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Abstract. Platform virtualization helps solving major grid computing
challenges: share resource with flexible, user-controlled and custom exe-
cution environments and in the meanwhile, isolate failures and malicious
code. Grid resource management tools will evolve to embrace support
for virtual resource.
We present two open source projects that transparently supply virtual
execution environments. Tycoon has been developed at HP Labs to op-
timise resource usage in creating an economy where users bid to access
virtual machines and compete for CPU cycles. SmartDomains provides
a peer-to-peer layer that automates virtual machines deployment using
a description language and deployment engine from HP Labs. These
projects demonstrate both client-server and peer-to-peer approaches to
virtual resource management. The first case makes extensive use of vir-
tual machines features for dynamic resource allocation. The second trans-
lates virtual machines capabilities into a sophisticated language where
resource management components can be plugged in configurations and
architectures defined at deployment time.
We propose to share our experience at CERN openlab developing Smart-
Domains and deploying Tycoon to give an illustrative introduction to
emerging research in virtual resource management.

1 Introduction

Platform virtualization systems are evolving so fast that scientific produc-
tion grids have not yet caught up with them to improve the management
of their resources. However research projects are going on in experimental
grids and already cleared interesting ways.

We present Tycoon [6, 7], a system developed mainly by Kevin Lai
at HP Labs, that balances and optimizes resources while presenting vir-
tual execution environments to remote users. Tycoon proposes an original
mechanism to optimize resource usage on a global scale: a bidding mecha-
nism and the architecture that makes it possible. Considering the impor-
tant responsibility of platform virtualization in the novelty of Tycoon and
the capabilities of its mechanism, as well as for other projects that bring



up execution environments to remote users, we developed a system to
help using virtualization in resource management: SmartDomains brings
virtualization control to the level of SmartFrog, an advanced Java peer-
to-peer configuration and deployment framework for distributed systems
[9, 10]. Both Tycoon and SmartFrog are projects developed at HP Labs.
SmartDomains is developed at CERN openlab.

In section 2 we present how virtualization gives potential benefits
to the area of resource management via execution environments supply.
We illustrate it with the example of Tycoon detailed in section 3. In
section 4 we present SmartDomains, and how it brings virtual machines
management to a higher development level for convenience, where most
fundamental mechanisms to deploy execution environments are already
provided via SmartFrog.

2 Benefits of virtualization to resource management

2.1 Virtualization

Virtualization means creation of a computer resource abstraction. How-
ever the term is used broadly enough to cover any kind of resources (net-
work, disk) and even services (in Service Oriented Architecture: SOA) or
other concepts (virtual organizations). In this discussion, by virtualization
we mean creation of virtual machines (VMs). Here again, the term “vir-
tual machine” can be understood at several levels: hardware, operating
system (OS) and application (like Java virtual machine). We talk about
“platform virtualization” to name the emulation of virtual machines at
the operating system level (it is an operating system which, in the end,
is presented as an execution environment for our case of interest) poten-
tially using hardware virtualization in the background. Again, there are
some variants of platform virtualization (full, para-, in-kernel), the field
as a whole is experiencing a tremendous growth, and most tools falling
into this designation could theoretically have been used in the systems
we describe.

Concretely, when virtualization is enabled, guest virtual machines can
be booted from the host operating system. In the case of full virtualiza-
tion like with VMWare[4] and KVM[5], an operating system kernel does
not needs to be altered to run as a guest domain: it will not receive in-
formation from the host operating system nor from any other domain.
With VMWare ESX, a software on the host operating system virtualizes



resources (memory page tables, segment addresses, block devices, I/O
interrupts, etc.) and generates code on the fly to replace priviledged in-
structions from the guest domain upon which x86 platforms do not behave
conveniently to support virtualization. KVM’s support for full virtualiza-
tion is compiled in the kernel of the host operating system. By contrast,
Xen[3] developed para-virtualization, where guest domains apparent be-
havior is unchanged (application binary interfaces -ABIs- are unchanged)
but is implemented differently: guest domains can access some informa-
tion from the host OS such as IP address and time. To ensure security,
their supervisor runs at a less priviledged level than a virtualization sys-
tem called the hypervisor that runs on the host OS and checks and vali-
date instructions coming from guest domains. Xen provides images that
simulate commodity operating systems in “porting” ABIs to the hyper-
visor.

The process of configuring and booting a guest domain is more or less
handy depending on the system used. A virtual machines monitor allows
to control the machines up and running. A display or console can usually
be opened from the host machine, and provided the guest VM is properly
configured, users can log on it as if it were a real machine.

Xen is the virtualization technology used in the systems we present
here. It is not the most easy to use but has gained very wide acceptance
amongst Linux users: it offers a performance close to native speed, which
used to be far better than its most important competitor VMWare before
they also implemented para-virtualization. It is open, still more mature
than KVM, and provides the most advanced features in its category.

2.2 Benefits

Platform virtualization allows a single host to bring up in different VMs
different software and operating system distributions, and thus to satisfy
the requirements of several applications at the same time. In addition,
it is possible to flexibly and conveniently control the resource allocated
to these VMs (e.g. CPU, memory). Finally, data isolation between VMs
protect them against each other’s failures and untrusted users, and it
protects the native operating system against any threat from the VMs.

These benefits can be integrated into resource management systems
for Platform virtualization systems usually present software interfaces or
executables, thus allowing automation by other software.



However, grid resource management systems do benefit from platform
virtualization only marginally. Major scientific grids do not yet provide
users virtual platforms in production. Globus investigates the topic with
Virtual Workspaces [2]. Tycoon, the system we present in the next section,
has an experimental running setup with NorduGrid, developed mainly by
Thomas Sandholm; and we are contributing, based on the work of Lars
Rasmusson and Niklas Wirstrom from BalticGrid/SICS, to its integration
with EGEE.

3 Tycoon, dynamic sharing CPU capacity for usage
optimization

Tycoon is a resource management system that builds on virtualization
to implement a specific resource management strategy: resource usage
optimization via a bidding system and a global economy. In this aim, it
benefits from the resource sharing capability of virtual machines, and in
particular the ability of Xen to dynamically adjust the proportion of CPU
cycles allocated to different VMs. In addition, as a system that brings up
execution environments to remote users, it benefits from data isolation
between VMs: a priori untrusted users can access VMs, install and run
their own software without threatening each other nor the backing OS.

The goal is to optimize resource usage in a world-wide economy, by:

– enabling resource consumers to use foreign machines, and giving them
an incentive to use the least loaded machine, and inside the machine,
the minimum resource required;

– enabling resource owners to safely open their resource to foreign users,
and giving them an incentive to do so.

3.1 System

Tycoon’s original idea is the creation of a global market for computing
resources. Anybody willing to use foreign resource needs a Tycoon client.
Anybody willing to provide their own resource to foreign users and thus
gain credits allowing to use foreign resource in turn, needs to install a Ty-
coon auctioneer on the machines he or she wants to involve in the process.
The client is able to choose and connect to an appropriate auctioneer. The
auctioneer then boots a VM on the host where it is installed, allocates
a share of this host’s resources to the VM (figure 1), and forwards the



user’s connection to this VM once it is booted.

This results in the distinction between two groups of Tycoon users:
resource providers, who run a Tycoon auctioneer on one or many of their
own machines; and resource users, who run a Tycoon client. These two
groups widely overlap. This leads to balancing the utilization load over
the whole grid of Tycoon-enabled machines: while a resource owner does
not use the whole power of his machines, he gets credits from foreign
users connecting to them; and at times when he needs more power than
his own machines can offer he uses the accumulated credit to use more
machines than he owns.

The load is also balanced inside one physical host by means of the
auctioneer and bidding system: while the remote user is connected to his
or her VM, the client can still communicate bidding adjustments to the
auctioneer, and the auctioneer can in consequence dynamically adjust
the share of CPU capacity allocated to each VM. The proportion of CPU
capacity allocated to a particular VM inside a physical host is then the
fraction of its user’s bid amount per planned seconds of use out of the sum
of bid amounts per seconds for VMs sitting on the same physical host.
This mechanism is meant to ensure that CPU capacity is distributed ac-
cording to its utility.

A central bank holds all the users and providers credits and proceeds
with transactions when a client makes a bid and is granted access to a
VM. A central service location server keeps an up-to-date database of
all available provider hosts for queries (figure 2). For example, the client
can query a list ranked by increasing price of CPU capacity: the top
host will be the one where the lower bid gives access to the highest CPU
capacity. Clients run the best response algorithm to bid automatically and
thus relieve the user from the burden of constantly checking if the CPU
capacity allocated to their VMs is sufficient.

3.2 Tycoon and virtual resource management

Tycoon belongs to the virtual resource management systems that provide
an execution environment to remote users under the form of a VM. Among
such systems, Tycoon shows particularly original and sophisticated man-
agement mechanism. Virtual Workspaces, developed at Argonne Labs,
focuses more on compliance to grid standards (SOA). It presents a web-
service interface that links sub-services together and allows administrators



Fig. 1. This schema explains the relation between the bid and the resource share
allocated to the bidder.

Fig. 2. The client, using the bank and Service Location Service, can either start a new
bid on an appropriate host or adjust the amount of time a bid covers. The latter option
results in adjusting the capacity allocated at a given time, without communicating with
the bank.



to run remote commands in order to manage filesystem images, VM boot-
ing, users, etc. Amazon Elastic Compute Clouds (EC2) and Xenoservers
[8] focus on letting users bring up their custom filesystem images using
templates and diffs, and fast transfer technologies. In EC2, there is no
fine-grained resource allocation like in Tycoon: the allocated VMs are
of fixed size and characteristics, and users can only change how many
of them they get. HP also experimented using Xen VMs to lower power
consumption in data centers [1].

Tycoon is an example of how far we can get in the construction of
a resource management mechanism and strategy based on virtualization.
In next section we present a system we developed to ease research and
development of such mechanisms.

4 SmartDomains, enabling automation with SmartFrog

SmartDomains (SD), to contrast with Tycoon, does not focus on specific
benefits of virtualization nor does it implement any specific mechanism
for resource management. Rather it makes it possible to develop such
mechanisms in a convenient way, based on a Java framework from HP
Labs called SmartFrog.

4.1 SmartFrog

SmartFrog (SF) is a Java framework developed at HP Labs. It offers a rich
description language and a deployment mechanism to configure, orches-
trate, place and sustain SmartFrog applications made with Java classes
to be distributed across many hosts. By SmartFrog application, we mean
a running collection of synchronized components communicating via Java
RMI. It is not necessarily an end-user application, but can be part of the
infrastructure supporting it. In the case of SmartDomains, the SF appli-
cation consists in the deployed pool of VMs.

In order to deploy a distributed application, when each component
needed is available (in a Jar file stored locally or on a class-loading server),
one has to write a description in SF language, and launch it with a simple
local start command. A peer-to-peer layer of SmartFrog daemons runs on
each machine potentially involved, in order to distribute and process the
deployment and management tasks. To terminate the application it is
again a matter of a simple local termination command.



To counterbalance the execution simplicity, the description language
allows to define advanced setups so that they can be handled without
human intervention at management time. To each SF component corre-
sponds a component in the description, where configuration values can
be defined. In addition, other components can be included, thus defining
a parent-child relationship, where the parent handles the child’s deploy-
ment, start and termination. The Java class of each component defines
what is to be done within these phases.

Functionality, coded in the deploy, start and terminate methods, is
separated from configuration, coupling and deployment processes dealt
with by SmartFrog. Adding components then consists in coding the cor-
responding classes. Building the blocks is done in the description where
components are easily associated. Any new functionality translated into
a new component is then highly configurable: fields of the Java class can
be presented as attributes of the corresponding component in the de-
scription. References to other components in the tree can be included in
order to be resolved at run-time, thus enabling the remote invocation of
a method from the referenced component.

The description language provides mechanisms to link an attribute
name to a component or a value following a path up or down the tree, or
to place an attribute likewise. The extension mechanism allows to name
a new component that branches off another in overriding the values of
its attributes or adding new attributes. One particular attribute, sfClass,
refers to the corresponding Java class for the component, and this is how
the “description space” translates into building blocks from the “code
space”. A component name, sfConfig, is reserved to the root of the tree,
which is looked up by the parser when the start command is launched.

4.2 SmartDomains components

SmartDomains is a set of SmartFrog components, the functionality of
which consists of booting, monitoring and terminating VMs. The idea is to
use the power of SmartFrog to configure, deploy and manage distributed
pools of VMs (figure 3). These base components represent running VMs
and the way they are installed on the host filesystem. Building on them,
resource management systems can be formed by plugging components
that implement management functionality. Any of these components can
then be reused, reconfigured, and associated in different manners in dif-
ferent descriptions. The configurability of virtual machines is not reduced
by delegating their configuration to the SF descriptions. This was one of



the main concerns during the implementation of the base components. As
a consequence, translating Xen VMs into SmartFrog components allows
to build complex systems involving execution environments, like Tycoon,
without reducing a priori the configuration capabilities of these execu-
tion environments, nor enforcing any particular mechanism or strategy;
so that any new building block could benefit to other systems. The ability
to change the whole organization of a system without modifying the code
is particularly useful in a research perspective where different strategies
for managing virtual execution environments have to be evaluated.

Fig. 3. A conceptual representation of the base SmartDomains components, their in-
teraction with SmartFrog and with a VM via the Xen Virtual Machine Monitor (VMM)
interface.

– The storage back-end component defines the way a VM is installed
on the host filesystem. This involves logical volumes or loop-back de-
vices management, OS image storage, de-compression at boot-time
and compression at termination time, and such. Configuring this com-
ponent means overriding default location values, setting disk space



and swap size for the VM, etc.

– The domain component defines the running VM and the monitoring
process. Since SmartFrog monitors the liveness of each component, it
was interesting to monitor the liveness of the virtual machine from
a component, so that high availability mechanisms could be imple-
mented, even if only for code correctness and consistency. This is
where runtime parameters of the VMs are defined as well as parame-
ters not regarding the backing host filesystem itself. For example, the
number of virtual CPUs, the allocated memory, and so on.

At deployment time, all these parameters are resolved by both compo-
nents. When the storage back-end component starts, it prepares the image
and the backing filesystem, and then it boots the virtual machine. When
the domain component starts, it “pings” the VM to see when it is up
and running, and then goes on to monitor liveness. When the VM dies,
it cleanly removes it and notifies the parent component. The appropri-
ate action upon this notification is defined while in the description by
which parent component is used. Normally, the parent component is a
“Compound” component, so that when the domain terminates, the stor-
age back-end termination is also called, which brings the host filesystem
back to the initial clean state.

SmartDomains is only at the beginning of the possibilities. Base com-
ponents can still be expanded to cover more functionality. It does not
yet control the CPU capacity allocation whereas Tycoon does. We are
starting to implement management components and investigate which
functionality we might insist on first: features for high availability or load
balancing for example. We are looking for use cases that would need such
features in order to drive their development in a usage-oriented process,
just like we did for the base components. Indeed, thanks to the work of
Olivier Pernet who has contributed to its development, our components
have been used at CERN for gLite certification testbeds since the early
stages of their development. SmartDomains brings up synchronized, dis-
tributed VMs as testbeds for gLite middleware quality assurance tasks.
We benefited from a constant feedback from Andreas Unterkircher who
drives the use case, and gLite testers experience with SmartDomains was
simplified and improved by a web interface developed by Omer Khalid
(vGrid).



5 Conclusion

Although virtualization has become a commodity, and we already see
instances of systems managing virtual execution environments in com-
mercial services, public scientific grids have not yet caught the wave, and
we believe that many tracks still remain to be explored in this domain.
We presented Tycoon, that implements a market-based mechanism to op-
timize resource usage on a global scale by balancing the load in time and
space while prioritizing execution environments according to their utility.
With other systems, experimentation addresses different needs like power
consumption and cooling. In order to ease developments and experiments,
we enabled the management of VMs via SmartFrog, a powerful framework
that configures and deploys distributed systems in a peer-to-peer, com-
ponent based model, eases modules reuse and architecture restructuring.
With these illustration and development, we hope to foster research and
collaboration, so that utility computing systems bringing up execution
environments based on platform virtualization reach Grid data centers.
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