CERN

openlab

Automation
and
Optimization
\ . in IT-DB
!\ OracleVM
virtualization

CERN systems

openlab
Tomas Tauber

CERN openlab
20 August 2010

http://www.cern.ch/openlab

\» CERN openlab

Ny e m
e

0TN-2010-01 openlab Summer Student Report
Ry Automation and Optimization
e in IT-DB OracleVM virtualization systems
CE RN Tomas Tauber
openlab Giacomo Tenaglia & Luigi Gallerani
August 2010
Version 1.2
Distribution: Public
ADStract.....cccevvveiiieneiiiieniiiiiaieriiiitien et iz et rtietrtiaarrrn st rrtaarranstrraatrrnatarrananrranasrrantrrnanarananarranas 1
INtrodUCtiON.....cceuueeiiiiieeeeiieiieinesiseieieasseererennassssereenassaserrrnnsssssrrernassssrerrennsssseerernassrnnsssenssrensssennnse 2

2.4 Memory DallOONING tOStS....uueiiiierrreiiiiiiiieeiiiiiiiieeiiieiiieeeeeeeiiieeeeeeieieeeeeeeeiieeeeeeeeenaeeeeeeeinsaeeeeeeeeeeeeees 11
2.5 ROSUIES. cuuuueeiiiiiiteeiiii i it e eeeeee e et eeeee et eeetee e et eee ettt entteee e et eaitteeee et eanaeeeeeeeanttreeeeeeennsteeeeeeennrteeeeees 12
2.6 SUIMMINIATY L uuuiiiiiiiiiiii ettt eee ettt ettt eeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeasssssssseaeeeeeeeeeeeeeerasssseeeessnnss 16
3 CONCIUSION. teeueuuiirirnaueieeriiunnsastternnzssatertunzssassrerrenssssserrennssssserrnnassssserennassssreernasssssseeennassssseeenasenns 17

Abstract

The goal of this openlab summer student project was to have a transparent, dynamic and automated
management of virtual machine units using OracleVM, the current IT-DB virtualization technology,
architecture and configuration. The other aim of this work was to optimize the hardware usage in order
to run as much virtual machines as possible on a single physical host.

Page 1 of 18

\ » Automation and Optimization in IT-DB OracleVM virtualization systems

Introduction

The first chapter explains the architecture concept and then focuses on various categories of
automating the virtual machine management. In the second chapter, the memory overcommitment
technique, “ballooning”, is described, followed by performed tests specifications and their results.

The intention is to integrate Oracle VM, the server virtualization solution from Oracle Corporation,
based on the open-source Xen hypervisor technology, into the current CERN IT-DB infrastructure. The
first major step which had been already done was to have the virtual machines managed by OVM
compatible with Quattor.

The other challenge is to make use of the features of these virtualization technologies which are key
solutions to many current IT problems. One of the major tasks is to have a better utilization of new
hardware by running several virtual machines on it. Nowadays, memory is becoming a bottleneck in
virtualized systems, hence performance tests of physical hosts, using some memory overcommitment
techniques, give a good background for determining the optimal number of virtual machines that could
run on a single physical host.

Xen hypervisor technology*

The Xen hypervisor is a layer of software running directly on computer hardware replacing the
operating system thereby allowing the computer hardware to run multiple guest operating systems
concurrently. Support for x86, x86-64, Itanium, Power PC, and ARM processors allow the Xen
hypervisor to run on a wide variety of computing devices and currently supports Linux, NetBSD,
FreeBSD, Solaris, Windows, and other common operating systems as guests running on the hypervisor.
The Xen.org community develops and maintains the Xen hypervisor as a free solution licensed under the
GNU General Public License. A computer running the Xen hypervisor contains three components:

* Xen Hypervisor

* Domain 0, the Privileged Domain (Dom0) — Privileged guest running on the hypervisor with direct
hardware access and guest management responsibilities

* Multiple DomainU, Unprivileged Domain Guests (DomU) — Unprivileged guests running on the
hypervisor; they have no direct access to hardware (e.g. memory, disk, etc.)

The Xen hypervisor runs directly on the hardware and becomes the interface for all hardware
requests such as CPU, I/0O, and disk for the guest operating systems. By separating the guests from the
hardware, the Xen hypervisor is able to run multiple operating systems securely and independently. The
Domain 0 Guest referred to as Dom0 is launched by the Xen hypervisor during initial system start-up
and can run any operating system except Windows. The Dom0 has unique privileges to access the Xen
hypervisor that is not allocated to any other Domain Guests. These privileges allow it to manage all
aspects of Domain Guests such as starting, stopping, I/O requests, etc. A system administrator can log
into Dom0O and manage the entire computer system. The Domain Guests referred to as DomUs or
unprivileged domains are launched and controlled by the Dom0 and independently operate on the
system. These guests are either run with a special modified operating system referred to as
paravirtualizion or unmodified operating systems leveraging special virtualization hardware (Intel VT
and AMD-V) referred to as hardware virtual machine (HVM). Note — Microsoft Windows requires a
HVM Guest environment.

'Stephen Spector, 'New to Xen Guide', xen.org, 15 July 2010,
<http://www.xen.org/files/Marketing/NewtoXenGuide.pdf> [accessed 4 August 2010]

Page 2 of 18

http://www.xen.org/files/Marketing/NewtoXenGuide.pdf

Automation and Optimization in IT-DB OracleVM virtualization systems \»

Paravirtualization

A term used to describe a virtualization technique that allows the operating system to be aware that it
is running on a hypervisor instead of base hardware. The operating system must be modified to
accommodate the unique situation of running on a hypervisor instead of basic hardware.

Hardware Virtual Machine (HVM)

A term used to describe an operating system that is running in a virtualized environment unchanged
and unaware that it is not running directly on the hardware. Special hardware is required to allow
this, thus the term HVM.

1 Automation

1.1 Architecture design’

Virtual
World

Real, Physical :.-";
World

OracleVM Architecture design
Figure 1

As shown in Figure 1, we have two worlds: the real one with physical servers and the virtual one
with running virtual machines. In the real world, there are the physical servers which run the OracleVM
Server. These servers are connected to NAS in order to share a folder, called OVS (VM Repository). In
this repository, the images of the virtual machines and the configuration files are stored. The virtual
machines run on the OracleVM Server. If the OracleVM Servers are logically grouped in a server pool,
the virtual machines can run on each server in the same server pool. An external computer, with Oracle
HTTP Server (based on Apache HTTP server) installed, can run the OC4J based web application called
OracleVM Manager. OracleVM Manager can start and stop both physical and virtual machines, migrate
virtual machines from one physical server to another, define server pools, create and delete virtual
machines. In this picture, we have 3 OracleVM Servers, 2 are grouped in the ServerPool0. Also, we have
3 virtual machine running. The first 2 are running on the first server of the ServerPool0, but they could

" The picture and background information kindly provided by Luigi Gallerani

Page 3 of 18

\ » Automation and Optimization in IT-DB OracleVM virtualization systems

be run on the second server too, because the servers are in the same pool. The ServerPooll is composed
of a single OracleVM Server and on this Server, one virtual machine is running. All these servers are
connected to the same VM Repository which contains images of the virtual machines and a
configuration file for each virtual machine.

Physical Servers are the machines that run OracleVM Servers, a dedicated operating system,
Linux/Xen based, on which OracleVM Agent is automatically installed. OracleVM Servers run virtual
machines, the installed OracleVM Agent communicates with the OVM Manager.

NAS Servers are the file servers, reachable via network by the Physical Servers on which we store
the virtual machine hardware configuration and the virtual machine images. Physical Servers mount the
OVS folder shared by all the servers. This is the VM Repository.

Virtual Machines run (CPU) on the Physical Servers and are stored in the NAS Servers (images).
The virtual hardware configuration of a virtual machine, e.g. memory size, processor number, network
interfaces specification, is written in a dedicated configuration file stored in the NAS. Typically, the
same folder in the /OVS is used for the configuration file and the data image. The virtual software
configuration is provided by Quattor and is fully transparent. No special configuration for a virtual
machine profile is needed. A virtual machine can be installed via Quattor like a physical one.

Manager Machine is an external machine running Oracle HTTP Server and OracleVM Manager, a
web application, that communicates with OracleVM Manager on the servers. If Java is installed, a
console via Java Applet is also available for remote control. Also, a Command-Line Interface can be
installed.

Server Pools are logical groups of Physical Servers running OVM Servers. Server Pools share the
same VM Repository. Virtual Machines in the same Server Pools can run on different Physical Servers,
live migrate, load balance, fault tolerant live migrate etc. Server Pools can be easily managed by the
OracleVM Manager via web interface or partly by the Command-Line Interface. Each server
communicates with other Server in the pool using OVS Agents.

1.2 Management

1.2.1 OracleVM Manager

Oracle VM Manager provides virtual machine life cycle management, including creating virtual
machines from installation media or from templates. It provides features such as power on, power off,
deleting, importing, deploying, and live migration of virtual machines. Oracle VM Manager also
effectively manages resources, including I1SO files, virtual machine templates, and shared virtual disks.>
In addition to the web interface, a command-line interface can be installed which can be useful for
automating tasks regarding the virtual machine life cycle management, however its functionality is
limited (as for the version 2.2-9, MAC addresses cannot be specified etc.).

1.2.2 Searching a physical host of a virtual machine

In the situation without an access to the OVM Manager (e.g. OVM failure), it is complicated to find
where the specified virtual machine is running. All the machines in the cluster have to be contacted via
ssh and the Xen command line is used to check if the virtual machine is running on any of them. This
task had been already automated with the “SearchVM” script, however its performance was not efficient
when searching more virtual machines or for the use in other tools. For this reason, a new version was
implemented and the performance was improved by using “fork” to have a parallel process for each

“Oracle VM Manager Release Notes', Oracle Corporation, June 2009,
<http://download.oracle.com/docs/cd/E11081 01/doc/doc.21/e10903/toc.htm> [accessed 4 August 2010]

Page 4 of 18

http://download.oracle.com/docs/cd/E11081_01/doc/doc.21/e10903/toc.htm

Automation and Optimization in IT-DB OracleVM virtualization systems \I »
L L]
L

uc’

machine in the cluster. The output is usually obtained within 1 second which is 5-10 times less compared
to the previous version.

[Lxadm@4 ~]$ time ./oldsearchvm.sh dbvrtg001l
dbsrvg3502
real Om5.020s user Oml.118s sys OmO.187s

[Ixadm@4 ~]$ time ./searchvm.sh dbvrtg001l
dbsrvg3502
real Om0.823s user Oml.106s sys OmO.230s

1.2.3 Opening a VNC console

Based on the SearchVM script, two other utilities for the critical situations with no access to the
OVM Manager were created. The first of them is used to access the specified virtual machine via VNC.
The utility checks if X11 forwarding is enabled, then uses SearchVM to find the physical host, connects
to it and opens vncviewer, built in the Xen command line.

1.2.4 Stopping a virtual machine

The second tool looks up the physical host (with SearchVM), connects to it, and shuts down the
specified virtual machine using the XEN command line. It may take several seconds before the virtual
machine turns off.

1.2.5 Creating a virtual machine

The creation of a virtual machine itself is done by a user in OracleVM Manager. Then, several steps
for integrating the virtual machine into the infrastructure (LanDB, Quattor) must be done manually. For
this reason, two possible approaches of automation were proposed:

1. The virtual machine will be created in OracleVM (either using templates, or specifying new one
with PXE boot), then it will be registered in LanDB and Quattor with the generated MAC
address.

2. The virtual machine will be registered in LanDB where the generated MAC address is obtained,
then in Quattor and finally created in OracleVM where the MAC address must be specified. This
is in principle how it had been done manually.

The current version of OVM Command-Line Interface does not allow users to specify MAC
addresses, therefore the second approach would require more steps — searching the configuration file and
making changes in it. As a result of this, the first approach was chosen to be the procedure that the
automation script CreateVM would follow. For the virtual machine creation, we decided to create new
machines rather than to create them from templates, because it offers more flexibility. Finally, CreateVM
works as follows:

* The OracleVM Manager host is contacted via ssh and using CLI, the specified virtual machine is
created and two network devices are added into it.

* From the output of the OVM CLI vm nic Is command, the generated MAC address of the newly
created machine is obtained.

* The machine with management scripts is contacted via ssh and the modified Perl script for
registering a new machine in LanDB using the SOAP interface is executed with two parameters: the
specified name of the virtual machine and its MAC address.

* On Ixadm, LEAFAddHost is executed with all necessary parameters in order to register the virtual
machine in Quattor.

Page 5 of 18

\ » Automation and Optimization in IT-DB OracleVM virtualization systems

¢ The virtual machine is launched.
e After 20 minutes, Preparelnstall is run.

Whilst having this process automated, some tasks still need to be done manually (for instance, a
service request for a block of new IPs for your virtual machines if needed).

1.3 Recovery

1.3.1 Standard backup approach

It is advised to backup resources which reside on the VM Servers (VM Images in the
/OVS/running_pool, VM templates in /OVS/seed_pool, or ISO files in /OVS/iso_pool). Beside this,
OracleVM Manager comes with a backup script placed in /opt/ovs-manager-[version]/bin. Running this
script requires 4 users inputs (backup/restore selection, OV'S database password, dump file path and log
file path). To automate this procedure via cron, either some modifications of this script, or the expect
unix tool are needed.

1.3.2 Standard restore approach

The provided script for backups is also used for restoring OracleVM Manager. It asks for the same
user input, plus a SYS database password (to rebuild the OVM Manager Database schema).

1.3.3 Automatic backup tool

Based on the provided script, the modified version which can be run as a cron job was prepared. It
uses the Oracle database exp utility to get the dump and log files. After this is done, it uploads these files
(filename is generated from the current date) to NAS. In the current production state, the size of one
OracleVM Manager database dump is around 1.3 MB, and hence this job is executed daily.

In addition to this, the external database connection string was found to be in:
/opt/ocdj/j2ee/home/config/data-sources.xml This, for example, can be used for migrating or having
multiple instances of OracleVM Manager pointing to the same external database.

1.3.4 Ciritical situation - OVM Emergency and Disaster Recovery

We assume a situation when either OVM backup files are not available, or the provided backup
utility fails and OracleVM Manager cannot be restored with the standard approach. A new installation of
OracleVM Manager and Command-Line Interface is needed and we aim to collect as much data about
the previous setting as possible, and to rebuild the old structure based on the collected data and user
input. OVM Emergency and Disaster Recovery is done in the following steps:

1. The list of physical hosts in the cluster is retried via CDBhost query; each host is running OVS
agent (assuming it is not corrupted).

2. Using a Python RPC script, each host is asked for the master hostname and virtual machines it is
running via XML-RPC.

Based on this, the pool structure prototypes are created.
4. User is asked to specify which of the found pools he wants to recreate and to enter their names.

The hosts which were included in the selected pools are contacted via ssh; their OVS agent
databases are moved to backup files and OVS agents are restarted (virtual machines have to be
powered off).

6. The host of the newly installed OVM Manager is contacted via ssh and Command-Line Interface
is used to:

Page 6 of 18

Automation and Optimization in IT-DB OracleVM virtualization systems \I »
L L]
L

uc’

» create the specified server pools with found master servers

* add hosts into corresponding server pools

* discover VM images in the pool directories

* import found VM images

* approve imported VM images and assign VMs to their physical hosts

However as mentioned, the current version of the CLI has some limitation. Hence, the full
automation of this task is not possible and some parts need to be done manually in the web interface.

1.3.5 OVM Structure Recovery - assistance tool

To simplify the critical situation recovery process, a tool which would help an operator with
recreating the lost OVM structure was developed. OVS Agents of all physical hosts in the cluster are
queried via the XML-RPC protocol, the return data is filtered and processed. Based on this, a tree
structure is built. In this structure, all OracleVM servers have their master servers as parents and virtual
machines they run are their children. The tree structure is displayed in the command line and stored in
the Unix directory hierarchy, hence it can be easily accessed and used by some other potential recovery
utilities.

Example command line output:

| -dbsrvd249

| - - -dbsrvd249

| ---dbsrvd283

| -dbsrvg3413

| ---dbsrvg3413
|----- 13 dbvrtg001l
[----- 23 dbvrtg007
|----- 27 _dbvrtg005
[----- 31 dbvrtg01ll
|----- 42 dbvrtg025
| - --dbsrvg3502
|----- 12 _dbvrtg000
|----- 15 dbvrtg002
|----- 22 dbvrtg004
[----- 26 _dbvrtg008
|----- 34 SLSTest
|----- 38 dbvrtg023
[----- 44 dbvrtg026
| - --dbsrvg3503
[----- 10 dbvrtg022
|----- 18 dbvrtg003
[----- 19 dbvrtg006
|----- 29 dbvrtg009
[----- 40 dbvrtg024
[----- 46 _dbvrtg027

Page 7 of 18

\» Automation and Optimization in IT-DB OracleVM virtualization systems

1.4 Status monitoring
The individual machine status monitoring is possible in OracleVM:

ORACLE VM Manager

Virtual Machines | Resources | Servers | Server Pools | Administration

Home Profile Logout Help

Logged in as admin

Refreshin: (30saconds| ¥ | | Refresh Create Virtual Machine

Virtual Machines

[® Show Search

v All Virtual Machines Virtual Machines
» GPool Selectand
| Power On || Console | Power Off || Configure | More Actions: F]ﬂ
|Select|Details [Viriual Machine Name | Memory Size (MB)[Staius [owner [Group Name [server Name Server Pool Name
® @ Show dbvrgo2? 4,096 P Running admin My Workspace dbsvg3502 G-Poal
[Show dbvrig026 4,096 P~ Running admin My Workspace dbsrvg3501 G-Pool
[Show dbvrtgd25 4,006 P+ Running admin |My Workspace dbsrvg3501 G-Poal
[Show dbvrigD24 4,096 P Running admin My Workspace dbsrvg3501 G-Poal
¥ Show dbvrigd23 4,096 PRunning admin My Workspace dbsrvg3501 &-Poal
[Show SLSTest 1,024 M Powered Off admin My Workspace NiA G -Pool
[Show dbvrig011 4,096 P-Running admin My Waorkspace dbsrvg3413 G-Pool
[Show dbvrigd0g 2,048 P> Running admin My Workspace dbsrvg3503 G-Poal
[Show dbvrig005 4,069 P~ Running admin My Workspace dbsrvg3413 G-Poal
[Show dbvrtg008 4,096 P Running admin My Workspace dhsrvg3502 G-Poal
[Show dbvrtgD0T 4,096 P~ Running admin |My Workspace dbsrvg3413 G-Poal
[Show dbrigDos 4,096 P+ Running admin My Workspace dbsrvg3502 G-Poal
() Show dbvrtgDo6 4,094 P~Running admin My Workspace dbsrvg3503 G-Pool
¥ Show dbvrtg003 4,006 PRunning admin My Workspace dhsrvg3503 G-Poal
[Show dbvrigno2 4,096 P> Running admin My Workspace dbsvg3502 G-Poo|
[# Show dbvrig001 4,089 | P~ Running admin My Workspace dbsrvg3413 G-Poal
[Show dbvrigdoo 1,024 P> Running admin My Workspace dbsrvg3502 G-Poal
[Show dbvrig022 4,096 P~ Running admin My Workspace dbsrvg3503 G-Pool

Refresh in: |_Refresh | Create Virtual Machine

Virual Machines Resources Servers Server Pools Administration

008. Oracle Al rights reserved. Omacle VM Manager 2.2.0

Screenshot — OracleVM Manager
Figure 2

For the overall statistics, we decided to use Service Level Status (SLS). Two XML files are
exported. One contains a ratio of the number of running virtual machines to the total number of virtual
machines, the other contains the same ratio, but for the OracleVM servers. From these two values, the
harmonic mean which is most appropriate, because it tends to mitigate the impact of large outliers and
aggravate the impact of small ones?, is counted. This gives a quick overview of the OracleVM service
availability.

1.5 Summary

In this part, the tool-kit for managing virtual machines (SearchVM, ConsoleVM and StopVM) which
does not depend on the OracleVM functionality was developed and in order to reduce manual steps
required for deploying a virtual machine in the current infrastructure (LanDB, Quattor) altogether with
OracleVM, CreateVM automates most of it. Then, two scenarios were examined for recovering: one for
standard situations and one for critical situations. In the first scenario, autobackup tool was derived from
the OracleVM Manager backup script. In the second one, the assistance tool for rebuilding the server
pool structure was implemented. For the overall status monitoring, two scripts for exporting XML
according to SLS specifications were written.

*Wikipedia contributors, 'Harmonic mean', Wikipedia, The Free Encyclopedia, 6 June 2010, 16:21 UTC,
<http://en.wikipedia.org/w/index.php?title=Harmonic _mean&oldid=366388572> [accessed 5 August 2010]

Page 8 of 18

http://en.wikipedia.org/w/index.php?title=Harmonic_mean&oldid=366388572

Automation and Optimization in IT-DB OracleVM virtualization systems \p

uc’

2 Optimization

2.1 Motivation

Virtualization is a commonly used for consolidation of hardware resources which are shared by all

guests and used depending on their needs. Physical memory, however, is an exception, because unlike
CPU or I/O cards, operating systems generally tend to utilize their physical memory fully. Apart from
kernel/user code and data, some memory is allocated for page caching. Since hard drives are slow, this
can dramatically improve performance. However, as the whole memory is utilized, this is becoming a
bottleneck in virtualized systems. For instance, a 4GB physical host is able to manage three 1GB virtual
machines, but as its hypervisor uses some memory, more than three guests cannot be normally added.

2.2 Memory overcommitment

This problem can be solved by using one of the memory overcommitment techniques. Currently,

there are several proposed mechanisms for it*:

Ballooning utilizes a special driver that “inflates” by requesting memory from the kernel and
returning it to the Virtual Machine Monitor (VMM).

Content-based page sharing transparently discovers identical pages and combines them, using copy-
on-write to separate them again when necessary.

In demand paging, the VMM maintains a swap area and can page out memory without guest
involvement. Because of the so-called “semantic gap”, a VMM-based page replacement algorithm
cannot be efficient and can lead to double paging.

Hot-plug memory add® works as if a physical DIMM were added. The firmware, ACPI or pHYP for
example, tells the OS a new address range of memory is available. After Linux finds the new
memory it sets up a new mem_map[] and other structures. Finally the kernel then adds the new
memory into the allocator, making it available for use.

In ticketed ballooning, a ticket is obtained when a page is surrendered to the balloon driver. Original
page can be retrieved if Xen has not given the page to another domain.

Swapping out entire (idle/low-priority) guests - guests are then swapped in when triggered by a
mechanism similar to wake-on-LAN.

Transcendent Memory?® is both: (a) a collection of idle physical memory in a system and (b) an API
for providing indirect access to that memory. A tmem host (such as a hypervisor in a virtualized
system) maintains and manages one or more tmem pools of physical memory. One or more tmem
clients (such as a guest OS in a virtualized system) can access this memory only indirectly via a
well-defined tmem API which imposes a carefully-crafted set of rules and restrictions.

Because ballooning is commonly implemented nowadays and supported by both Xen and OracleVM
Server, we chose it for our optimization test purposes.

‘Dan Magenheimer, 'Memory Overcommit... without the commitment', Xen Summit Boston 2008, 24 June

2008, <http://wiki.xensource.com/xenwiki/Open_Topics For Discussion?
action=AttachFile&do=get&target=Memory+Overcommit.pdf> [accessed 5 August 2010]
*J. Schopp et al, 'Resizing Memory with Balloons and Hotplug', Ottawa Linux Symposium 2006, 22 July
2006, <http://www.kernel.org/doc/ols/2006/0ls2006v2-pages-313-320.pdf> [accessed 5 August 2010]
*Dan Magenheimer, 'Project: Transcendent Memory', Oracle Corp., 22 July 2010,
<http://0ss.oracle.com/projects/tmem/> [accessed 5 August 2010]

Page 9 of 18

http://oss.oracle.com/projects/tmem/
http://www.kernel.org/doc/ols/2006/ols2006v2-pages-313-320.pdf
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Memory+Overcommit.pdf
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Memory+Overcommit.pdf

\» Automation and Optimization in IT-DB OracleVM virtualization systems

2.3 Ballooning*

A balloon driver, when properly managed, complements nicely with the Linux kernel’s page
replacement mechanisms. When the balloon is inflated by one page, the kernel surrenders the page that it
believes is least likely to be used again. If the balloon can be inflated until just before the guest “hurts”
for memory, the guest’s idle memory will be minimized, and Xen can use that otherwise idle memory for
another guest. When a guest needs more memory, it must be able to quickly deflate the balloon; but if
additional memory is unavailable, a properly configured Linux guest swaps pages to disk, just as if it
reached a fixed limit of physical memory. Then when memory later becomes available, Linux can make
use of that memory to swap pages in from disk if it needs to.

Guest OS

Memory ballooning on guests’
Figure 3

2.3.1 dom0 auto-ballooning

The balloon driver has been in Xen for 2 years and it is mostly used for domO auto-ballooning. At
first, you allocate the dedicated memory. This is done by specifying "dom0_mem=512M" option for Xen
hypervisor (usually xen.gz) in grub.conf/menu.lst®. This makes sure the initial size of memory allocated
for dom0 is 512 MB (replace with the amount of memory you want), and the rest of the RAM is
available for other guests in Xen hypervisor. The dom0 memory does not change unless in /etc/xen/xend-
config.sxp, the "dom0-min-mem" option is set up to a smaller value (in this case, for instance, 192) and
also the "enable-domO-ballooning" option is configured to “yes”. Then, when guests need more memory,
domO tries to reduce its allocated memory and make the released memory available to them.

*Dan Magenheimer, 'Memory Overcommit... without the commitment', Xen Summit Boston 2008, 24 June

2008, <http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?

action=AttachFile&do=get&target=Memory+Overcommit.pdf> [accessed 5 August 2010]
’Eric Horschman, 'Cheap Hypervisors: A Fine Idea -- If You Can Afford Them', VMware: Virtual Reality, 11

March 2008. <http://blogs.vimnware.com/virtualreality/2008/03/cheap-hyperviso.html> [accessed 9 August
2010]

®Pasi Karkkainen, 'Best Practices for Xen', Xen Wiki, 13 May 2010.
<http://wiki.xensource.com/xenwiki/XenBestPractices> [accessed 9 August 2010]

Page 10 of 18

http://wiki.xensource.com/xenwiki/XenBestPractices
http://blogs.vmware.com/virtualreality/2008/03/cheap-hyperviso.html
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Memory+Overcommit.pdf
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Memory+Overcommit.pdf

Automation and Optimization in IT-DB OracleVM virtualization systems \I »
L L]
L

uc’

2.3.2 domuU self-ballooning

The balloon driver needs to be installed either in-kernel (paravirtualized) or as a kernel module
(hardware virtualized) on guests. Then, their memory can be set to from as low as possible (it can cause
an out-of-memory condition) to the max value which is specified when they are created. For automatic
changes in memory allocation (the active guests take available memory from the idle ones), the
xenballoond deamon has to be present in them. The changes in the guest memory size are immediate,
domO does not manage them and is not anyhow involved in them. For control and statistics of domU
balloon sizes from the domO perspective, the directed ballooning can be used (several xenstore tools
have to be installed on guests if this mechanism is desired).

2.4 Memory ballooning tests

2.4.1 “Plain” images

At first, we tested the domO auto-ballooning by adding dummy guests without a balloon driver, so
the maximum number of machines was determined by the memory they were allocated during their
creation. Once the number of machines reaches its limit, domoO tries to reduce its memory and release it
to guests.

2.4.2 Balloon driver

The functionality of a balloon driver was tested on machines created from the Oracle Enterprise
Linux 5 - PV OVM template. Using the xm mem-set command, the smaller amount of memory can be
allocated to a guest after its creation and this increases the total free memory.

2.4.3 Xenballond deamon - “clean” image

The mentioned OVM template image was modified by installing the xenballoond deamon on it. This
enabled automatic memory allocation management on these idle, “clean”, virtual machines. When
needed, they lowered their memory down to the Committed_AS value (in /proc/meminfo) as described in
[4]. We tested if this self-ballooning would work and the “clean” virtual machines would release as
much as possible memory to the “stress” ones whose image containment is described below.

2.4.4 “Stress” image

Based on this “clean” image, we prepared the “stress” one which was highly used in our stress tests.
It had a stress script (inspired by “eatmem” described in [4]) in rc.local, so once a “stress” virtual
machine booted up, it started this script. The script allocates 1 GB of memory (using the malloc
function) in 4 threads, writes up to 512MB chunks of random data into it, frees it and then sleeps for a
random number of seconds (up to 63). This sequence runs forever, hence from the memory perspective,
these virtual machines were heavily used.

2.4.5 Specifications

Both images had the size around 15 GB, so they were copied to a folder mounted via NFS (initially,
50 “stress” images were placed there and 2 “clean” ones). In their configuration files, they were assigned
2 virtual CPUs and 4 GB RAM. They were all allocated swap space of 6 GB (2 GB for the normal use +
4 GB in case of hot swapping) in their images. The testing machine was dbsrvg3501 (Intel Xeon CPU
L5520 @ 2.27GHz - 8 cores, 48 GB RAM) running on OracleVM 2.2.0 (kernel 2.6.18-
128.2.1.4.9.el5xen) with the Xen 3.4.0 hypervisor. It was running one domain based on a “plain” image
(Red Hat 5), dbvrtg000. In the beginning. the dom0 was allocated 512 MB which could be reduced to
196 MB by auto-ballooning.

2.4.6 Measurements

In the first test, the virtual machines were launched sequentially in groups (1-7 machines) and for
each group, the total free memory in Xen was measured 10 times with a 30-second delay inbetween.

Page 11 of 18

\» Automation and Optimization in IT-DB OracleVM virtualization systems

This contained all three VM variants. Based on the results from this test, the seconds test was set up. Up
to the previously measured optimal number of domains, the “stress” machines were automatically
launched one by one and the total free memory was measured for each one in similar fashion to the first
test.

2.5 Results

251 Testl
The “plain” virtual machine, dbvrtg000, was running without any problems and its memory was
untouched by the others. The balloon driver in the “clean” VMs inflated and reduced their memory to
around 400 MB. With the “stress” VMs, the behaviour was as follows:

Number of running domains Event description
Creation of new virtual machines without any problems, machines

Up to 27 were running smoothly, dynamically changing their memory size
27 domO started auto-ballooning in order to enable new guests creation
30 The memory of dom0 was minimal

Problems with creating new virtual machines arose — during the
33-45 creation time, some machines had to be paused in order to stop the
full memory usage; minor swapping on guests

45 “Hot swapping” on guests

This behaviour pattern can be seen in Figure 5 which is a timeplot of free memory. It is based on the
raw data, hence there are instantaneous drops in free memory during the domain creation time. As
described in the table, there is a short peak when 27 domains were running because of the memory
release from domoO.

File Edit View Temminal Tabs Help

root@dbsrvg3501:tmp/OVS test b |

xentop - 15:22:01 Xen 3.4.0
46 domains: 8 running, 28 blocked, 0@ paused, 0 cras
Mem: 56321636k total, 560321636k used, B0k free CP
NAME ©STATE CPU(sec) CPU(%) MEM({k) MEM(:
ctempf®l --b--- 434176
ctempgd2 --b--- 434176
1852588
434432
812692
545372
so7004
1182568

=
= o

dbvrtgffd --b---
Domain-6

stempol
stempf®2 --b---
stemp8@3 --b---
stemp0o4

o B 03 On R R B
= 00 WD WD =]
Bd = =@ M

Screenshot — xen with 46 domains
Figure 4

Page 12 of 18

Automation and Optimization in IT-DB OracleVM virtualization systems \»

45000

40000

| Number of running domains |

35000

30000

25000

20000

Free memornyin MB

15000

¢
Vi
Vooo

10000

5000
o
BB BEEEESEEREESREEREBEEL EEBE B
B EEEREcRNaEEBERSEc G BERE B
s m &8 8 U F A B BHENEESDREBERELBHERS BB
Time

Graph from the 1* test — free memory (in MB) against time
Figure 5

2.5.2 CPU usage

This was mainly a memory stress test, therefore the CPU had been idle for most of the time. As
shown in Figure 6 (which is one of statistics plot for the physical host on Lemon Web), the utilization
stayed under 5 % for almost the whole test, except of the time when guests started hot swapping where
the CPU usage jumped to around 40 %.

Page 13 of 18

\ » Automation and Optimization in IT-DB OracleVM virtualization systems

.\ | g |
- "
average value: 3.62

45

40 |

35 F

a0 F

25 b

20 F

15 F

10 |

L h A

oL M.M \/ ! ‘l'l ! |
E=3 k=3 =3 f=3 E=3 k=3 =3 f=3 p=3 k=3 =3 f=3 p=3 o
[xp] k=3 o = [xp] k=] o = o k=3 o = o k=3
[n} L3 L3 — — [ad] (] o [ar] h=4 -+ [y} [y} w
E=3 - - — -— - - — - -— - — - —

Lemon Monitoring 2007
CPU usage (in percentage) against time from the Lemon Web monitoring
Figure 6
2.5.3 Test?2

From the results of the first test, we estimated the limiting number of “stress” virtual machines to be
30. The second test ran up to this number with more precise measurement: the total free memory was
measured 10 times after creation of every single VM and there was an additional 5-minute delay between
the measurement and the VM creation in order to let the VMs properly boot up and start the stress script.
From the raw data, the average of the total free memory for each state of running machines was counted
and subtracted from the total amount of physical memory to get the size of used memory. This is
represented as the yellow curve in Figure 7. The blue constant line shows the total physical memory and
the yellow curve is gradually approaching to this value which is what we expected according to our
previous estimates from the first test. The above described phenomenon of dom0 auto-ballooning at 27
virtual machines can be also seen on this curve. The orange linear line stands for the total amount of
memory virtually allocated to guests. This would correspond to the used memory when no memory
overcommitment mechanism is used and the intersection with the blue line would be the maximal
number of virtual machine that could be created on this physical host. This point is at 11 machines, as
expected: 48 GB could fit twelve 4GB virtual machines, but dom0O takes some memory, so only 11
guests would be added. On the contrary, the yellow curve continues far beyond this point.

Page 14 of 18

Automation and Optimization in IT-DB OracleVM virtualization systems \»

-. | 'R]
- l"
140000
120000
100000
o 80000
=
£
> == Virtual memory
g Memory used
[} 60000
=
Physical Memory
40000
20000
0
123456 7 8 9101112131415161718192021222324252627282930
Number of VMs

Comparison of used memory with the total memory allocated on guests
Figure 7

2.5.4 Number of machines

In these test conditions, we could run up to 30 “stress” virtual machines on a single physical host.
This is more than two times what is normally possible without using any memory overcommitment
techniques and shown in Figure 8 as a ratio between the used memory and the total memory allocated on
guests (the yellow curve and the orange line in Figure 7). The average value of this ratio is 2.5.

As for the “clean” virtual machines, it is possible to create 120 of them, because each idle machine
uses only around 400 MB. In this case, it would be more than 10 times the number of the “plain” virtual
machine we could create.

Page 15 of 18

\» Automation and Optimization in IT-DB OracleVM virtualization systems

3.5

2.5

Ratio

15

0.5

123456 7 8 91011121314151617 18192021 222324252627 2829 30

Number of Machines

Ratio between the used memory and “virtual memory”
Figure 8

2.6 Summary

Several memory overcommitment techniques were overviewed and ballooning was chosen for our
test purposes. Three virtual machine images were prepared (“plain”, “clean” and “stress”). The “stress”
one loaded a script which simulated heavy memory usage at start-up. Two tests were done. In the first
one, the overall behaviour and ballooning features were examined and the number of running virtual
machines was pushed to the limit when the machines started hot-swapping. Based on the results, the
estimates were made in order to prepare the second test which verified what we had previously measured
and gave the detailed background of the region with the stable average amount of the total free memory.
The CPU was mostly underutilized throughout these memory tests. We found out that we could create up
to 30 virtual machines with heavy memory usage and up to 120 idle virtual machines in these test
specifications. This is more than two times, respectively ten times what would possible without any
memory overcommitment mechanisms.

Page 16 of 18

Automation and Optimization in IT-DB OracleVM virtualization systems \p

nem
."

3 Conclusion

In the first part, several virtual machine management tools were developed. Currently, they are
distributed via syscontrol and used by various users. Even though the number of the steps required for
deploying a new virtual machine into the current infrastructure was reduced, some manual work remains.
The potential extension of the developed script which would assist the operator and speed up this process
even more might be examined. Regarding recovery, the multiply instances of OracleVM Manager would
increase redundancy of this virtualization system and the semi-automatic recovery tool could be based on
the output from the implemented assistance tool. The SLS services have IDs DBVirt_pm for the physical
machines' availability monitoring and DBVirt_vm for the virtual machines.

In the second part, two tests for determining the optimal number of running machines per one
physical host were conducted. In these test specifications, we can create up to 30 heavily used (from the
memory perspective) virtual machines, hence the optimal number of running machines would be
between 20 and 25 in order to have more memory dedicated to the privileged domain which is running
the Xen hypervisor and to have some memory reserves for the situations when more guests would
require larger amounts of memory at the same time. As for the mostly idle virtual machine, we could
create up to 120 of them, and so the optimal number would be between 80 and 100 for the same reason.
However, 80 machines on one physical host would be complicated to maintain, therefore these numbers
are rather giving the idea of the physical machine potential than the recommended approach. This is
partly the reason why the current virtual machines in production do not use any memory
overcommitment mechanisms.

For the future needs, it might be useful to consider some other possible tests which could be done for
declaring the possible approaches of better hardware utilization. Namely, the memory stress script could
be replaced by a CPU stress application, or a general usage simulation script (i.e. infinite Linux kernel
compilation). In addition to this, the directed ballooning technique could be used for the overall guest
monitoring, including their balloon sizes. Apart from this, a custom image with more compact
configuration (so, it takes less than 400 MB which was the minimal virtual machine memory in our
tests), possibly using the hardware virtualization, could be prepared. Additionally, other memory
overcommitment techniques (for instance, transcendent memory) may be examined.

4 Acknowledgements

In the first place, I would like to express thanks to all people in the IT-DB-IMS section, especially to
my supervisors, Luigi Gallerani and Giacomo Tenaglia, Artur Wiecek, Dmitry Ustyushkin. Paul Smith
and Sophie Lemaitre for any help with accomplishing my tasks. Also, I would like to thank other people
in the IT-DB group for creating an environment in which the people cooperated and it was easy to find
help outside my section. Then, my thanks is deserved by all people involved in CERN openlab,
especially the ones preparing this student programme which gave me a lot of useful experiences. Last but
not least, thanks belong to my friends and other summer students who I discuss my problems with or
who gave me a hand with something, namely Peter Englund and Wenjing Wu, and of course my family
for their support.

Page 17 of 18

\» Automation and Optimization in IT-DB OracleVM virtualization systems

5 Bibliography

[1] Stephen Spector, 'New to Xen Guide', xen.org, 15 July 2010,

<http://www.xen.org/files/Marketing/NewtoXenGuide.pdf> [accessed 4 August 2010]
[2] 'Oracle VM Manager Release Notes', Oracle Corporation, June 2009,

<http://download.oracle.com/docs/cd/E11081 01/doc/doc.21/e10903/toc.htm> [accessed 4 August
2010]

[3] Wikipedia contributors, 'Harmonic mean', Wikipedia, The Free Encyclopedia, 6 June 2010, 16:21
UTC, <http://en.wikipedia.org/w/index.php?title=Harmonic mean&oldid=366388572> [accessed 5
August 2010]

[4] Dan Magenheimer, 'Memory Overcommit... without the commitment', Oracle Corp. (Xen Summit
Boston 2008), 24 June 2008, <http://wiki.xensource.com/xenwiki/Open Topics For Discussion?

action=AttachFile&do=get&target=Memory+Overcommit.pdf> [accessed 5 August 2010]
[5] J. Schopp et al, 'Resizing Memory with Balloons and Hotplug', Ottawa Linux Symposium 2006, 22

July 2006, <http://www.kernel.org/doc/0ls/2006/0ls2006v2-pages-313-320.pdf> [accessed 5 August
2010]

[6] Dan Magenheimer, 'Project: Transcendent Memory', Oracle Corp., 22 July 2010,
<http://0ss.oracle.com/projects/tmem/> [accessed 5 August 2010]

[7] Eric Horschman, 'Cheap Hypervisors: A Fine Idea -- If You Can Afford Them', VMware: Virtual
Reality, 11 March 2008. <http://blogs.vmware.com/virtualreality/2008/03/cheap-hyperviso.html>
[accessed 9 August 2010]

[8] Pasi Karkkainen, 'Best Practices for Xen', Citrix Systems, Inc, 13 May 2010.
<http://wiki.xensource.com/xenwiki/XenBestPractices> [accessed 9 August 2010]

Page 18 of 18

http://wiki.xensource.com/xenwiki/XenBestPractices
http://blogs.vmware.com/virtualreality/2008/03/cheap-hyperviso.html
http://oss.oracle.com/projects/tmem/
http://www.kernel.org/doc/ols/2006/ols2006v2-pages-313-320.pdf
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Memory+Overcommit.pdf
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Memory+Overcommit.pdf
http://en.wikipedia.org/w/index.php?title=Harmonic_mean&oldid=366388572
http://download.oracle.com/docs/cd/E11081_01/doc/doc.21/e10903/toc.htm
http://www.xen.org/files/Marketing/NewtoXenGuide.pdf

	Abstract
	Introduction
	Xen hypervisor technology1
	 Paravirtualization
	Hardware Virtual Machine (HVM)

	1 Automation
	1.1 Architecture design*
	1.2 Management
	1.2.1 OracleVM Manager
	1.2.2 Searching a physical host of a virtual machine
	1.2.3 Opening a VNC console
	1.2.4 Stopping a virtual machine
	1.2.5 Creating a virtual machine

	1.3 Recovery
	1.3.1 Standard backup approach
	1.3.2 Standard restore approach
	1.3.3 Automatic backup tool
	1.3.4 Critical situation - OVM Emergency and Disaster Recovery
	1.3.5 OVM Structure Recovery - assistance tool

	1.4 Status monitoring
	1.5 Summary

	2 Optimization
	2.1 Motivation
	2.2 Memory overcommitment
	2.3 Ballooning4
	2.3.1 dom0 auto-ballooning
	2.3.2 domU self-ballooning

	2.4 Memory ballooning tests
	2.4.1 “Plain” images
	2.4.2 Balloon driver
	2.4.3 Xenballond deamon - “clean” image
	2.4.4 “Stress” image
	2.4.5 Specifications
	2.4.6 Measurements

	2.5 Results
	2.5.1 Test 1
	2.5.2 CPU usage
	2.5.3 Test 2
	2.5.4 Number of machines

	2.6 Summary

	3 Conclusion
	4 Acknowledgements
	5 Bibliography

