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Abstract 
 

This paper presents the taken methodology and experienced results of the performance 
monitoring of the software framework for LHC experiments: LHCb, CMS, and ALICE. As 
monitoring tool, pfmon was used. The performance monitoring and tuning tasks are 
composed by the following steps: pfmon deluxe analysis, pfmon profiling and application 
improvement. The objective is to improve the identified weakness in order to enhance the 
application performance. A new functionality has been added to pfmon in order to resolve the 
symbols generated in the profiling for the 32-bit version of the software frameworks. 
 
1. Introduction 
 

Performance monitoring is a necessary practice in High Performance Computing. An 
appropriate monitoring allows to identify well-known signs about how the application is 
being executed and key processes in that execution. In this way, it is possible to find the 
functions, methods (in terms of the Object-Oriented programming) or procedures that should 
be modified in order to improve the application performance according to the technology used. 

On the other hand, as it is necessary to save on resources, it is important for the software 
designer/programmer to check on the hardware results, finding out weaknesses and having in 
mind the comparison between manpower and hardware capacity in order to empower the 
hardware results through a lower price [8]. 

For the Large Hadron Collider (LHC), the High Energy Physics (HEP) community has 
developed huge C++ software frameworks for event generation, detector simulation, and data 
analysis. The scope of this work is to study the performance given by the software 
frameworks, analyze their bottlenecks and isolate the more important parts in order to analyze 
them independently, and improve the application execution. 

This work presents the experience at monitoring the software frameworks for LHCb [9], 
CMS [12] and ALICE [1] experiments. As monitoring tool pfmon was used, as CERN 
openlab [3] previous experience had supported the efficiency of the application.  

This paper is organized as follows: Section 2 introduces the monitoring tool used. In the 
Section 3, the methodology developed is described. Section 4 briefly summarizes the 
execution stages in the analysis frameworks for LHC experiments. Section 5 shows the 
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obtained results from the monitoring of the software frameworks, followed by the main 
related issues and conclusions. 
 
2. Monitoring Tool: pfmon 
 

In order to get information about how the application is being executed by the processor 
and to understand how the application performs, a monitoring tool is necessary. In this work 
pfmon [14] was used; a command-line program that, through perform2 [13] and libpfm, 
allows access to the Performance Monitoring Unit (PMU) of the processor and its 
performance counters. 

Perform2 is a Linux kernel interface that provides a uniform abstract model to access PMU 
counters for most modern processors such as Intel Itanium, Intel Xeon and AMD Opteron, 
among others.  In this way, pfmon with libpfm library, access to the interface with the purpose 
of collecting simple counts and profiles by sampling PMU registers. It also provides support 
for per-thread and system-wide measurements [4][5]. 

One of the advantages of pfmon is the non-intrusive method for profiling. It does not 
require labels into the program code or special compilation modes for the program. With this 
tool it is possible to get the names of processes executed by the processor. It is feasible to set 
a sampling period (sampling mode) in order to check the function calls and the percentage of 
utilization in the application execution. 
  
3. Performance Monitoring and Tuning Task 
 

The performance monitoring and tuning tasks consist of three basic steps: pfmon deluxe 
Analysis, pfmon profiling and application improvement. At the end, a tightly verification is 
made (though the first and second step) to check the new application performance.   
 
3.1. pfmon deluxe Analysis 
 

As it was mentioned above, pfmon can do some measurements on the PMU but, in order to 
understand the performance behaviour of the application execution, some additional 
calculations are necessary. At CERN openlab a python script was implemented to provide a 
specific mode of analysis according to a certain group of events, this script is called pfmon 
deluxe. The analysis modes are: standard, simd1, simd2, simd_uop and stalls. For the 
purposes of this work, the standard and simd1 modes were used. The table 1 shows some of 
the information calculated by the standard analysis of pfmon deluxe. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments 

463 

 
 

Table 1.  Some of the pfmon deluxe standard information. 
  

Percentage of  Formula 

Load and store 
instructions 

((INST_RETIRED:STORES + INST_RETIRED:LOADS) / INSTRUCTIONS_RETIRED ) * 100 

branch instruction 
mispredicted 

(MISPREDICTED_BRANCH_RETIRED/BRANCH_INSTRUCTIONS_RETIRED)*100 

L2 loads missed (LAST_LEVEL_CACHE_MISSES/LAST_LEVEL_CACHE_REFERENCES)*100 

Bus utilization ((BUS_TRANS_ANY:ALL_AGENTS)* 2/CPU_CLK_UNHALTED:BUS)*100 

Comp. SIMD 
instructions 

(new FP) 

(SIMD_COMP_INST_RETIRED:PACKED_SINGLE: 
SCALAR_SINGLE:PACKED_DOUBLE:SCALAR_DOUBLE/ INSTRUCTIONS_RETIRED)*100 

Comp. x87 
Instructions 

(old FP) 
(X87_OPS_RETIRED:ANY/INSTRUCTIONS_RETIRED)*100 

 
As an example, the pfmon outcome shown below (figure 1) reflects that the program 

execution has 94.554% of L2 cache misses and, therefore, there is an issue related with 
memory management. In order to identify where the problem is, it is necessary to take the 
next step: pfmon profiling. 
 
  

Ratios:   
 CPI: 2.0529 
 load instructions %: 24.888% 
 store instructions %: 14.751% 
 load and store instructions %: 39.639% 
 resource stalls % (of cycles): 53.562% 
 branch instructions %: 18.223% 
 % of branch instr. mispredicted: 0.714% 
 % of l2 loads missed: 94.554% 
 bus utilization %: 8.158% 
 data bus utilization %: 4.631% 
 bus not ready %: 0.000% 
 comp. SIMD instr. ('new FP') %: 1.585% 
 comp. x87 instr. ('old FP') %: 

 
0.000% 

 
Figure 1.  pfmon deluxe results. 

 
 

3.2. pfmon Profiling 
 

This step allows determining the percentage of the total time spent in a function. The 
objective is to identify the specific function that could be improved in order to optimize the 
whole program. Figure 2 shows the standard output of pfmon profiling. 

When pfmon is used in profile mode, every n-quantity of occurrences of an event within 
the CPU (clock cycles), the PMU would dump the address of the instruction pointer (IP). 
Therefore, it is possible to get the set of addresses that are visited frequently by the program 
and identify which code is being used. 
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# results for [27703<-[27641] tid: 27703] 
(/gauss/soft/lhcb/GAUSS/GAUSS_v30r5/Sim/Gauss/v30r5/slc4_amd64_gcc34/Gauss.exe) 
# total samples          : 64913963 
# total buffer overflows : 31696 
# 

 
counts %self %cum code addr symbol 
2776941 4.28% 4.28% 0x00002b5c990926c0  CLHEP::RanluxEngine::flat()</data4/wilrome/ga 
2365853 3.64% 7.92% 0x00002b5ca2dcb2e0  G4ElasticHadrNucleusHE::GetLightFq2(int, 
2066022 3.18% 11.11% 0x000000306150e370 __ieee754_exp</lib64/tls/libm-2.3.4.so> 
1964096 3.03% 14.13% 0x0000003061511930 __ieee754_log</lib64/tls/libm-2.3.4.so> 
1622689 2.50% 16.63% 0x000000306126b5f0 __GI___libc_malloc</lib64/tls/libc-2.3.4.so> 
1508825 2.32% 18.95% 0x00002b5c9d34e5e0 MagneticFieldSvc::fieldVector(ROOT::Math::Pos 
1401687 2.16% 21.11% 0x0000003061269510 __cfree</lib64/tls/libc-2.3.4.so> 
1345044 2.07% 23.19% 0x00002b5c9ca8cae0 G4Navigator::LocateGlobalPointAndSetup(CLHEP: 

 
Figure 2.  Results generated by pfmon profiling. 

 
The addresses themselves are meaningless to the average user, but they are translated into 

program symbols, which map onto function and/or data names (labels within the code). 
Sometimes the monitored programs open shared libraries using dlopen, and in this case 
perform2 has to intercept the moment of the opening in order to know which library was 
loaded and where it was placed in memory. 

 
# results for [27703<-[27641] tid: 27703] 
(/gauss/soft/lhcb/GAUSS/GAUSS_v30r5/Sim/Gauss/v30r5/slc4_amd64_gcc34/Gauss.exe) 
# total samples          : 64913963 
# total buffer overflows : 31696 
# 
     
counts %self %cum code addr symbol 
145173 0.22% 75.01% 0x000000306152b090 __GI___isnan</lib64/tls/libm-2.3.4.so> 
1622689 2.50% 16.63% 0x000000306126b5f0 __GI___libc_malloc</lib64/tls/libc-2.3.4.so> 
344666 0.53% 54.06% 0x00000030612723a0 __GI_memcpy</lib64/tls/libc-2.3.4.so> 
177884 0.27% 70.50% 0x0000003061270a00 __GI_strlen</lib64/tls/libc-2.3.4.so> 
243524 0.38% 61.50% 0x0000003063da9a80 __gnu_cxx::__exchange_and_add(int 
199310 0.31% 68.52% 0x00000030615095b0 __ieee754_atan2</lib64/tls/libm-2.3.4.so> 
2066022 3.18% 11.11% 0x000000306150e370 __ieee754_exp</lib64/tls/libm-2.3.4.so> 
1964096 3.03% 14.13% 0x0000003061511930 __ieee754_log</lib64/tls/libm-2.3.4.so> 
317859 0.49% 57.59% 0x00000030615135a0 __ieee754_pow</lib64/tls/libm-2.3.4.so> 
181292 0.28% 69.95% 0x0000003061527760 __log</lib64/tls/libm-2.3.4.so> 
300545 0.46% 59.01% 0x000000306151c2e0 __sin</lib64/tls/libm-2.3.4.so> 
333070 0.51% 55.11% 0x00002b5c9c9f1918 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G 
190218 0.29% 69.10% 0x00002b5c9c4551a0 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G 
140059 0.22% 75.44% 0x00002b5c9ccccc58 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G 
133222 0.21% 76.07% 0x00002b5ca2cae188 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G 
582164 0.90% 41.58% 0x0000003061268c50 _int_free</lib64/tls/libc-2.3.4.so> 
1120478 1.73% 24.91% 0x00000030612695d0 _int_malloc</lib64/tls/libc-2.3.4.so> 
199403 0.31% 68.21% 0x00002b5c9cfb6c70 CLHEP::Hep3Vector::operator()(int) 
161171 0.25% 73.60% 0x00002b5c9cfb6490 CLHEP::Hep3Vector::rotateUz(CLHEP::Hep3Vector 
170173 0.26% 72.08% 0x00002b5c99087d80 CLHEP::HepRandom::getTheEngine()</data4/wilro 
636781 0.98% 36.95% 0x00002b5c9cfa2030 CLHEP::HepRotation::rotateAxes(CLHEP::Hep3Vec 
2776941 4.28% 4.28% 0x00002b5c990926c0  CLHEP::RanluxEngine::flat()</data4/wilrome/ga 
322374 0.50% 56.61% 0x00002b5c9c9ff970 G4Box::DistanceToIn(CLHEP::Hep3Vector 
343197 0.53% 54.59% 0x00002b5c9c9ffe10 G4Box::DistanceToOut(CLHEP::Hep3Vector 
 

Figure 3.  pfmon profiling results ordered by code addr symbol column. 
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It is feasible to organize the results in order to identify important execution elements of the 
application such as classes and packages, among others. For example, in figure 3 it is possible 
to see a certain group of calls to both the IEEE Standard library for Binary Floating-Point 
Arithmetic and CLHEP (a Class Library for High Energy Physics). 

In object-oriented programs it is possible to identify, through a sorted profiling, the 
percentage of the total time spent in an object instance, as well as the invocations between 
methods of the same class. A method could be at the top of the profiling results, but the real 
bottleneck may be in one of the used classes. 
 
3.3. Application Improvement  
 

As already described, the HEP software is written using several existing frameworks such 
as ROOT and Geant4, among others. Which means, several programming languages are used 
to develop the required applications; for the LHC software frameworks the main one is C++. 
The C++ standard compiler tool at CERN is GCC [6]. The GCC versions have optimization 
options (O1, O2, O3, Os, etc.) in order to enhance the application performance, but sometimes 
the compiler does not identify possible code pieces that could be improved. The default 
optimization level for LHC software frameworks is O2. 

From profiling results the objective is to identify the code pieces that are difficult to 
improve for the compiler. 

Two examples are shown in tables 2 and 3. In the first one, the developer is allocating all 
the memory and, after that, operating over the matrixes. In order to improve the memory 
management and reduce the number of cache misses, it would be better to allocate the 
memory just for the first matrix, operate and, after that, allocate the second matrix. 

 
 

Table 2. Code improvement example 1. 
 
 

Original code  Improved version 

 
for(i=0;i<N;i++) { 

imageA[i]=loadimg(fileA[i]); 
imageB[i]=loadimg(fileB[i]); 
a1[i]=funcA(imageA[i]); 
a2[i]=funcB(imageA[i]); 
b1[i]=funcA(imageB[i]); 
b2[i]=funcB(imageB[i]); 

} 

  
for(i=0;i<N;i++) { 

imageA[i]=loadimg(fileA[i]); 
a1[i]=funcA(imageA[i]); 
a2[i]=funcB(imageA[i]); 
imageB[i]=loadimg(fileB[i]); 
b1[i]=funcA(imageB[i]); 
b2[i]=funcB(imageB[i]); 

} 
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In the second example, it is shown the usual memory allocation for a matrix. However, we 

can never be sure about the alignment of the data in memory. The compiler, usually, will try 
to allocate the memory as aligned as possible, in order to reduce the number of memory 
accesses. However, it won’t be able to do that in any possible situation. In this case, it is better 
to allocate the memory manually and be sure that, every time we go through all the elements 
of the matrix, the number of memory accesses will be minimum.  

Both of them are typical situations where the compiler cannot improve the code as much as 
we would like to. 

 
Table 3. Code improvement example 2. 

 
 

Original code 

 
matrix=(unsigned char**)malloc(height*sizeof(unsigned char*)); 
 
for(i=0;i<height;i++) 

matrix[i]=(unsigned char*)malloc(width*sizeof(unsigned char)); 

 

Improved version 

 
matrix=(unsigned char**)malloc(height*sizeof(unsigned char*)); 
matrix[0]=(unsigned char*)malloc(height*width*sizeof(unsigned char)); 
 
for(i=1;i<height;i++) 

matrix[i]=matrix[i-1]+width; 

 
 
 
4. Overview of the Execution Stages in the LHC Analysis Frameworks 
 

In general, software frameworks for LHC experiments are a chain of specialized processes. 
These processes correspond to how an experiment is executed: 1) events are produced by a 
collision, 2) the particles cross through the detector, 3) a data acquisition system (DAQ) 
collect the produced signals and 4) the signals are transformed in information according to the 
physics theory. The software frameworks are the result of modelling the process described 
above; the objective is to validate methods for the experiment calibration and tuning 
(detectors, DAQ system, etc.). 

According to this model, the software framework is composed by execution stages; each 
one depending on the outputs generated by the previous stage. These execution stages are 
shown below (figure 4): 

 
• Generation: Event generation (e.g. using a Monte Carlo method). The software is 

based on PYTHIA [10], Alpgen [2], etc. 
• Simulation: Particles through detector; the signals produced by the detectors and 

electronics devices are stored as RAW data. The software in this case is based, 
mainly, on Geant4 [7]. 
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• Digitization: In this stage, the RAW data is transformed to information. 
• Reconstruction: To process the information to get new one according to the physics 

theory. The framework used in the last two steps is called ROOT [11]. 
 

 

 
 

Figure 4.  Execution stages and related software. 
 
There are cases in which two stages are implemented in one. For example, the ALICE 

software framework has only two stages: Simulation and Reconstruction. But not all 
frameworks are designed in the same way. Their specific design is a consequence of their 
purposes and the development team decisions.  

 
5. Monitoring Process Conclusions 
 

Generally speaking, these frameworks are used to be launched and simulate processes of 
the order of thousands. Though, for the purposes of the monitoring process 5, 50 and 150 
order events are used. Some extracts are presented as a brief recapitulation of the processed 
monitoring. The performance monitoring tasks were developed on the stages: Generation 
(CMS), Simulation (LHCb, CMS, ALICE), Digitization (CMS) and Reconstruction (CMS, 
ALICE). The monitoring was performed on a machine with Intel Xeon architecture, two 
processors Dual-Core 2.66 GHz 64 bits, 4 MB L2 cache, 8 GB of RAM and the Scientific 
Linux CERN 4.7 operating system. 
 
5.1. LHCb 
 

There are 2 functional versions for simulation stage: 32-bit and 64-bit. The execution can 
be made using a number of threads defined by the user. In general, the behaviour is similar 
between both versions: cycles per instruction, load and store instructions, etc. An important 
difference is at the use of SIMD instructions; it is a consequence of the compilation mode 
process. For the 32-bit version, the compiler does not know the specific processor architecture 
and implements the x87 instruction subset. On the other hand, for the 64-bit version, the 
compiler knows that the processor architecture supports SIMD instructions. Finally, as a 
specific sign, the percentage of bus utilization increases with the number of threads. 

From the profiling results the method ScanAndSetCouple (from the Geant4 class 
G4ProductionCutsTable) has been isolated in order to test and analyze if an improvement 
could be made. Basically, the method is a recursive algorithm used for propagating a new 
value for an attribute in the G4LogicalVolume object. A snippet has been developed to 
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test the performance of this method with a huge G4LogicalVolume. This method is 
important only for the first information load and with few events, process where it takes a 
representative percentage. For a bigger number of events, the percentage is not representative. 

 
5.2. CMS 
 

There is no 64-bit implementation of this framework. Therefore, the 32-bit version was 
used for this work. There is a uniform performance when the number of events increases. A 
high percentage of L2 cache misses was observed for the generation stage (over 5%), unlike 
other stages. For example, the simulation stage has a percentage of L2 cache misses lower 
than 1%. 
  A final issue in the profiling results was a very high level of activity within one library: 
pthread. It is possible that the framework would try a run with more events and then come 
back to the program root with the results so that we can analyze them. 
 
5.3. ALICE 
 

There is a 64-bit version of ALICE software framework. A percentage over 6% of SIMD 
instructions were observed into simulation stage, as had been expected for this version. For 
the reconstruction stage, this amount is around 1%. Through a pfmon deluxe analysis into 
simd1 mode, it is possible to determine the type of SIMD instructions executed: scalar simple 
and scalar double. From the pfmon deluxe standard analysis, there are not significant 
differences between simulation and reconstruction stages. Neither functions of interest were 
identified in the partial profiling results. 
 
6. Related Issue 
 

A problem with a lot of unresolved symbols was detected in the profiling results.  It was 
caused by the fact that pfmon was never prepared to monitor 32-bit dlopen calls. As it was 
presented above, the CMS software framework used was the 32-bit version and that’s when 
the failure was discovered. This problem does not happen with 64-bit versions. The 
functionality has been added (pfmon-3.4.x5) and in effect, it was possible to find more 
symbols resolved. 

As far as the occasional 10, 20 or 50 unresolved addresses are concerned, in the typical 
case this is caused by rogue samples received very close to context switches. The first 
hipotesis is that latency issues make it impossible to be more accurate in this case. Anyhow, 
for 100.000 samples, having 10 or 20 unresolved, is a very good result. 
 
7. Conclusions 
 

A pfmon based methodology was developed in order to monitor the software frameworks 
for LHC experiments. Three basic steps compose the monitoring and tuning tasks: pfmon 
deluxe, pfmon profiling and application improvement.  

The authors have presented a complete analysis of the software frameworks and the results 
have been sent to software developers in the different experiments in order to let them know 
about the requirements and bottlenecks of their tools. 

As a solution to the results obtained from monitoring 32-bit version frameworks, a pfmon 
limitation was detected and a new functionality was added in order to avoid this issue.  
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