

Benchmarking
ROOT

Comparison of ICC compiled version vs GCC

compiled one.
ROOT on different architectures.

PROOF – CPU benchmark, I/O benchmark.

Mirela-Madalina Botezatu
Supervisor: Andrzej Nowak
Revision 3 : 03/08/2012
Originally published : 05/03/2012

Benchmarking ROOT

2

1. Comparison of ICC compiled version vs GCC compiled one.

The compiler versions used to compile ROOT and the version of ROOT itself are shown in the following

table.

Optimization levels:

 GCC - O2 (Full optimization; generates highly optimized code and has the slowest compilation
time)

 ICC - O2 (Optimizes for code speed and it is the generally recommended optimization level)

The tests we ran are classical root tests used in benchmarking root’s performance.

 ./bench -b –q
 ./stress -b –q well known root test (mixture of I/O and CPU)
 ./stressShapes -b –q
 ./stressLinear linear algebra test
 ./stressSpectrum -b –q peak search (typical pattern recognition)
 ./stressFit random number generation and fitting with TMinuit

As performance measures we took into account the outputted values of Rootmarks and CPU
time. These tests were ran on different platforms as it is also relevant to see on which we obtain the
best results.

The different architectures are:

Code
Name

Model

Frequency

Cores

Sockets

Hyper-

Threading

Cache

RAM

Westmere

Intel(R)
Xeon(R) CPU

X5650

2931 MHz

24

2

ON

12288KB

48GB

Sandy
Bridge

Intel(R)
Xeon(R) CPU

E5-2680

2713 MHz

32

2

ON

20480KB

64GB

Magny
Cours

AMD
Opteron(tm)

Processor
6164 HE

1679 MHz

48

4

N.A.

12288KB

96GB

Root 5.32
GCC 4.6.2
ICC 12.1.2

Benchmarking ROOT

3

In order to compare the results we had to scale the values according to the frequency of the CPU-s we
were running on.

We introduce a scaling factor, a value by which we will multiply our results for Rootmarks and divide
the CPU time, in order to make a fair comparative analysis. This scaling factor is computed with
respect to the frequency we have on Westmere machine.

We have three different machines with different micro-architectures. Frequency is just one of the
differentiating features but it tells us how much work can be done by the CPU in a certain time.
As in our paper we present the values for CPU time and for Rootmarks (a performance measure that is
also based on CPU time), we can have some insight on the behavior of these benchmarks on different
architectures if we scale the results relative to a fixed frequency.

Consequently:

 Westmere 2931 MHz
 Sandy Bridge 2713 MHz -> scaling factor = 1.09
 Magny-Cours 1679 MHz -> scaling factor = 1.72

Turbo mode was enabled on all the machines. We did not set CPU affinity

Our frequency scaled results are the following:

Westmere

GCC 4.6.2 ICC 12.1.2

Test Rootmarks CPU Time
(seconds)

stressFit 2588 3.7

stress 1647 22.6

stressShapes 3269 1.4

stressLinear 2049 10.3

stressSpectrum 2754 5.5

bench 2571 60.9

Test Rootmarks CPU Time
(seconds)

Gain (%)

stressFit 3017 3.1 16.5

stress 1727 21.5 4.8

stressShape
s

3880 1.2 18.6

stressLinear 2202 9.8 7.4

stressSpectr
um

3064 4.9 11.2

bench 2505 62.3 -2.5

Gain* represents the increase in performance we obtain in ICC compiled version vs the GCC compiled one.

Benchmarking ROOT

4

Sandy Bridge

GCC 4.6.2 ICC 12.1.2

Test Rootmarks CPU Time

(seconds)

stressFit 3023 3.15

stress 1795 27.5

stressShapes 3515 1.35

stressLinear 2405 8.96

stressSpectrum 3198 4.7

bench 3168 49.1

Test Rootmarks CPU Time
(seconds)

Gain
(%)

stressFit 3472 2.7 14.8

stress 1910 19.2 6.4

stressShapes 4229 1.12 20.3

stressLinear 2551 8.4 6.0

stressSpectru
m

3488 4.3 9.0

bench 3026 51.3 -4.4

Gain* represents the increase in performance we obtain in ICC compiled version vs the GCC compiled one.

AMD
GCC 4.6.2 ICC 12.1.2

Test Rootmarks CPU Time
(seconds)

stressFit 2201 4.4

stress 1613 22.9

stressShapes 2879 1.4

stressLinear 1788 12

stressSpectrum 2067 7.2

bench 2782 56.3

Test Rootmarks CPU Time
(seconds)

Gain
(%)

stressFit 2509 3.89 13.9

stress 1680 22.2 4.1

stressShapes 3309 1.3 4.9

stressLinear 1911 11.2 6.8

stressSpectru
m

2350 6.5 13.6

bench 2614 60 -6.0

Gain* represents the increase in performance we obtain in ICC compiled version vs the GCC compiled one.

Benchmarking ROOT

5

Except for the bench test, we see that we obtain better results on ROOT compiled with ICC than on
the version compiled with GCC.

Comparing the Rootmarks, we see that on average ICC is :

 8.7% better than GCC on the Intel Sandy Bridge machine.
 7.9% better than GCC on the AMD machine
 9.3% better than GCC on the Westmere machine

For the ICC compiled versions in terms of CPU time we have an average speedup of:

 1.3 on Sandy Bridge vs AMD and
 1.13 on Sandy Bridge vs Westmere.

For the ICC compiled versions in terms of Rootmarks we see that we have :

 29.6% better results on Sandy Bridge than on AMD
 14.2 % better results on Sandy Bridge than on Westmere

2. ROOT on different architectures

ICC

 Machines
Tests

Westmere

 Sandy-Bridge Magny-Cours

 Rootmarks Rootmarks Rootmarks
stressFit 100% 115% 83.1%
stress 100% 110.5% 97.2%
stressShapes 100% 108.9% 85.2%
stressLinear 100% 115.8% 86.7%
stressSpectrum 100% 113.8% 76.6%
bench 100% 120.7% 104.3%

GCC

 Machines
Tests

Westmere

 Sandy-Bridge Magny-Cours

 Rootmarks Rootmarks Rootmarks
stressFit 100% 116.8% 85%
stress 100% 108.9% 97.9%
stressShapes 100% 107.5% 88%
stressLinear 100% 117.3% 87.2%
stressSpectrum 100% 116.1% 75%
bench 100% 123.2% 108.2%

Benchmarking ROOT

6

3. PROOF – CPU benchmark, I/O benchmark

We used the functionality of TProofBench class which steers the running of two type of
benchmarks: cycle-driven (aka CPU-intensive) and data-driven (aka IO-intensive).

CPU:
We start a new session where we set the number of workers equal to the nr of cores we have on the
machine (24).
TProof:Open("workers=24")
We called the function:
RunCPU(Long64_t ncycles=-1, Int_t start=-1, Int_t stop=-1, Int_t step=-1)
For ncycles: we left it to default value: 1000000 and also for the other parameters (default values), as
it starts with one worker and it stops with the number of workers given as parameter to the session
initiated.

I/O:
We called the function:
RunDataSet(const char *dset = "BenchDataSet", Int_t start = 1, Int_t stop = -1, Int_t step = 1);
One has to create a dataset first: for example :MakeDataSet("ssdSATA"), and we also ran it with the
default parameters.

Machine: Westmere [Intel(R) Xeon(R) CPU X5650 2713 MHz, 24 cores , 2 sockets, Hyper-Threading
on, Cache size: 12288KB, RAM size: 47 GB]

Results:

CPU-Intensive

After running the test we obtained the performance plot. Here we have the graph for the last
query of the last worker but also we have the global average number of events per second.

 GCC compiled version

Benchmarking ROOT

7

 ICC compiled version

Now if we compare the two figures we see we have better performance for the ICC compiled version
than on the GCC compiled version, as the global average number of events per second is 5.1% higher
on ICC compiled version.

SCALING:

 GCC compiled version:

Benchmarking ROOT

8

 ICC compiled version:

I/O-Intensive

 GCC compiled version:

Benchmarking ROOT

9

 ICC compiled version:

For the I/O intensive tests we see that there is no big difference between GCC compiled version and
ICC compiled version both versions managing to reach a performance of ~560MB/sec with 24 workers.

Also we see that due to the fact that Hyper-Threading is on we have a big jump when we go from 12
workers to 13 workers. We have 24 logical cores but starting from the 13th worker two threads will be
running on the same core competing for the same resources. As we are running I/O intensive tests,
the memory subsystem is the limiting factor that produces this behavior.

Also the I/O intensive test is very relevant to see how different storage hardware influences the
performance.

Machine: Arrandale [Intel(R) Xeon(R) CPU E7- 4870 2400MHz, 80 cores , 4 sockets, Hyper-Threading
on, Cache size: 30720 KB, RAM size: 125GB]

Disks:

 Hard Drive
 SSD
 SSD (Ramsdale)
 RAM

As expected the best performance was reached on the RAM partition - /dev/shm/ where we obtained
a peak performance of 1042 GB/sec with 79 workers. The results obtained after running on SSD were
not far from what we obtained on the RAM partition, more precisely peak -> 1023 GB/sec with 79
workers.

Benchmarking ROOT

10

On the hard drive we had 819 GB/sec peak performance reached with 57 workers. (With 79-80
workers the performance was worse ~ 677GB/sec).
These results are also illustrated in the pictures bellow:

Hard Drive

SSD (/RMD_data)

Benchmarking ROOT

11

SSD

RAM

