume that the message to be transmitted is larger than the RDMA
buffer size, but not larger than the totally available RDMA memory. In this
case, the message will be split into chunks. For every chunk the procedure
outlined in the previous example, will be repeated. In this scenario, the asyn-
chronicity of the design will be exploited, and subsequent chunks will not
be limited by read speed. At some point in time, before the transaction is
actually finished, all the data will be present at the receiving node, and the
sender will have returned. This favours performance compared to a completely
synchronized design.

58 Chapter 3. Design & Implementation of the RapidIO extension of ZeroMQ

Lastly, we have the occasion where the message to be transmitted is larger than
the reserved RDMA memory. In that case, the operation sequence remains the
same, but at some point the sender will possibly have to block, in case it is
vastly faster compared to the receiver. Both parties will have to do a complete
cycle through the circular buffer, possibly more, depending on the message
size.

Figure 3.2: Memory Scheme Overview

3.3 Implementation Details 59

Figure 3.3: Sequence for single RDMA Buffer Transfer

Chapter 4

Evaluation

This chapter aims to evaluate the work presented in the previous chapters of
this thesis. Initially the choices of benchmarks and the various analyses are
explained, before presenting the respective methods. Next, the measurements
are presented and an interpretation of the results is offered.

4.1 Hardware & Software Setup

The hardware setup used for the purposes of benchmarking consists of four 2U
Quad units, each of them housing four nodes, totaling to 16 nodes. Each node
is fitted with an Intel Xeon L5640, clocked at 2.27Ghz and 48GB of RAM.
Every node is equipped with an IDT Tsi721 PCIe to RapidIO bridge card, with
a nominal line rate of up to 16Gb/s. The NICs (Network Interface Cards) are in
turn connected to a 38-port Top Of Rack (ToR) RapidIO Generation 2 switch
box. The switch ports are configured to 20Gb/s. Connections are done using
QSFP+ cables, or Quad Small Form-factor Pluggable cables, which are cables
that enable the network interfacing of hardware to fiber optic cable, active or
passive electrical copper connections. They support four channels of 10Gb/s,
rendering them more than adequate for our needs.

The RapidIO software consists of the RRMAP libraries, developed my IDT,
and the Linux kernel drivers.

61

62 Chapter 4. Evaluation

4.2 Benchmarks & Measurements

For benchmarking, the ZeroMQ performance tests for latency were used. The
two actors in these tests are the client, which will be the first one the perform
a send operation, and the server, which will be the first one to receiver a
message.

The server is run first. It initiates the ZeroMQ context and a socket with is of
type ”ZMQ_SERVER”. Afterwards the socket is bound to the RapidIO address
that consists of the destination ID of the receiving node and the channel to
receive Channelized Messages to. Then, a ZeroMQ message is initiated, before
making a receive call, which will block until the message is received, , an error
occurs, or a timeout is reached. Afterwards, the message will be sent back
to the client. This procedure will be repeated for as many times as specified
in the program arguments. Finally, the sender will clean up, by closing the
message structure, the socket and terminating the context. No measurements
are taken on the server side.

The client is executed after the receiving socket has been bound. It will also ini-
tialize the ZeroMQ context and create a ZeroMQ socket of type ”ZMQ_CLIENT”.
It will then attempt to connect to the network address of the server. If all goes
well, the message structure will be created, before starting a timer and sending
the message to the server. After the send call the sender will wait to receive
the message back. The send/receive pair will be run as many times as specified
by the program arguments. After all loops are finished, the timer is stopped.
This provides the client with the time it took to send and receive a message
of fixed size for a specific number of times.

If this elapsed time is divided by the roundtrip count and then by two, the
round trip time of the system between sender and receiver, or A and B, is given.
Furthermore, if we divide the round trip time by two, we get the latency of the
system, in other words the time it takes for a fixed-size message to get from
point A to point B. Of course, after the latency is known, the throughput can
be calculated by dividing the message size with the latency.

In the next subsections, performance is evaluated while modifying different
parameters .

4.2 Benchmarks & Measurements 63

4.2.1 Latency

Here, the latency of the system is evaluated, juxtaposed with the message
size.

The results are presented in the graphs below. A line which represents the
values taken from the same test over TCP with 1GbE is also part of the graph.

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B 1K 2K 4K

Transaction Size

175

200

225

250

275

300

325

350

L
at
en
cy

(u
s)

RIOZMQ

ZeroMQ over TCP/IP

Latency

Figure 4.1: Latency over RapidIO and TCP/IP [Small]

The benchmark was run for a roundtrip count of 10000 times for each trans-
action size. The DMA Cell Size for RapidIO was set at 4KB, the smallest
possible, using only one position of the circular buffer.

As we can see the performance of the system over RapidIO is faster compared
to its TCP counterpart. This was expected, as the RapidIO protocol can achieve
much better latency results compared to TCP. This is mainly due to the over-
head difference between the two methods. TCP introduces a high complexity
overhead, through the need to traverse the network stack, even for sending
one byte, requiring context changes and consuming CPU cycles. RapidIO on

64 Chapter 4. Evaluation

8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Transaction Size

0

2000

4000

6000

8000

L
at
en
cy

(u
s)

RIOZMQ

ZeroMQ over TCP/IP

Latency

Figure 4.2: Latency over RapidIO and TCP/IP [Large]

the other hand just copies the byte to remote memory, bypassing the host’s
CPU.

Additionally, the rate at which the latency is increased relative to bytes
transmitted is significantly lower for the RapidIO implementation, hinting
at promising scaling capabilities.

4.2.2 Throughput

In the next graph, the throughput of the system against message size is pre-
sented. The figure refers to a one-to-one pair.

For each transaction size the benchmark was run with a roundtrip count of 20.
The DMA Cell Size was set at 32MB, while the Circular Buffer length was 16.
In other words, 512MB of reserved memory were cut at 16 chunks of 32 MB.
This parameter combination was the most performing result, as it occurred
from the circular buffer length and DMA cell size scan, presented later in the
section.

4.2 Benchmarks & Measurements 65

1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

51
2M 1G

Transaction Size

0

2

4

6

8

10

12

14

16

T
h
ro
u
gh
p
u
t
(G

b
/s
)

RIOZMQ

Max Theoretical Speed

Max Measured Speed

Throughput

Figure 4.3: ZeroMQ Throughput over RapidIO

For every transaction, an overhead is introduced as part of the RDMA or-
chestration. This means that when a transaction is small, performance is
heavily impacted by overhead. However, as size increases the impact of the
overhead seizes to be so significant as the utilization of the line is better.
This is also what is observed on the throughput graph above. We see that for
large enough transactions (more than 512MB), throughput reaches a plateau
of around 8.5Gbps. This is slightly more than half of the nominal link speed.
However, as presented in chapter 2, after accounting from RapidIO and PCIe
translations, and weighing the overhead of the kernel driver and the libraries,
the expected practical speed should be around 11.1 Gbps. If this speed is
regarded as a maximum, ZeroMQ over RapidIO can achieve around 77% uti-
lization.

Throughput was also investigated in a many-to-one scenario. In the following
scenario, a node is acting as the server, receiving transactions from multiple
clients.

Each transaction was run with the same parameter combination as the previous

66 Chapter 4. Evaluation

2 4 8 15

Nodes

2

4

6

8

10

T
h
ro
u
gh
p
u
t
(G

b
/s
)

Mean per node

Aggregate

Throughput

Figure 4.4: ZeroMQ Throughput over RapidIO - Multiple clients

throughput test.

When multiple nodes are communicating with one server, the nodes are fight-
ing for bandwidth, on the link between the switch and the server. The red
line we are seeing, is the mean speed across the reported speeds from all the
clients. In other words, we see what the effective bandwidth per client is, in a
many-to-one scenario. The green line is the aggregate speed, the sum of the
speeds of all the nodes.

We can see that the system scales well, as the overall throughput of the system
remains near constant, while the number of clients is increasing.

4.2.3 Circular Buffer Length

Graph 4.5 presents a scan of the circular buffer length parameter, which is
part of the RDMA implementation for RapidIO.

For each circular buffer length, the benchmark was run with a roundtrip count
of 20. The message size remained fix at 512MB, and the DMA cell size was

4.2 Benchmarks & Measurements 67

1 2 4 8 16 32 64

Circular Buffer Length

7.6

7.8

8.0

8.2

8.4

8.6

T
h
ro
u
gh
p
u
t
(G

b
p
s)

Message Size: 512MB
DMA Cell Size: 32MB

Circular Buffer Length Scan

Figure 4.5: RapidIO Circular Buffer Length Scan

32MB for every occasion.

As can be seen from the graph, a significant increase in performance can be
observed when increasing the circular buffer positions from one to two. This
increase can be explained in the following way. Let’s assume that the circular
buffer consists of one position. A dma write operation is executed. The next
one will have to wait, until the respective read operation is done, when the
writer will be notified. This introduces a delay. This delay is instantly mended
by adding another position to the circular buffer. Of course in this case, the
third subsequent write operation will wait and so on and so forth. However,
we see that for a length higher than two, the performance increase, if any, is
considerably lower. The sweet spot appears to be between 8 and 16 positions.
After that, it appears that the overhead added by position calculation starts
hindering performance

68 Chapter 4. Evaluation

4.2.4 DMA Cell Size

The plot depicted in 4.6 shows a scan of the DMA cell size, corresponding to
one position of the circular buffer.

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32
M

64
M

12
8M

DMA buffer size

1

2

3

4

5

6

7

8

9

T
h
ro
u
gh
p
u
t
(G

b
p
s)

Message Size: 512MB
Circular Buffer Length: 8

DMA Scan

Figure 4.6: RapidIO DMA Cell Size Scan

For every DMA buffer size, the benchmark run roundtrip for 20 times. The
message size here also remained fix at 512MB, employing a circular buffer of
8 positions.

As was expected, a larger DMA cell size yields better performance. For smaller
cell sizes, the messages has to be cut into a higher number of chunks, in-
troducing more overhead, and consequently hindering performance. The best
outcome comes from DMA buffer sizes of 4, 8, 16 and 32 MB, with the last
one being the best, but only slightly.

4.3 Breakdown Analysis 69

4.3 Breakdown Analysis

In this section an effort is made to understand the performance distribution
across the system’s components.

In order to do that, timestamps were taken in various locations across the
critical path of the send and receive transactions.

4.3.1 Send

The results for the send operation and can be seen in figures 4.7 and ??.

As is evident from the column graphs, the overwhelming majority of the time is
consumed by the dma_write() operation. Apart from that, the encode() function
also requires a lot of time. That happens because the ZeroMQ encoder class
will do a memcpy() operation. As we can see, aside from the dma_write() and
encode() operations, the impact of the others are trivial.

Conclusively, we cannot see any unexpected slowdowns.

4.3.2 Receive

The column graphs in 4.9 and 4.10 show the results for the receive opera-
tion.

Here the entry in_event is the one that takes the most time. This entry refers
to the time elapsed between two subsequent in_event() calls. This time can
contain the waiting time for a doorbell, doorbell handling, and the overhead
from file descriptor operations. The decode() function also takes a lot of time
as the messages get larger as it contains a memory copy operation, which
requires resources.

Overall, this analysis produced two remarks. Firstly, the necessary file descrip-
tor and doorbell operations introduce a notable delay. Secondly, the memory
operations taking part in the encoder and decoder classes of ZeroMQ are an
important bottleneck of the implementation.

70 Chapter 4. Evaluation

Figure 4.7: Breakdown analysis for the ZeroMQ sender [Small]

4.3 Breakdown Analysis 71

Figure 4.8: Breakdown analysis for the ZeroMQ sender [Large]

72 Chapter 4. Evaluation

Figure 4.9: Breakdown analysis for the ZeroMQ receiver [Small]

4.3 Breakdown Analysis 73

Figure 4.10: Breakdown analysis for the ZeroMQ receiver [Large]

Chapter 5

Prior Art

5.1 Introduction

In this chapter, work to the technologies is presented. The chapter first refers
to RapidIO applications and it then talks about the use of ZeroMQ in various
contexts, before finally citing previous diploma theses of similar content.

5.2 RapidIO

Work related to RapidIO is generally difficult to be found. Since its tradi-
tional application field is embedded systems, we assume that a big portion of
research is proprietary. Research has been made regarding its potential use
in realtime applications, as presented in [15], in 2004. In 2010 a paper about
its suitability for a high-performance, heterogeneous embedded system was
published [16].

In 2005 a Linux network driver implementation was introduced [17].

In 2016 RapidIO to PCIe bridge cards were designed, allowing for virtually any
application [18]. The work presented in [?], introduces the porting of ROOT , a
data processing framework targeted at physics data analysis and simulations,
[20] and DAQPIPE, a benchmark application to test different network fabrics in
preparation for the LHCb experiment [?] at CERN,[22], to employ the RapidIO
transport, validating its suitability in a modern, HPC context.

75

76 Chapter 5. Prior Art

5.3 ZeroMQ

ZeroMQ is a popular messaging system, used in a wide number of applications.
For example, ZeroMQ was a leading candidate for employment on CERN’s
middleware solutions to operate accelerators [23].

More closely tied to this work, the ZeroMQ library has been ported to use other
high-bandwidth transports, like VMCI [24], which provides communication
channels between virtual machines and host. Another implementation supports
SCIF [25], which offers a communication backbone between host processors
and Xeon Phi coprocessors, and is RDMA-enabled.

5.4 RDMA-enabled interconnects

In the context of previous diploma theses that have been carried out in the
Computing Systems Laboratory at NTUA, notable work with RDMA-enabled
interconnects has been made. One group refers to the use of 10GbE NICs [26],
proposing the SLURPoE RDMA protocol, which was further investigated in
[27, 28] for virtualization.

Another group used the myrinet interconnect, a switched fabric interconnect
technology that supports RDMA operations, for various applications such as
Storage Networks [29, 30] and multi-processor interconnection [31].

It is evident, that RDMA-enabled interconnects offer promising qualities, like
low latency, high bandwidth and scalability, and are of interest for many
applications.

Chapter 6

Conclusions and Future Work

This chapter contains the conclusions for the work done in the scope of this
thesis. A summary of lessons learned is presented, before discussing possible
future work.

6.1 Concluding Remarks

As a result of this diploma thesis, an extension of the ZeroMQ messaging
library to support the RapidIO transport has been implemented. It allows
the use of ZeroMQ as a communication interface in a multi-node, distributed
system. Since ZeroMQ provides an interface which is heavily abstracted from
its implementation, the use of RapidIO in an HPC environment is facilitated.
The coding effort which accompanies the adaptation of a new transport is
lifted, as ZeroMQ allows for seamless, trivial choice of transport.

ZeroMQ is heavily programmed around socket interfaces. The implementation
process allowed for the investigation of the paradigm incompatibility between
the socket programming and memory coherency schemes. A simple mechanism
to unify the two communication paradigms has been proposed.

The use of RapidIO has been investigated outside of its usual context, the
embedded world. Performance measurements were taken in the context of a
16-node HPC setting, allowing for an evaluation of the protocol.

77

78 Chapter 6. Conclusions and Future Work

6.2 Future Work

As part of this thesis a Proof of Concept was created. However, the sys-
tem’s performance can be increased with a possible number of modifications
and extensions. Additionally, certain aspects for further evaluation could be
investigated. This section proposes potential directions for future work.

On the implementation level:

• The circular buffer implemented in the RapidIO engine of ZeroMQ gives
way for optimization. The number of RDMA cells that are used per
RDMA transaction could be calculated dynamically, depending on mes-
sage size and reserved memory constraints.

• The circular buffer could be replaced by another data structure, like a
queue. With the proper application of an appropriate algorithm the per-
formance could possibly see an increase.

• The employment of zero-copy operations across the critical path could be
investigated, further improving performance.

• The ZeroMQ parts that presented themselves as bottlenecks in the Per-
formance Analysis section of the Evaluation chapter, are candidates for
optimization. Not only in the context of the RapidIO transport, but for
ZeroMQ in general.

On the evaluation level:

• In order to measure the performance of doorbells, we could get logs from
the NIC, for the breakdown sections on the receive side.

• The system could be tested with more than 16 nodes. Further studying
its scaling behavior would reveal more performance critical parts.

• A real-life benchmark could be run, like a physics simulation across a
distributed system. This would stress the system both in terms of latency
and throughput, evaluating the feasibility of its use in such settings.

Bibliography

[1] Mellanox Technologies, Introduction to InfiniBandTM - White Paper
http://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf

[2] G. F. PFister, An introduction to the Infiniband architecture, High Perfor-
mance Mass Storage and Parallel I/O:Technologies and Applications. New
York, Wiley-IEEE Press, 2002, pp 616-632

[3] Intel Corporation, Intel QuickPath Architecture
https://www.intel.com/pressroom/archive/reference/whitepaper_QuickPath.pdf

[4] ZeroMQ https://github.com/zeromq/libzmq

[5] Motorola Semiconductor Product Sensor RapidIOTM:
An Embedded System Component Network Architecture
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4945&rep=rep1&type=pdf

[6] S. Fuller, RapidIO Trade Association, RapidIO: The Embedded System In-
terconnect John Wiley & Sons, Ltd, 2005

[7] RapidIO.org, RapidIOTM The Interconnect Architecture
for High Performance Embedded Systems - White Paper
http://www.rapidio.org/files/techwhitepaper_rev3.pdf

[8] G. Shippen, System Interconnect Fabrics:Ethernet versus RapidIO® Tech-
nology http://cache.freescale.com/files/32bia/doc/app_note/AN3088.pdf

[9] RapidIO.org, RapidIOTM Interconnect Specification Version 4.0
http://www.rapidio.org/wp-content/uploads/2016/06/RapidIO-Specification-
4.0.pdf

[10] PCI-SIG, PCI Express® Base Specification Revision 2.1

79

80 Bibliography

[11] RapidIO.org, RapidIOTM Interconnect Specification Version 3.1
http://www.rapidio.org/wp-content/uploads/2014/10/RapidIO-3.1-
Specification.pdf

[12] RapidIO.org RapidIO Linux Kernel Driver, 2016
https://github.com/RapidIO/kernel-rapidio

[13] RapidIO.org, RapidIO Remote Memory Access Platform software, 2016
https://github.com/RapidIO/RapidIO_RRMAP

[14] Internal Architecture of libzmq - White Paper
http://zeromq.org/whitepapers:architecture

[15] D. Bueno, A. Leko, C. Conger,I. Troxel and A. D. George, Simulative
analysis of the RapidIO embedded interconnect architecture for real-time,
network-intensive applications , 2004, Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks

[16] W. Changrui, C. Fan and C. Huizhi, A high-performance heterogeneous
embedded signal processing system based on serial RapidIO interconnec-
tion, 2010, 3rd IEEE International Conference on Computer Science and
Information Technology 2 611-614

[17] M. Porter, RapidIO for Linux, 2005 http://landley.net/kdocs/ols/2005/ols2005v2-
pages-43-56.pdf

[18] Integrated Device Technology Tsi721TM Datasheet, 2016
https://www.idt.com/document/dst/tsi721-datasheet

[19] S. Baymani, K. Alexopoulos and S. Valat, Exploring RapidIO technology
within a DAQ system event building network, 2017, IEEE Transactions on
Nuclear Science 9 2598 - 2605

[20] Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data
Analysis Framework, Proceedings AIHENP’96 Workshop, Lausanne, Sep.
1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See also
http://root.cern.ch/.

[21] LHCb Collaboration, The LHCb Detector at the LHC
http://inspirehep.net/record/796248/

Bibliography 81

[22] D. Cámpora, S. Valat, B. Vőneki, S. Baymani, LHCB-DAQPIPE Wiki
https://gitlab.cern.ch/svalat/lhcb-daqpipe-v2/wikis/home

[23] A. Dworak, F. Ehm, W. Sliwinski, M. Sobczak, MIDDLEWARE TRENDS
AND MARKET LEADERS 2011
http://zeromq.wdfiles.com/local–files/intro%3Aread-the-manual/ Middle-
ware%20Trends%20and%20Market%20Leaders%202011.pdf

[24] I. Kulakov, VMCI extension for ZeroMQ
https://github.com/Kentzo/libzmq/tree/vmci

[25] A. Santogidis, SCIF extension for ZeroMQ
https://github.com/theWayofthecode/libzmq/tree/scif

[26] Ν. Νικολέρης, Σχεδίαση και Υλοποίηση μηχανισμού απευθείας
απομακρυσμένης πρόσβασης στη μνήμη με χρήση προγραμματιζόμενου
προσαρμογέα δικτύου 10GbE, Διπλωματική Εργασία, Εθνικό Μετσόβιο
Πολυτεχνειό, 2009

[27] Ε. Κοζύρη, Ένταξη Σημασιολογίας Δικτύων Διασύνδεσης Υψηλής
Επίδοσης σε Εικονικές Μηχανές, Διπλωματική Εργασία, Εθνικό Μετσόβιο
Πολυτεχνειό, 2010

[28] Σ. Ψωμαδάκης, Δίκτυα Διασύνδεσης Υψηλής Επίδοσης σε Εικονικά
Περιββάλοντα, Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, 2011

[29] Α. Νάνος, Σχεδίαση Και Υλοποίηση Μηχανισμού Μεταφοράς Δεδομένων
Από Συσκευές Αποθήκευσης Σε Δίκτυα Myrinet, Χωρίς Τη Μεσολάβηση
Της Ιεραρχίας Μνήμης, Διπλωματική Εργασία, Εθνικό Μετσόβιο
Πολυτεχνείο 2006

[30] Κ. Βενετσανόπουλος, Σχεδίαση και Yλοποίηση Oδηγού Συσκευής για
τη Χρήση Προσαρμογέα Myrinet ως Αποθηκευτικού Μέσου Υψηλής
Επίδοσης στο Λειτουργικό Σύστημα Linux, Διπλωματική Εργασίας,
Εθνικό Μετσόβιο Πολυτεχνείο, 2010

[31] Β. Λιασκοβίτης, Χρονοδρομολόγηση Φωλιασμένων Βρόχων σε Συστοιχία
Πολυεπεξεργαστών Συνδεδεμένων με Myrinet, Διπλωματική Εργασία,
Εθνικό Μετσόβιο Πολυτεχνείο, 2004

Bibliography 83

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Objective
	Contributions

	Document Structure

	Background
	Interconnect Technologies
	Bus and Fabric Architectures
	Interconnection in High Performance Computing

	RapidIO
	Protocol
	RDMA
	Challenges in RDMA
	Link Speed
	Experimental Approach
	Software Stack

	ZeroMQ
	Internal Architecture of ZeroMQ
	Overview & Critical Parts

	Design & Implementation of the RapidIO extension of ZeroMQ
	Introduction
	Architecture Extension
	Implementation Details

	Evaluation
	Hardware & Software Setup
	Benchmarks & Measurements
	Latency
	Throughput
	Circular Buffer Length
	DMA Cell Size

	Breakdown Analysis
	Send
	Receive

	Prior Art
	Introduction
	RapidIO
	ZeroMQ
	RDMA-enabled interconnects

	Conclusions and Future Work
	Concluding Remarks
	Future Work

	Bibliography

