
461

Performance Monitoring of the Software Frameworks for LHC
Experiments

William A. Romero R.1, J.M. Dana2

1Systems and Computing Department. Universidad de los Andes
wil-rome@uniandes.edu.co

2CERN
Jose.Dana@cern.ch

Abstract

This paper presents the taken methodology and experienced results of the performance
monitoring of the software framework for LHC experiments: LHCb, CMS, and ALICE. As
monitoring tool, pfmon was used. The performance monitoring and tuning tasks are
composed by the following steps: pfmon deluxe analysis, pfmon profiling and application
improvement. The objective is to improve the identified weakness in order to enhance the
application performance. A new functionality has been added to pfmon in order to resolve the
symbols generated in the profiling for the 32-bit version of the software frameworks.

1. Introduction

Performance monitoring is a necessary practice in High Performance Computing. An
appropriate monitoring allows to identify well-known signs about how the application is
being executed and key processes in that execution. In this way, it is possible to find the
functions, methods (in terms of the Object-Oriented programming) or procedures that should
be modified in order to improve the application performance according to the technology used.

On the other hand, as it is necessary to save on resources, it is important for the software
designer/programmer to check on the hardware results, finding out weaknesses and having in
mind the comparison between manpower and hardware capacity in order to empower the
hardware results through a lower price [8].

For the Large Hadron Collider (LHC), the High Energy Physics (HEP) community has
developed huge C++ software frameworks for event generation, detector simulation, and data
analysis. The scope of this work is to study the performance given by the software
frameworks, analyze their bottlenecks and isolate the more important parts in order to analyze
them independently, and improve the application execution.

This work presents the experience at monitoring the software frameworks for LHCb [9],
CMS [12] and ALICE [1] experiments. As monitoring tool pfmon was used, as CERN
openlab [3] previous experience had supported the efficiency of the application.

This paper is organized as follows: Section 2 introduces the monitoring tool used. In the
Section 3, the methodology developed is described. Section 4 briefly summarizes the
execution stages in the analysis frameworks for LHC experiments. Section 5 shows the

Proceedings of the First EELA-2 Conference
R. mayo et al. (Eds.)
CIEMAT 2009
© 2009 The authors. All rights reserved

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

462

obtained results from the monitoring of the software frameworks, followed by the main
related issues and conclusions.

2. Monitoring Tool: pfmon

In order to get information about how the application is being executed by the processor
and to understand how the application performs, a monitoring tool is necessary. In this work
pfmon [14] was used; a command-line program that, through perform2 [13] and libpfm,
allows access to the Performance Monitoring Unit (PMU) of the processor and its
performance counters.

Perform2 is a Linux kernel interface that provides a uniform abstract model to access PMU
counters for most modern processors such as Intel Itanium, Intel Xeon and AMD Opteron,
among others. In this way, pfmon with libpfm library, access to the interface with the purpose
of collecting simple counts and profiles by sampling PMU registers. It also provides support
for per-thread and system-wide measurements [4][5].

One of the advantages of pfmon is the non-intrusive method for profiling. It does not
require labels into the program code or special compilation modes for the program. With this
tool it is possible to get the names of processes executed by the processor. It is feasible to set
a sampling period (sampling mode) in order to check the function calls and the percentage of
utilization in the application execution.

3. Performance Monitoring and Tuning Task

The performance monitoring and tuning tasks consist of three basic steps: pfmon deluxe
Analysis, pfmon profiling and application improvement. At the end, a tightly verification is
made (though the first and second step) to check the new application performance.

3.1. pfmon deluxe Analysis

As it was mentioned above, pfmon can do some measurements on the PMU but, in order to
understand the performance behaviour of the application execution, some additional
calculations are necessary. At CERN openlab a python script was implemented to provide a
specific mode of analysis according to a certain group of events, this script is called pfmon
deluxe. The analysis modes are: standard, simd1, simd2, simd_uop and stalls. For the
purposes of this work, the standard and simd1 modes were used. The table 1 shows some of
the information calculated by the standard analysis of pfmon deluxe.

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

463

Table 1. Some of the pfmon deluxe standard information.

Percentage of Formula

Load and store
instructions

((INST_RETIRED:STORES + INST_RETIRED:LOADS) / INSTRUCTIONS_RETIRED) * 100

branch instruction
mispredicted

(MISPREDICTED_BRANCH_RETIRED/BRANCH_INSTRUCTIONS_RETIRED)*100

L2 loads missed (LAST_LEVEL_CACHE_MISSES/LAST_LEVEL_CACHE_REFERENCES)*100

Bus utilization ((BUS_TRANS_ANY:ALL_AGENTS)* 2/CPU_CLK_UNHALTED:BUS)*100

Comp. SIMD
instructions

(new FP)

(SIMD_COMP_INST_RETIRED:PACKED_SINGLE:
SCALAR_SINGLE:PACKED_DOUBLE:SCALAR_DOUBLE/ INSTRUCTIONS_RETIRED)*100

Comp. x87
Instructions

(old FP)
(X87_OPS_RETIRED:ANY/INSTRUCTIONS_RETIRED)*100

As an example, the pfmon outcome shown below (figure 1) reflects that the program

execution has 94.554% of L2 cache misses and, therefore, there is an issue related with
memory management. In order to identify where the problem is, it is necessary to take the
next step: pfmon profiling.

Ratios:
 CPI: 2.0529
 load instructions %: 24.888%
 store instructions %: 14.751%
 load and store instructions %: 39.639%
 resource stalls % (of cycles): 53.562%
 branch instructions %: 18.223%
 % of branch instr. mispredicted: 0.714%
 % of l2 loads missed: 94.554%
 bus utilization %: 8.158%
 data bus utilization %: 4.631%
 bus not ready %: 0.000%
 comp. SIMD instr. ('new FP') %: 1.585%
 comp. x87 instr. ('old FP') %:

0.000%

Figure 1. pfmon deluxe results.

3.2. pfmon Profiling

This step allows determining the percentage of the total time spent in a function. The
objective is to identify the specific function that could be improved in order to optimize the
whole program. Figure 2 shows the standard output of pfmon profiling.

When pfmon is used in profile mode, every n-quantity of occurrences of an event within
the CPU (clock cycles), the PMU would dump the address of the instruction pointer (IP).
Therefore, it is possible to get the set of addresses that are visited frequently by the program
and identify which code is being used.

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

464

results for [27703<-[27641] tid: 27703]
(/gauss/soft/lhcb/GAUSS/GAUSS_v30r5/Sim/Gauss/v30r5/slc4_amd64_gcc34/Gauss.exe)
total samples : 64913963
total buffer overflows : 31696

counts %self %cum code addr symbol
2776941 4.28% 4.28% 0x00002b5c990926c0 CLHEP::RanluxEngine::flat()</data4/wilrome/ga
2365853 3.64% 7.92% 0x00002b5ca2dcb2e0 G4ElasticHadrNucleusHE::GetLightFq2(int,
2066022 3.18% 11.11% 0x000000306150e370 __ieee754_exp</lib64/tls/libm-2.3.4.so>
1964096 3.03% 14.13% 0x0000003061511930 __ieee754_log</lib64/tls/libm-2.3.4.so>
1622689 2.50% 16.63% 0x000000306126b5f0 __GI___libc_malloc</lib64/tls/libc-2.3.4.so>
1508825 2.32% 18.95% 0x00002b5c9d34e5e0 MagneticFieldSvc::fieldVector(ROOT::Math::Pos
1401687 2.16% 21.11% 0x0000003061269510 __cfree</lib64/tls/libc-2.3.4.so>
1345044 2.07% 23.19% 0x00002b5c9ca8cae0 G4Navigator::LocateGlobalPointAndSetup(CLHEP:

Figure 2. Results generated by pfmon profiling.

The addresses themselves are meaningless to the average user, but they are translated into

program symbols, which map onto function and/or data names (labels within the code).
Sometimes the monitored programs open shared libraries using dlopen, and in this case
perform2 has to intercept the moment of the opening in order to know which library was
loaded and where it was placed in memory.

results for [27703<-[27641] tid: 27703]
(/gauss/soft/lhcb/GAUSS/GAUSS_v30r5/Sim/Gauss/v30r5/slc4_amd64_gcc34/Gauss.exe)
total samples : 64913963
total buffer overflows : 31696

counts %self %cum code addr symbol
145173 0.22% 75.01% 0x000000306152b090 __GI___isnan</lib64/tls/libm-2.3.4.so>
1622689 2.50% 16.63% 0x000000306126b5f0 __GI___libc_malloc</lib64/tls/libc-2.3.4.so>
344666 0.53% 54.06% 0x00000030612723a0 __GI_memcpy</lib64/tls/libc-2.3.4.so>
177884 0.27% 70.50% 0x0000003061270a00 __GI_strlen</lib64/tls/libc-2.3.4.so>
243524 0.38% 61.50% 0x0000003063da9a80 __gnu_cxx::__exchange_and_add(int
199310 0.31% 68.52% 0x00000030615095b0 __ieee754_atan2</lib64/tls/libm-2.3.4.so>
2066022 3.18% 11.11% 0x000000306150e370 __ieee754_exp</lib64/tls/libm-2.3.4.so>
1964096 3.03% 14.13% 0x0000003061511930 __ieee754_log</lib64/tls/libm-2.3.4.so>
317859 0.49% 57.59% 0x00000030615135a0 __ieee754_pow</lib64/tls/libm-2.3.4.so>
181292 0.28% 69.95% 0x0000003061527760 __log</lib64/tls/libm-2.3.4.so>
300545 0.46% 59.01% 0x000000306151c2e0 __sin</lib64/tls/libm-2.3.4.so>
333070 0.51% 55.11% 0x00002b5c9c9f1918 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G
190218 0.29% 69.10% 0x00002b5c9c4551a0 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G
140059 0.22% 75.44% 0x00002b5c9ccccc58 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G
133222 0.21% 76.07% 0x00002b5ca2cae188 _init</data4/wilrome/gauss/soft/lhcb/GEANT4/G
582164 0.90% 41.58% 0x0000003061268c50 _int_free</lib64/tls/libc-2.3.4.so>
1120478 1.73% 24.91% 0x00000030612695d0 _int_malloc</lib64/tls/libc-2.3.4.so>
199403 0.31% 68.21% 0x00002b5c9cfb6c70 CLHEP::Hep3Vector::operator()(int)
161171 0.25% 73.60% 0x00002b5c9cfb6490 CLHEP::Hep3Vector::rotateUz(CLHEP::Hep3Vector
170173 0.26% 72.08% 0x00002b5c99087d80 CLHEP::HepRandom::getTheEngine()</data4/wilro
636781 0.98% 36.95% 0x00002b5c9cfa2030 CLHEP::HepRotation::rotateAxes(CLHEP::Hep3Vec
2776941 4.28% 4.28% 0x00002b5c990926c0 CLHEP::RanluxEngine::flat()</data4/wilrome/ga
322374 0.50% 56.61% 0x00002b5c9c9ff970 G4Box::DistanceToIn(CLHEP::Hep3Vector
343197 0.53% 54.59% 0x00002b5c9c9ffe10 G4Box::DistanceToOut(CLHEP::Hep3Vector

Figure 3. pfmon profiling results ordered by code addr symbol column.

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

465

It is feasible to organize the results in order to identify important execution elements of the
application such as classes and packages, among others. For example, in figure 3 it is possible
to see a certain group of calls to both the IEEE Standard library for Binary Floating-Point
Arithmetic and CLHEP (a Class Library for High Energy Physics).

In object-oriented programs it is possible to identify, through a sorted profiling, the
percentage of the total time spent in an object instance, as well as the invocations between
methods of the same class. A method could be at the top of the profiling results, but the real
bottleneck may be in one of the used classes.

3.3. Application Improvement

As already described, the HEP software is written using several existing frameworks such
as ROOT and Geant4, among others. Which means, several programming languages are used
to develop the required applications; for the LHC software frameworks the main one is C++.
The C++ standard compiler tool at CERN is GCC [6]. The GCC versions have optimization
options (O1, O2, O3, Os, etc.) in order to enhance the application performance, but sometimes
the compiler does not identify possible code pieces that could be improved. The default
optimization level for LHC software frameworks is O2.

From profiling results the objective is to identify the code pieces that are difficult to
improve for the compiler.

Two examples are shown in tables 2 and 3. In the first one, the developer is allocating all
the memory and, after that, operating over the matrixes. In order to improve the memory
management and reduce the number of cache misses, it would be better to allocate the
memory just for the first matrix, operate and, after that, allocate the second matrix.

Table 2. Code improvement example 1.

Original code Improved version

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);
imageB[i]=loadimg(fileB[i]);
a1[i]=funcA(imageA[i]);
a2[i]=funcB(imageA[i]);
b1[i]=funcA(imageB[i]);
b2[i]=funcB(imageB[i]);

}

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);
a1[i]=funcA(imageA[i]);
a2[i]=funcB(imageA[i]);
imageB[i]=loadimg(fileB[i]);
b1[i]=funcA(imageB[i]);
b2[i]=funcB(imageB[i]);

}

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

466

In the second example, it is shown the usual memory allocation for a matrix. However, we

can never be sure about the alignment of the data in memory. The compiler, usually, will try
to allocate the memory as aligned as possible, in order to reduce the number of memory
accesses. However, it won’t be able to do that in any possible situation. In this case, it is better
to allocate the memory manually and be sure that, every time we go through all the elements
of the matrix, the number of memory accesses will be minimum.

Both of them are typical situations where the compiler cannot improve the code as much as
we would like to.

Table 3. Code improvement example 2.

Original code

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

for(i=0;i<height;i++)

matrix[i]=(unsigned char*)malloc(width*sizeof(unsigned char));

Improved version

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));
matrix[0]=(unsigned char*)malloc(height*width*sizeof(unsigned char));

for(i=1;i<height;i++)

matrix[i]=matrix[i-1]+width;

4. Overview of the Execution Stages in the LHC Analysis Frameworks

In general, software frameworks for LHC experiments are a chain of specialized processes.
These processes correspond to how an experiment is executed: 1) events are produced by a
collision, 2) the particles cross through the detector, 3) a data acquisition system (DAQ)
collect the produced signals and 4) the signals are transformed in information according to the
physics theory. The software frameworks are the result of modelling the process described
above; the objective is to validate methods for the experiment calibration and tuning
(detectors, DAQ system, etc.).

According to this model, the software framework is composed by execution stages; each
one depending on the outputs generated by the previous stage. These execution stages are
shown below (figure 4):

• Generation: Event generation (e.g. using a Monte Carlo method). The software is

based on PYTHIA [10], Alpgen [2], etc.
• Simulation: Particles through detector; the signals produced by the detectors and

electronics devices are stored as RAW data. The software in this case is based,
mainly, on Geant4 [7].

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

467

• Digitization: In this stage, the RAW data is transformed to information.
• Reconstruction: To process the information to get new one according to the physics

theory. The framework used in the last two steps is called ROOT [11].

Figure 4. Execution stages and related software.

There are cases in which two stages are implemented in one. For example, the ALICE

software framework has only two stages: Simulation and Reconstruction. But not all
frameworks are designed in the same way. Their specific design is a consequence of their
purposes and the development team decisions.

5. Monitoring Process Conclusions

Generally speaking, these frameworks are used to be launched and simulate processes of
the order of thousands. Though, for the purposes of the monitoring process 5, 50 and 150
order events are used. Some extracts are presented as a brief recapitulation of the processed
monitoring. The performance monitoring tasks were developed on the stages: Generation
(CMS), Simulation (LHCb, CMS, ALICE), Digitization (CMS) and Reconstruction (CMS,
ALICE). The monitoring was performed on a machine with Intel Xeon architecture, two
processors Dual-Core 2.66 GHz 64 bits, 4 MB L2 cache, 8 GB of RAM and the Scientific
Linux CERN 4.7 operating system.

5.1. LHCb

There are 2 functional versions for simulation stage: 32-bit and 64-bit. The execution can
be made using a number of threads defined by the user. In general, the behaviour is similar
between both versions: cycles per instruction, load and store instructions, etc. An important
difference is at the use of SIMD instructions; it is a consequence of the compilation mode
process. For the 32-bit version, the compiler does not know the specific processor architecture
and implements the x87 instruction subset. On the other hand, for the 64-bit version, the
compiler knows that the processor architecture supports SIMD instructions. Finally, as a
specific sign, the percentage of bus utilization increases with the number of threads.

From the profiling results the method ScanAndSetCouple (from the Geant4 class
G4ProductionCutsTable) has been isolated in order to test and analyze if an improvement
could be made. Basically, the method is a recursive algorithm used for propagating a new
value for an attribute in the G4LogicalVolume object. A snippet has been developed to

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

468

test the performance of this method with a huge G4LogicalVolume. This method is
important only for the first information load and with few events, process where it takes a
representative percentage. For a bigger number of events, the percentage is not representative.

5.2. CMS

There is no 64-bit implementation of this framework. Therefore, the 32-bit version was
used for this work. There is a uniform performance when the number of events increases. A
high percentage of L2 cache misses was observed for the generation stage (over 5%), unlike
other stages. For example, the simulation stage has a percentage of L2 cache misses lower
than 1%.
 A final issue in the profiling results was a very high level of activity within one library:
pthread. It is possible that the framework would try a run with more events and then come
back to the program root with the results so that we can analyze them.

5.3. ALICE

There is a 64-bit version of ALICE software framework. A percentage over 6% of SIMD
instructions were observed into simulation stage, as had been expected for this version. For
the reconstruction stage, this amount is around 1%. Through a pfmon deluxe analysis into
simd1 mode, it is possible to determine the type of SIMD instructions executed: scalar simple
and scalar double. From the pfmon deluxe standard analysis, there are not significant
differences between simulation and reconstruction stages. Neither functions of interest were
identified in the partial profiling results.

6. Related Issue

A problem with a lot of unresolved symbols was detected in the profiling results. It was
caused by the fact that pfmon was never prepared to monitor 32-bit dlopen calls. As it was
presented above, the CMS software framework used was the 32-bit version and that’s when
the failure was discovered. This problem does not happen with 64-bit versions. The
functionality has been added (pfmon-3.4.x5) and in effect, it was possible to find more
symbols resolved.

As far as the occasional 10, 20 or 50 unresolved addresses are concerned, in the typical
case this is caused by rogue samples received very close to context switches. The first
hipotesis is that latency issues make it impossible to be more accurate in this case. Anyhow,
for 100.000 samples, having 10 or 20 unresolved, is a very good result.

7. Conclusions

A pfmon based methodology was developed in order to monitor the software frameworks
for LHC experiments. Three basic steps compose the monitoring and tuning tasks: pfmon
deluxe, pfmon profiling and application improvement.

The authors have presented a complete analysis of the software frameworks and the results
have been sent to software developers in the different experiments in order to let them know
about the requirements and bottlenecks of their tools.

As a solution to the results obtained from monitoring 32-bit version frameworks, a pfmon
limitation was detected and a new functionality was added in order to avoid this issue.

W. A. Romero / Performance Monitoring of the Software Frameworks for LHC Experiments

469

8. Acknowledgment

The authors would like to thank Andrzej Nowak, who implemented the pfmon
functionality to monitor the 32-bit frameworks, and Sverre Jarp (CERN openlab Chief
Technology Officer) for their collaboration in this project.

References

[1] ALICE Off-line Project. Retrieved January 29, 2009, from
http://aliceinfo.cern.ch/Offline/index.html

[2] Alpgen. Retrieved January 29, 2009, from http://mlm.home.cern.ch/mlm/alpgen/

[3] CERN openlab. Retrieved January 29, 2009, from http://openlab.cern.ch/

[4] Eranian, S. The perfmon2 interface specification. 2005

[5] Eranian, S. Quick overview of the perfmon2 interface. Retrieved January 29, 2009, from
http://www.gelato.unsw.edu.au/archives/linux-ia64/0512/16211.html

[6] GCC, the GNU Compiler Collection. Retrieved January 29, 2009, from http://gcc.gnu.org/

[7] Geant4 Simulation Toolkit. Retrieved January 29, 2009, from http://geant4.cern.ch/

[8] Jarp S., Jurga R., Nowak A. Perfmon2: A leap forward in Performance Monitoring. International
Conference on Computing in High Energy and Nuclear Physics, 2007.

[9] LHCb Computing. Retrieved January 29, 2009, from http://lhcb-comp.web.cern.ch/lhcb-comp/

[10] PYTHIA. Retrieved January 29, 2009, from http://home.thep.lu.se/~torbjorn/Pythia.html

[11] ROOT - An Object Oriented Framework For Large Scale Data Analysis. Retrieved January 29,
2009, from http://root.cern.ch/

[12] The CMS Offline SW Guide. Retrieved January 29, 2009, from
https://twiki.cern.ch/twiki/bin/view/CMS/SWGuide

[13] The perfmon2. Retrieved January 29, 2009, from http://perfmon2.sourceforge.net/

[14] The pfmon tool. Retrieved January 29, 2009, from
http://perfmon2.sourceforge.net/pfmon_usersguide.html

	romero_dana09.pdf

