
PerformaneMeasurement andAnalysis of theGrid StorageManager DPM
Author: Martin Hellmih

CERN openlab

12/08/2011

CONTENTS

Contents

1 Introdution 4

2 Implementation 5

2.1 Perfsuite . 5

2.2 Extensions to Perfsuite . 5

2.2.1 Test for RFCP . 5

2.2.2 Test for Pretend RFCP . 6

2.2.3 Test for Root over RFIO . 7

2.2.4 Test for NFS . 7

2.3 DPM Logging . 7

2.3.1 DPM Log Parsing . 8

2.3.2 The Parsing Sript Usage . 9

2.3.3 DPM Logging Conlusion . 10

3 DPM Testing and Analysis Setup 11

3.1 DPM Setup . 11

3.2 Client Setup . 11

3.3 Distributed Exeution . 12

4 DPM Performane Analysis 15

4.1 Inreasing the Soket Queue Length . 16

4.2 Adjusting the Number of Threads . 20

5 Conlusion 22

2

CONTENTS

Abstrat

The grid storage manager DPM is used suessfully at many Tier 2 sites in

the WLCG. With Taiwan as the �rst Tier 1 deploying DPM, the performane

requirements are inreasing.

This projets extends the performane measurement suite Perfsuite [1℄ and

implements tools for a performane analysis of DPM. The resulting under-

standing of DPM from this projet assists the developers for further improve-

ments of DPM and also provides ideas and tools for DPM performane mea-

surement. All software is available through the developer repository and most

tests have been inluded in the latest Perfsuite release.

3

1 INTRODUCTION

1 Introdution

CERN [2℄ is ertainly most-known for running Large Hadron Collider (LHC), the worlds largest partile

aelerator. Through it, the most pressing questions in partile physis, suh as the existene of the

Higgs boson or the behaviour of anti-matter, should be answered. For this, very sensitive detetors

related to the six experiments on the LHC, reord the partile ollisions.

These ollisions, ourring at a very high rate, produe an enormous amount of data, whih has to be

saved and later analysed. The ATLAS experiment [3℄ alone has a data rate of more than 18 GByte

per minute.

All data is �rst olleted at CERN, but for the long time arhiving and the analysis of the data

by physiists in institutions world-wide, the World Wide LHC Computing Grid (WLCG) has been

established. This two tier omputing grid provides about 200,000 proessors on more than 140 sites

around the globe [4℄.

Another matter beside omputing on the grid is storage. Storage solutions must be able to allow

high-performane aess to large amounts of data, both for sequential and random aess. They also

must provide various transfer methods to suit the needs of the researhers from di�erent institutes and

LHC experiments.

DPM [5℄ is a storage solution mainly used at Tier 2 sites as it is salable and well performing, yet easy

to administer. Also Tier 1 sites need tape management for long term arhival, whih DPM does not

support. However, DPM an be a interesting solution if Tier 1 entres distinguish between arhiving

and live �le aess and employ two speialised systems.

This projet aims at understanding the DPM arhiteture through analysis and performane measure-

ment. It builds on the performane measurement suite Perfsuite [1℄ and uses di�erent measurement

environments. During the projet, performane fators of DPM ould be disovered whih help eval-

uating future DPM developments.

4

2 IMPLEMENTATION

2 Implementation

This hapter overs the desription of the implementation of the tools neessary for the performane

measurements taken during the projet. It is separated in two parts: the �rst introdues Perfsuite, a

performane measurement suite used for the development, the seond the implementation of tests and

other tools. The next setion then desribes the setup of the testing environment and a desription of

how the tests were onduted.

2.1 Perfsuite

The DPM performane testing suite has been developed at the IT-GT-DMS group at CERN by

Alexandre Behe and the author has ontributed to its urrent version 0.2.0. It is available online [1℄

with support.

Perfsuite is a framework to run test ases, whih an be written in any language and have arbitrary

funtionality, but have to provide their output in a spei� format. The tests are then invoked through

a entral on�guration �le, whih allows tests to be repeated and run with di�erent ommand line

arguments.

Current tests written for �le transfer measurements inlude one part for `putting' �les to the DPM

storage and one for `getting'. Most of them reate random �les for the tests, but the developed tests

here alternatively use �les spei�ed in the Perfsuite on�guration �le.

2.2 Extensions to Perfsuite

Perfsuite as it is shows to be a very good tool to run multithreaded �le transfer tests with throughput

results from a single lient. The plugin struture for tests and espeially the ommon template makes

it very easy to develop and deploy your tests. For distributed testing and a detailed analysis of the

tests, hanges to Perfsuite had to be made and a surrounding exeution environment implemented. In

the following, the author's tests and extensions made to Perfsuite are desribed in more detail.

2.2.1 Test for RFCP

This test uses the ommand line programme rfp to opy �les to DPM and bak to the loal disk.

It exists in two �avours: one takes a loal �le and opies it, the other, using the ommon template,

generates �les of the desired size for opying. It runs multithreaded and reads from one loal �le, but

5

2 IMPLEMENTATION

test name funtion

rfp put and get autogenerated �les

rfget get one �le

rfgetmany get di�erent �les

Table 1: The three rfp test �avours

hanges the designated �le name on the server aordingly so that n �les get reated. For the reading

part, also two version exist: either all lient threads read di�erent �les, the �le names oming from the

�les put on DPM in the �rst plae, or they all read the same �le. The latter reprodues the e�et of

a �le being used by many analyses at the same time. Table 1 shows the test types.

To exlude the lient's disk as a limiting fator here, all output is written to /dev/null. The disk

speed an of ourse be a fator for the `put' test and has to be onsidered.

Using the ommand line lient RFCP instead of a self-written program gives the advantage of having

the same irumstanes as in a prodution environment. Experiments use the same tool to opy �les

to the omputing nodes when working with RFIO. This way the test pro�ts from the same speed ups

in newer version of rfp as real jobs do, e.g. the ability to open multiple streams when sending a �le

to saturate the network in RFIO version 3.

All these tests forward the throughput reports from rfp to Perfsuite and omparative measurements

an be done using the timestamps that Perfsuite itself reords.

2.2.2 Test for Pretend RFCP

This test uses the funtionality of the DPM API to simulate reating/writing or reading �les with the

RFIO protool. The test requests a �le on DPM either with the dpm_get or dpm_put ommand, polls

for it with dpm_getstatus, opens the �le with rfio_open, but loses it immediately and signals a

suessful �le transfer with dpm_putdone.

This behaviour allows us to test the DPM performane with many onurrent lients simulating real-

world �le aess patterns, while putting almost no load on the lients or the DPM disk nodes. Also,

as no data is transferred, the network throughput from the lient to the server remains limited.

The test has been fully instrumented with respet to the lient - DPM interation: A preise timestamp

is taken before and after exeuting eah of the three DPM API alls and the durations of eah all

6

2 IMPLEMENTATION

are reported as well as the timestamps themselves. Together with similar information taken from the

DPM log �les, this gives a detailed view on the internal behaviour.

2.2.3 Test for Root over RFIO

This test represents partial read of a Root �le on DPM. It uses the C program IOPerformerGrid

provided to me by Wahid Bhimji whih I developed further to aommodate di�erent test situations.

The program is used in a python wrapper allowing a multithreaded test just like the others.

In a test, either all events in the �le are read or only a fration of them. For speifying the read ratio,

the tester gives a fration and the stdlib.h random funtion is used to deide whih events should be

read. The resulting event reads are distributed uniformly over the �le length. Additionally, one an

hoose between reading all branhes of the events or only a subset of them.

The root version used is 5.26.00 with two di�erent �les. Both are taken from the ATLAS experiment

and ontain the same data but one, as indiated by the �lename `ByEntry' is ordered, the other �le

is not. The ordering in�uenes the �le aess patterns, espeially the possibility of sequential reads,

whih is important for the �le read speed.

The output is given through the TTreePerfStats module of Root, whih presents detailed information

about the overall the read duration, disk usage and the impat of the �le ompression among others.

2.2.4 Test for NFS

The test designated for NFS is the simplest one developed, using /bin/p to opy �les. It an be run

in Perfsuite to measure the throughput for a loally mounted �le system like NFS.

The report values ome from the timestamps reorded before and after the test. A short disussion

about the auray of these timestamps is given in the following setion about hanges to Perfsuite.

2.3 DPM Logging

During the test, the DPM log �les are examined to give detailed information about the internals when

issuing a �le request. I foussed on extrating information from the DPM daemon running on the head

node and left the log �les of the DPNS.

Parsing the DPNS log �les is an easy task beause the DPNS serves requests only synhronously.

Tools parsing these logs exist at CERN to generate information used by the system monitoring tool

7

2 IMPLEMENTATION

NAGIOS [6℄. These NAGIOS plugins examine the logs immediate past and report the average request

duration whih triggers an alarm to the system administrator if it is above a threshold. While suh

tools help the administration, the DPNS log �le was of little use for these detailed system analyses.

In my tests, the DPNS was only aessed indiretly through the DPM daemon. These interations are

doumented in the DPM log, but only by mentioning the DPNS funtion used without a possibility

to link this spei� API all to the entry of a all in the DPNS log �le. While this is a drawbak in

understanding the omplete interation between the DPM and the DPNS in one request, I found out

that the DPM log itself holds a su�ient amount of detailed information for the analysis of the system.

Therefore parsing the DPM log �le is an important part of the projet.

2.3.1 DPM Log Parsing

Due to the asynhronous requests the DPM uses, log �le parsing is not a trivial task. I developed a

sript to do that with fous on ease of use, �exibility and re-use. The sript ontains one parsing loop,

in whih the ontents of the log �le are grouped by request so that every entry orresponds to one �le

interation. I will explain the ase for a `put' request to DPM, the `get' ase is similar.

Every request onsists of a dpm_put issued by a lient and at least one dpm_putstatus ommand, with

whih the lient polls for the physial loation of the �le on DPM. As one dpm_putstatus ommand is

suessful, the lient engages in diret interation with the orresponding disk server and only returns

to the head node after all modi�ations have �nished and transmits a dpm_putdone. After the dpm_put,

whih returns a 128-bit UUID to the lient, the server starts a dpm_pro_put ommand to hek if the

�le exists and for su�ient rights and retrieves the �le's physial loation (TURL, transfer URL). This

funtion alls the DPNS several times to do this, sine all these information are stored in the name

server database. The �le's UUID is used in the dpm_putstatus all as referene to retrieve the right

�le loation. In the DPM log, all status requests are stored and they �nish with return of QUEUED

if the proessing method has not started yet, ACTIVE if it is running or SUCCESS if the TURL is

ready.

The hallenging part for parsing is that multiple threads are involved in one request as the lient

opens several onnetions to DPM whih are eah proessed just by the next free thread. For sure, the

dpm_pro_put method is run in a separate thread taken from the slow threads pool. To hain them

all together, the parser has to �nd the �le's UUID in the �rst onnetion and then group aording to

these. Additionally, it has to be taken are that no intermediate results get deleted if a thread takes

on another request, before the �rst �le interation has been ompleted.

8

2 IMPLEMENTATION

The parser also has to be sensible to the fat that requests an overlap: a dpm_putstatus an our

during the internal proessing of this request in a dpm_pro_put. The resulting sript serializes those

requests in a way that log messages belonging to one method are always next to eah other, independent

of the timestamp. This deision has the advantage that getting the duration information for one method

all is easy, but estimating the time between funtion alls is more di�ult beause the entries have

to be reordered. Fortunately, the overlapping only ours for the dpm_putstatus all where the time

relative to other funtions was of lesser interest � the time between funtions alls an be measured

on the lient more easily and the other funtions reappear in the parsed log in the same order as they

have been exeuted on the server.

It is notable that the sript stores all log messages for one interation through the assumption that

all output oming one spei� DPM thread must belong to the same funtion if the funtion has not

ended with a return signal. This is possible, beause all DPM methods log their return value in a log

line ontaining the string �returns�. Also, funtions whih are not used for later analysis are kept.

This is made neessary by a hange to DPM to issue a log message as soon as an inoming lient request

is alloated to a thread. The message gives us information about the duration of the authentiation

proess, as a thread aepts a request, then runs the authentiation and then starts the desired funtion.

By omparing the timestamp of the aeptane to the �rst timestamp of the funtion exeuted, an

estimate of the time spent for authentiation an be made.

2.3.2 The Parsing Sript Usage

The sript is written in Python, reads the DPM log �le from standard input and prints its results to

standard output as shown below.

at dpm-log-file.txt | ./a_dpm_parse_log.py -r put > dpm_out.sv

It uses, as mentioned before, one loop in the main method to aggregate results in a ditionary.

These results are then given to an analysis funtion, whih alulates the durations of the dpm_put,

dpm_putdone, dpm_putdone and putstatus funtions as well as the durations between the exeutions

of the �rst three. The sript is able to handle multiple status requests, as it might be neessary if the

proessing takes too long. The output �le onsists of omma-separated values with the header �les

stored in the last row.

In future versions of DPM, the log �le format might hange. Even now in the to-be-released version

1.8.2 it is possible to hoose between the internal DPM logging mehanism logit and using the syslog

9

2 IMPLEMENTATION

daemon. Di�erent substitutes for the syslogd like rsyslogd or syslog-ng bring more format with it.

During my tests, for example, I used rsyslogd to bene�t from higher resolution timestamps than

provided by DPM's logit. The parsing sript is adaptable to hanging formats as it relies on regular

expressions to parse the lines. As long as the information needed, e.g. the DPM proess and thread

number, the �le UUIDs, et., is still in the logs, hanging these regular expression is su�ient to adapt

the sript to a new format.

With multiple purposes in mind the sript has been written so that the analysis method an be easily

exhanged or rewritten with another fous. By hanging the behaviour of the parsing algorithm so

that omplete server-lient interations are not stored, but immediately printed out, the sript ould

be used for streaming parsing of DPM logs, with the analysis part moved to another stage of the

pipeline. It has, however, to be shown that the amount of data from the logs is not too heavy for a

streaming appliation.

2.3.3 DPM Logging Conlusion

As mentioned before, the DPM log �le provides an investigator with all information needed for a

detailed pro�ling of the head node itself. It reords the beginning and the end of eah funtion, as with

a hange to DPM, whih might be inorporated in future versions, the start of the authentiation as

well. Therefore, the log �le parsing has been the only development neessary to reeive this information.

The sript itself an be used on an analysis omputer with a partial log �le, but, as mentioned, an

also be hanged for use on the DPM head node to provide real-time information. The diretion, whih

is likely to be pursued at CERN is the onversion into a NAGIOS monitoring probe. A future hange

in DPM might inlude using unique identi�ers for the funtion alls from DPM to the name server to

reate a full overview over the methods and their durations or failures during one lient aess.

10

3 DPM TESTING AND ANALYSIS SETUP

3 DPM Testing and Analysis Setup

After the last hapter introdued the software developed for DPM testing, this part reports the test

setup with hard- and software used, the test exeution and then disusses their results. The test

disussion fouses on one DPM parameter whih has been investigated thoroughly and whose test

results in�uene the future development of DPM. For the other tests I provide data whih shows their

orret behaviour and the suess to run Perfsuite in a distributed testing environment.

3.1 DPM Setup

The DPM head node runs the DPM and the DPNS daemon in version 1.8.2 from the development

repository of DPM. The disk nodes still run the 1.8.0 versions of the �le transfer protool plugins,

whih are ompatible with the new head node. The DPNS runs, as not to be the bottlenek of the

tests, with the maximum of 99 threads, while DPM runs with the 20/20 on�guration for fast and

slow threads.

Both daemons are plaed on the same mahine and one disk server is attahed to the setup using a

single �le system for DPM. Another disk server is still attahed to the test bed, but is on�gured as

read-only, so it does not a�et further tests. DPM then e�etively uses one pool with one �le system

on one disk node.

The omputers for the head node and disk node are from the lxfsra test bed setup for DPM performane

tests, whih will be desribed shortly, as we also used these mahines as lients.

3.2 Client Setup

For the test with multiple lients we had di�erent possibilities where to take the lient from with

advantages and drawbaks. All on�gurations were expeted to allow ertain onlusions about the

DPM server and also about preferred on�gurations for future tests. There were three di�erent on-

�gurations available: the lxfsra test bed using the servers on whih DPM is installed, 20 dediated

virtual mahines and CERN's lxplus mahines.

The lxplus environment onsists of 75 mahines, of whih 28 systems have 8 ores and 47 systems have

16 ores. It enables us to run up to 976 instanes of every test, if we follow the guideline that only one

instane per ore is allowed. This is espeially sensitive to do as the lxplus mahines are not dediated

and a high CPU load is expeted on these servers during the tests, whih is also why we annot use

this test on�guration for lient side measurements.

11

3 DPM TESTING AND ANALYSIS SETUP

Instead, we use this test bed to put pressure on the DPM, as the advantage is to have a large networking

infrastruture at our disposal. So this test bed is useful to run atual opy tests to see whether the

dediated disk node su�ers from too many onnetions or an keep up the throughput.

Beause the lxplus mahines are shared resoures, there are problems aessing them. Some mahines

did not run the tests at all, others failed during the tests due to other users taking up the resoures.

Tests run on these mahines are probably not reproduible in detail, but give an indiation whether

the load indued by physial mahines with dediated network onnetions is di�erent from the other

test beds.

The dmstestvm, in ontrast, onsists of 20 dediated virtual mahines with one ore eah, running on

two hypervisors. The vm hypervisors are kept private to assure that no other vm ould be deployed on

them during the time of testing. Eah hypervisor has aess to a 10 GBps network link, whih allows

us to ompare the results with other test setups with 1 GBps eah.

The third on�guration runs on the same mahines as the DPM head and disk node: three former disk

nodes are disonneted from the pool and used as lient mahines. This has the advantage that the

lient is as powerful as the server and that they are loated in the same omputing abinet, therefore

having a diret network onnetion with little unrelated tra�.

All test bed omputers are running Sienti� Linux 5.5 [7℄ and tools are taken out of the standard

repository. The programs installed, besides the DPM lient libraries, are Python 2.6, tpdump and

iperf for initial network speed measurements. A more detailed desription of the lient hardware an

be found in the Appendix 2.

3.3 Distributed Exeution

Perfsuite is built to be invoked diretly on the ommand line. When using it on multiple mahines at

the same time, invoking tests manually is not feasible, so I used wassh, an ssh lient for simultaneous

ommand exeution on multiple lients and the UNIX tool at to time the start of a test run.

Also, Perfsuite's features of launhing several tests one after another annot be used as it an not be

guaranteed that the seond and third test start at the same times on all Perfsuite lients. Now, every

test is started separately.

For the tests, the Perfsuite installation resides on my AFS home diretory, whih is aessible from

every lient used. This diretory is opied to the working diretory in /tmp, where the results are also

written. So in the sript managing a test run, I �rst make sure that all required diretories exist, opy

12

3 DPM TESTING AND ANALYSIS SETUP

Perfsuite, run it with the desired parameters and then ollet the results from all lients with another

sript.

The program wassh is developed at CERN for internal use. It takes a list of host names or a �le

listing host names as an argument and exeutes the ommand given as seond argument on all of

them. With this, it funtions as a ouple of ssh ommands exeuted in a for-loop with the advantage

of onurrent onnetions. An advantage of wassh is that it prints the standard output of the remote

ommand together with the host name, whih makes olleting and parsing the Perfsuite results later

simple. It also gives meaningful information about unresponsive hosts and exeutes orretly for all

other mahines.

The exeution of Perfsuite on the lient is managed through another sript residing in AFS whih

launhes Perfsuite with the desired on�guration �le and redirets its status output to a �le in the

lient working diretory. The exeution of this sript, however, is managed by at. This UNIX program

launhes its argument at a given time and by speifying a time in the near future I an be sure that

all lients start the test at almost the exat same time. The lok di�erenes on the mahines used

should be minimal as they all adjust their time to the same NTP server.

Using at introdues new problems to running Perfsuite: the ommand is no longer exeuted in a shell.

Firstly, it makes it impossible to aess my AFS home diretory, whih is the main reason to swith to

a working diretory in /tmp and seondly, shell variables and soured �les set are not valid. Espeially

souring �les is problemati, as eah Perfsuite test is exeuted in its own shell environment. Usually

the tests inherit the shell environment from the shell Perfsuite is running in, but sine Perfsuite is

exeuted in a new environment through at, this is no longer possible.

The solution is found in wrapping every test in a shell sript that sets the environment variables and

then exeutes its parameters. This keeps hanges to Perfsuite to a minimum (alling the sript instead

of the test diretly) and also provides the possibility to print timestamps before and after the test's

exeution whih is disussed in the following setion.

Another di�ulty in running Perfsuite on various mahines is that they mostly do not have the required

software installed. Python 2.6, a prerequisite for Perfsuite, is installed on all mahines, but the DPM

lient and Root libraries are not. Sine I do not have the rights to install software on these mahines,

the Root libraries are soured from AFS.

Due to this, the tests allow to de�ne the exeutable to run, making the deployment of these �les

together with Perfsuite easier. Also, the soure inludes paths that an be hanged in the single

wrapper sript.

13

3 DPM TESTING AND ANALYSIS SETUP

Retrieving the results from the Perfsuite instanes is a straightforward proess: wassh reads the result

�les from eah test and prints it to standard output. Beause it adds the host name to eah output,

the result �le on the ontrolling host an easily be parsed to obtain results grouped by host name.

The following setion deals with the way Perfsuite opens the tests and its impliations on timestamps

used for measurements. In Perfsuite, timestamps are olleted in the main programme before and after

test exeution and give another way to, for example, alulate the throughput. Here, auray is of

importane.

14

4 DPM PERFORMANCE ANALYSIS

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Start_Time

0

5

10

15

20

25

Du
ra
tio

n

lxfsra10a05
lxfsra12a06
lxfsra14a03

Figure 1: The duration of reating a zero-length �le on DPM. The olours di�erentiate the lients.

4 DPM Performane Analysis

Using the lxfsra test bed and the test Pretend RFCP, an analysis of DPM behaviour when many

lients reate �les on the DPM has been performed. The test setup is as follows: three lxfsra lients

run Perfsuite with the test whih starts 25 threads on eah mahine to open 25 onnetions to DPM

simultaneously.

Our expetation, given that 75 simultaneous requests are reasonable for a �le server and that the �le is

only opened and then immediately losed, is that the requests �nish very fast. They will not omplete

at the same time, beause the DPM daemon only uses 20 threads per type, but reating an empty �le

should be quik.

We an see, however, that from the lient's point of view, the �le reation proess, from the beginning

of the dpm_put to the end of the dpm_putdone takes a notable long time, up to 20 seonds, as an be

seen in Figure 1.

The duration values are grouped by the lient mahine and we an see that none of them is penalised

against the others. The Figure shows the duration the interation takes on the y-axis orresponding

to the start time on the lient. In this plot we see that the test does not start at the same time for

all threads, but within a reasonable time frame of 250 ms. We also see that the duration inreases the

later the interation starts, and it inreases in disrete steps. The inrease over time suggests a bu�er

�lling up, whih is investigated further.

15

4 DPM PERFORMANCE ANALYSIS

10-2 10-1 100 101 102

put start time

10-4

10-3

10-2

10-1

100

101

102

pu
t d

ur
at

io
n

client
server

Figure 2: Measurements for the dpm_put on the lient and server side. The funtions start at the

same time on the lient, but with a delay on the server. This delay orresponds to the added duration

as measured on the lient side. Beause of large di�erenes in the duration as well as the starting time,

both axes use a logarithmi sale.

If we inspet the server logs, we an see that the funtions do not take enough time to explain the

delay on the lient. We see that there is a signi�ant di�erene between the pereived exeution time

of the dpm_put and that the server is ontated with a delay after the lient starts the request. This

is shown in Figure 2 with the start of the funtion on the server side in green and on the lient side

in red. The Figure displays that all requests star on the lient at approx. the same time, but start

later on the server. We an also see the di�erenes in the duration on the y-axis. To better distinguish

between the times measured on the server, the y-axis is shown on a logarithmi sale.

4.1 Inreasing the Soket Queue Length

Reording all exhanged pakets between server and lient shows the onnetion establishment where

we an see that a lient needs more than one SYN request to open a onnetion in about half the

ases. A SYN retry is neessary when the server does not respond to the lient's request, i.e., the

server does not aept the onnetion, nor denies it. This is the ase when the soket queue, whih

holds onnetion attempts until they are aepted by the program listening on the server, is full:

further attempts to onnet to the soket are silently disarded. The results are retries from the lients

whih follow the regulations given by the spei� operating system. Running Sienti� Linux, the

16

4 DPM PERFORMANCE ANALYSIS

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Start_Time

0

5

10

15

20

25

Du
ra

tio
n

queue 5
queue 128

(a) Durations for the small soket queue inrease over

time and remain steady for a large soket queue.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Start_Time

0

5

10

15

20

25

pu
t_

du
r

queue 5
queue 128

(b) The dpm_put method an be aounted for taking

most of the proessing time, as pereived by the lient.

Figure 3: File aess durations with a soket queue length of 5 vs a queue length of 128. (a) shows that

the duration of a �le reate request is muh shorter, largely ontributed to a faster pereived exeuting

time of the dpm_put as shown in (b).

retries for SYN pakets are limited to 5 retries orresponding to a waiting time of about 180 seonds,

while the waiting time inreases with eah retry. The value for the number of retries an be seen and

adjusted in /pro/sys/net/ipv4/tp_syn_retries.

The DPM soure shows that the listening soket is initialised with a queue length of �ve, whih ould

explain this behaviour. As the onnetions annot be aepted as fast as they appear, the queue �lls

up and further onnetion attempts are disarded. After a waiting period, the queue is free with a

high probability and the onnetion is aepted.

In a test with a larger soket queue of 128 plaes, the maximum possible value for systems running

Sienti� Linux, we obtain the results as shown in Figure 3a. The duration of all interations is lower

with the larger soket queue and in partiular, the duration of the dpm_put method as pereived by

the lient, has plummeted (see Figure 3b).

However, the DPM log �les show that in the ase of the large soket queue, the proessing time, in the

dpm_pro_put funtion has inreased in average from 1.2 seonds to about 1.8 seonds, lessening the

speedup gained. This an be aounted to the fat that now, as all requests an be aepted almost

immediately, the server makes more use of its resoures. The log �les for the ase with a short bu�er

queue show that although all threads are used, there are waiting periods on the server indued by the

seond-long waits on the lient side. An analysis reveals an idle time during the test with a soket

17

4 DPM PERFORMANCE ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Start_Time

0

10

20

30

40

50

Du
ra

tio
n

queue 5
queue 128

(a) Comparison between soket queue lengths with 150

onurrent requests.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Start_Time

0

5

10

15

20

25

30

35

no
m

be
r r

ep
lie

s

queue 5
queue 128

(b) Comparison between soket queue lengths with 300

onurrent requests.

Figure 4: These plots ompare the large soket queue length to the old value for higher load, i.e., more

simultaneous requests. The number of lients remains three, but the number of requests started per

lient inreases to 50 in (a) and to 100 in (b).

queue of length �ve, while the larger soket queue redues the idle time per thread, thereby reduing

the overall time for all requests.

At this point we an say that the short queue length seems to at as a gatekeeper to the DPM head

node. If requests annot be handled immediately, there is almost no spae to queue on the server and

the lient begins a minimal two seonds waiting period. On the one hand, this eases the load on the

server as requests oming in bulks are strethed out and the DPM daemon is not overloaded.

On the other hand, this load limiting mehanism might be too strit on DPM. As we have seen with a

larger bu�er queue, DPM seems to handle many more simultaneous requests with only a slight inrease

in the duration of the omputations than allowed in the standard on�guration.

The next step in the analysis is to see whether the new solution also works faster on a higher loaded

server. Figure 4 shows two plots with the test repeated with 150 and 300 onurrent requests; these

are 50 and 100 requests per lient respetively. Both graphs ompare the durations between a queue

length of 5 and 128.

The long durations for the requests to sueed indiates that the DPM server is under heavy load. While

Figure 4a gives a similar piture as the test with 75 requests for the durations, Figure 4b is di�erent:

this might partly be due to the fat, that the requests are spread over several seonds, or, whih we

do not see in the graph, that 50 requests fail with the error message Connetion reset by peer in

18

4 DPM PERFORMANCE ANALYSIS

put --- proc --- putdone stat1 stat2 stat3
DPM functions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

du
ra

tio
n

queue 5
queue 128

Figure 5: The durations of DPM funtion and the waiting times between them.

the test with the short bu�er queue.

Thus we an say that the DPM on�gured with the larger soket queue is performing better than with

a small one, either responding faster to requests or sueeding to proess more during the same time

frame. How bad a request failure is in a prodution environment is not straightforward, as appliation

software will have their own retry mehanisms built-in, whih might resubmit requests we have seen

failing.

For our analysis, it is notable that the durations for a request rise as the DPM is exposed to a higher

load. A pro�ling of the funtions on DPM shows that the major hold-up for proessing is a waiting

period before the dpm_pro_put method. As seen in Figure 5, the waiting time before a request is

assigned to a slow thread on DPM for proessing the request, is muh longer using a large soket

queue. This an be explained given the information we extrated earlier that the DPM aepts more

request in a time frame. As we only have 20 slow threads for 75 requests available, the requests have to

queue internally for up to two durations that it takes DPM to proess a request in the dpm_pro_put

method.

Through this, we see the importane of the partitioning of fast and slow threads in ombination with

the short soket queue. Requests an be aepted very fast by the dpm_put funtion in a fast thread

whih an immediately serve the next request and thus the soket queue is growing relatively slowly.

The DPM load is better represented by the number of requests queued in the DPM database waiting

for a slow thread than by the soket queue size.

19

4 DPM PERFORMANCE ANALYSIS

put --- proc --- putdone stat1 stat2 stat3
DPM functions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

du
ra

tio
n

20 threads
70 threads

(a) Duration for eah funtion on the DPM.

0.0 0.1 0.2 0.3 0.4 0.5
Start_Time

2

3

4

5

6

7

8

9

10

Du
ra

tio
n

20 threads
70 threads

(b) Overall duration as pereived by the lient.

Figure 6: DPM with 75 onurrent requests in two on�gurations: with 20 slow threads and 70. (a)

shows the DPM view and (b) the lient view for the duration.

In Figure 5 we also see that the dpm_pro_put takes longer in average for the large soket queue. This

might be due to the better utilisation of the server's resoures, induing a higher omputational load

and more onurrent aesses to the DPNS.

4.2 Adjusting the Number of Threads

These results suggest that DPM would perform better with a higher number of slow threads, as more

requests queued internally ould be served at the same time. A omparison between 20 slow threads

and a new on�guration with 70 slow threads, almost reahing the maximum of 100 with 20+70

threads is shown in Figure 6. The Figures display the results for 75 onurrent requests to DPM. In

Figure 6a we see that the waiting time for the dpm_pro_put, an available slow thread, has dereased.

This is expeted as 70 out of 75 requests are assigned a thread immediately. On the other hand, the

proessing time of the dpm_pro_put has inreased and the overall speedup is minimal, as an be seen

in Figure 6b whih displays the lient view.

The long duration for the dpm_pro_put methods an be explained by DPM's behaviour when reating

�les. The dpm_pro_put method ontats the DPNS to hek whether the �le an be reated and to

reate the neessary entries in the database. For this, also the database entry of the parent diretory

must be updated as it ontains a ounter for the number of �les in it. With a new �le being reated,

this ounter is updated. Also, during these requests, it must be assured that the diretory is not

deleted, so a lok is set on the diretory entry.

20

4 DPM PERFORMANCE ANALYSIS

Many onurrent �le reate requests in the same diretory lead to the e�et that the reatx all issued

in dpm_pro_put to the DPNS reating the �le takes several seonds to omplete due to the lok on

the diretory. Changing this behaviour would imply hanges to the DPNS and to the name server

database, whih why we do not follow that path any further.

Instead, inspeting the speedup of our hanges to DPM in a ase where this limitation does not apply,

we an see that te duration of the spm_pro_put method is redued from 3.5 seonds to under 1

seond. A redution in proessing time is measurable both for a DPM on�guration with 20 as for one

with 70 slow threads. In this senario, the inrease of slow threads has very little e�et on the overall

duration, as the funtion takes muh less time as if it had to wait for the diretory database entry.

21

5 CONCLUSION

5 Conlusion

Overall, we an look at three possible optimisations. The �rst is setting the queue of the listening

soket to a higher value and involves a hange in the DPM soure ode. The seond is adjusting the

number of threads to a suitable value and is already ommon pratise. The third method involves the

lient behaviour: if we see the DPNS part as a blak box at the moment, the only way to avoid the

diretory lok when reating many �les in one diretory is to use several diretories, if a large number

of �les is involved. We disuss all three methods shortly with some remarks about the performane

gain from these measures.

In our test situation with bursty requests, inreasing the queue length has proven to be bene�ial to

the overall duration of lient-server interation. We have seen that the short queue leads to onnetion

retries on the lient side, whih render the interations longer as neessary, given the resoures of DPM.

Here, extending the DPM soket queue length leads to a better utilisation of the server.

Of ourse it has to be noted that inreasing the queue length does not help if DPM is under ontinuous

heavy load. If that is the ase, the funtions proessing the request itself must be faster, otherwise

even the largest queue �lls up at some time. Here ation is undertaken by the developers reating a

synhronous method for `getting' and `putting' �les, whih needs less internal ommuniation. However,

a larger queue length helps the server to ope with short bursts of requests.

The ase for the soket queue is espeially interesting in the ontext of a synhronous put method

where DPM only uses one kind of threads whih handle the whole request. Then, the internal queue

would no longer exist and, in the ase of all threads being in use, new requests would queue at the

soket. A short value there ould lead to more onnetion failures on a highly loaded DPM.

When inreasing the number of threads I ould see that for �le put requests, the number of fast

threads seems to play a minor role, while the number of slow threads should be higher. Bearing in

mind the limitation of the total number of DPM threads it might make sense to use an asymmetri

on�guration of threads. Other workloads where the slow threads are not involved, should be tested

thoroughly to see if these su�er from suh a on�guration. Also, the asymmetrial on�guration only

gives a signi�ant speedup if the funtion omputed in the slow threads takes su�iently long. This

is in the ase for reating �les in one diretory, but not for di�erent ones.

As for the third point, appliation developers working with DPM might wish to hek if their pro-

grammes do reate �les this way and might be interested in testing them with multiple target direto-

ries. Relaxing the lok on the parent diretory while reating a �le an easily introdue inonsistenies

and might involve hanges to the DPNS database.

22

REFERENCES

Bibliography

Referenes

[1℄ �Perfsuite.� https://svn.ern.h/reps/lgdm/perfsuite . last visited on 19.8.2011.

[2℄ �CERN.� http://publi.web.ern.h/publi/ . last visited on 27.2.2011.

[3℄ �ATLAS.� http://publi.web.ern.h/publi/en/LHC/ATLAS-en.html . last visited on 27.2.2011.

[4℄ �WLCG Poster.� http://lg.web.ern.h/LCG/dissemination/�yers/Grid_english_2009.pdf ,

2009. last visited on 27.2.2011.

[5℄ �DPM.� https://svnweb.ern.h/tra/lgdm/wiki/Dpm . last visited on 27.2.2011.

[6℄ �NAGIOS.� http://www.nagios.org/ . last visited on 27.2.2011.

[7℄ �Sienti� Linux.� http://www.sienti�linux.org/ . last visited on 19.8.2011.

23

REFERENCES

Appendix

Test Bed mahines Proessor Cores RAM / GByte Network Link / Mbps

lxfsra 3 L5520 2.27 GHz 4 12 1000

lxplus

15 E5410 2.33 GHz 8 16 1000

13 L5420 2.5 GHz 8 16 1000

47 L5520 2.27 GHz 16 48 1000

dmstestvm 2 2.27 GHz 8 24 10000

Table 2: Hardware Desription of the test beds used. Note that 10 virtual mahines run on one server

in the dmstestvm test bed and they have a 10 Gbps network link. The exat proessor type of these

mahines is not known to me. All proessors used are Intel Xeon x86.

24

