
Compiler Comparisons using
Performance Counters

Or the design of a framework for using Performance Counters to evaluate
compiler logic and code generation.

Rune Erlend Jensen

CERN Openlab phase III
Submission Date: Sep 2009
Supervisor: Sverre Jarp

European Organization for Nuclear Research
IT Department

ii

Contents

1 Introduction 1

2 Technical Background and Concepts 3
2.1 Hardware Performance Counters 3
2.2 Theoretical Performance . 3
2.3 Hardware Test Beds . 5

3 Framework for Performance Evaluation 7
3.1 The Basic Idea . 7
3.2 Possibilities . 8
3.3 Implementation . 8

3.3.1 Benchmark Program Design 10
3.4 Usage . 21

3.4.1 Single Program Evaluation 21
3.4.2 Parametric Performance Gathering 22
3.4.3 Visualization . 23

3.5 Examples . 24
3.5.1 Vector-Vector Addition 24
3.5.2 Inversion . 33

3.6 Limitations . 44
3.6.1 Performance Counter Bugs 44

3.7 Current and Future Work . 45

4 ROOT 47
4.1 SMatrix and SVector Standalone Code 47

4.1.1 Compiler Setups . 48
4.1.2 Performance Tests . 48

4.2 Performance Issues . 55
4.3 Auto-Vectorization Evaluation 55
4.4 Optimizations . 56

iii

4.4.1 Simple Changes . 56
4.4.2 Symmetrical Matrix Storage 57

4.5 Current and Future Work . 58

5 Hand Optimization 59
5.1 G4AffineTransform . 59

5.1.1 Optimization Method 60

Bibliography 63

iv

List of Figures

3.1 Performance of the first volatile design. 13
3.2 Partial data forwarding stall caused by a scalar write into the

first element in Program 1. 14
3.3 Performance of the second volatile design. 16
3.4 Partial data forwarding stalls, only created when the last array

element is read by a packed instruction. 17
3.5 Performance of the third volatile design. 18
3.6 Partial data forwarding stalls are not created as all overlapping

loads and stores use the same size. 19
3.7 Number of loads performed with the third volatile design. . . . 20
3.8 Number of loads performed with the fourth volatile design. . . 20
3.9 Vector-vector addition with strange performance. 25
3.10 Vector-vector addition, verification of load operations. 26
3.11 Vector-vector addition, verification of store operations. 26
3.12 Vector-vector addition, verification of math operations. 27
3.13 Vector-vector addition, count of other instructions. 28
3.14 Vector-vector addition, count of fused instructions. 28
3.15 Vector-vector addition, count of branch instructions. 29
3.16 Vector-vector addition, count of branch misses. 29
3.17 Vector-vector addition, count of load stalls (data). 30
3.18 Vector-vector addition, cycles without any dispatched instruc-

tions. 31
3.19 Vector-vector addition, count of any resource stall. 31
3.20 Vector-vector addition, count of load port resource stall. . . . 32
3.21 The CPI for three versions of symmetrical matrix inversion. . 33
3.22 Processor cycles spent to perform a single invert function. . . 34
3.23 Cycles without any dispatched uops. 35
3.24 Fraction of uops that are started, but cancelled before

completion. 36
3.25 Counts of branch misses. 37
3.26 Branch misses/branch ratio. 37

v

3.27 Fraction of cycles where no new instructions/upos are issued. . 38
3.28 SSE instructions pr. any instruction. 39
3.29 Load instructions pr. any instruction. 39
3.30 Store instructions pr. any instruction. 40
3.31 Other instructions pr. any instruction. 40
3.32 Branch instructions pr. any instruction. 41
3.33 Branch instructions pr. any instruction, with O2 and O3. . . . 42
3.34 Branch miss pr. branch, with O2 and O3. 43
3.35 Branch miss pr. branch, with O2 and O3. 43

4.1 Performance of C=A*B and C=A*Transpose(B), double
precision. 49

4.2 Performance of C=A*B and C=A*Transpose(B), single
precision. 49

4.3 Vector-vector addition using intrinsics with identical design,
except the alignment requirement. 50

4.4 Cycles spent on different parts of a Kalman filter. 51
4.5 The CPI of different parts of a Kalman filter. 52
4.6 The Cycles pr. Math Instruction of different parts of a kalman

filter. 52
4.7 Cycles spent on similarity using O2 with several compilers. . . 53
4.8 Performance using GCC 4.4.0 with O2 and a set of extra flags. 54
4.9 Performance of GCC 4.4.0 with O3 and a set of extra flags. . . 54
4.10 Fraction of packed math with several versions of GCC, each

with several flags. 56
4.11 Fraction of packed math with two versions of ICC, using only

the O2 flag. 57

vi

List of Tables

2.1 olbl0131 processor details. 5

vii

viii

Chapter 1

Introduction

This report is intended to describe all the work performed during my
internship at CERN. Because to the nature of the work, the results found
and time constrains, this is only partially the case. It consists of three parts
with the description of a framework developed as the main topic. In order
to document as much as possible of the implementation and possibilities
presented, several parts are not complete. There may be small errors which
should be reported for correction.

1

2

Chapter 2

Technical Background and
Concepts

In order to clarify the details of the implementations, key concepts are
presented in this chapter.

2.1 Hardware Performance Counters

In order to debug and evaluate the inner workings of modern microprocessors,
a method for collecting internal events can be critically important. In
order to implement this, a set of internal logic and registers are employed,
capable of detecting and acting on various events as they occur. This
functionality is often refered to as Hardware Performance Counters. More
detailed documentation can be found in Intel R© 64 and IA-32 Architectures
Optimization Reference Manual [1].

2.2 Theoretical Performance

When evaluating performance there are several measures one can use as a
basis. A common one is Cycles per instruction (CPI), indicating the number
of cycles it takes to perform each instruction in a program. By comparing

3

the CPI with the theoretical capability of the processor, it is possible to see
how well the application performs in an average cycle on the processor. A
low number indicates that the code is being executed in an efficient way, and
this is considered to be good. Thus, one goal of a hardware architect is to
minimize the CPI of important programs like the test suites from Standard
Performance Evaluation Corporation (SPEC).

For a software architect CPI can not be treated in the same way, that
is, as a measure of good program efficiency. With software, the CPI can
be manipulated or changed with ease. Inserting simple (and useless) null-
operations into the code will rapidly improve the CPI, but execution time
will increase as well. Therefore, using CPI as a guideline when developing
software can be misleading. A better measure might be to use the time
required for an operation to complete, but this will not give much indication
of program efficiency.

In order to find a useful measure of the maximum theoretical performance of
a program, several issues must be considered. In order to simplify the task,
one can start by evaluating a single function. Then one must identify an
important required basic operation; for math intensive code this will likely be
either additions and/or multiplications. By counting the number of these key
operations performed and dividing by the time used to execute the function,
it is possible to measure the throughput of useful work. Equation 2.1 show
how this might be calculated.

WorkUseful =
ImportantRequiredOperationCount

T imeSpent
(2.1)

In order for Equation 2.1 to be more informative, it is useful to change the
time into clock cycles spent by the processor. Calculating the number of
cycles used by the CPU in an given interval is shown in Equation 2.2. By
combining Equation 2.1 and 2.2 into Equation 2.3, we get a useful measure of
throughput each cycle. Now it is possible to compare the CPU’s theoretical
throughput each cycle (of the selected operations) with the value from
Equation 2.3, and obtain a good indication of how close to the theoretical
maximum the evaluated code is.

CPUWork Cycles =
TimeSpent(sec)

Processorfrequency
(2.2)

WorkUsefulpr.Cycle =
ImportantRequiredOperationCount

CPUWork Cycles

(2.3)

4

2.3 Hardware Test Beds

The server olbl0131 was used for all testing. It consists of two quad core
Intel R© Xeon R© E5450 (Harpertown) processors running at 3 GHz. The
details of the processors can be found in Table 2.1.

Table 2.1: olbl0131 processor details.

Cpu family 6
Model 23
Model name Intel R© Xeon R© CPU, E5450 @ 3.00GHz
Stepping 6
L1 cache size 32 KB
L2 cache size 6144 KB

5

6

Chapter 3

Framework for Performance
Evaluation

A common problem when trying to optimize code is knowing when a change
leads to any improvement. While large performance gains are easy to detect,
they are also infrequent. Most of the improvements are small, but they can
add up to become useful. In order to have rapid, detailed and very accurate
feedback, a framework using hardware performance counters has been made.
The functionality, design and usage of a prototype version is described, along
with insight into usage of performance counters.

3.1 The Basic Idea

A number of benchmark programs are compiled numerous times. Each
program is compiled with a selection of compilers and compiler flags. Thus,
for each compiler, several flag combinations are tested. This process is also
performed for different data sizes of vectors and matrices.

After a benchmark program is compiled, it is executed several times using
pfmon1 to gather stats from each runs. The statistics are then used to identify
various performance issues and to calculate near cycle-exact timings.

1http://perfmon2.sourceforge.net/

7

http://perfmon2.sourceforge.net/

3.2 Possibilities

Two possibilities exist. The first is to evaluate a single build of a program,
when one performs optimizations and/or testing. The other is with a broad
scan over multiple builds and programs, compilers, compiler flags and data
sizes.

A key feature is the use of graphs to illustrate how performance changes with
data size, comparing several different performance counter events, and using
it to find patters and connections. This allows fast(er) understanding of how
each event works, and whether an event is a cause or side effect. As such,
this framework can also function as an educational tool.

The primary intended usage during this internship, however, is to evaluate
performance of several SMatrix/SVector functions using various compilers.

The second intended usage is to find out which compiler flags produce the
most efficient code.

The third intended usage: Developers - find both where to optimize and
helping to test new code versions/algorithms.

The fourth intended usage: Give users an idea of the performance cost of
functions.

The fifth intended usage: Give compiler developers rapid feedback
(performance, artifacts, regressions and bugs).

The sixth intended usage: Enable performance predictions for users, before
migrating to a new compiler/library version/CPU.

3.3 Implementation

Two sets of measurements are obtained for each program, where only the
number of loop iterations performed by the program are different. Thus,
the program reads a loop count as a parameter when being executed, in
order enable different measurement sets. This allows computation of the
cost of a single loop iteration, eliminating any constant overhead generated

8

by loading, setup and start-up branch mispredictions. This requires that
the tested program does not perform any secondary activity related to the
number of iterations specified. In particular, the size and/or initialization
of data structures must not depend on the loop count - unless they are
the target for analysis. If there are initialization(s) that changes based on
loop count, a large default size must be initialized (at least as large as the
largest loop count requested by the framework). This minimum size will
then appear as a fixed setup cost, and will not affect the cost calculation of
the loop iteration. With more complex interactions between loop count and
initialization it might be required to first initialize different structures for all
loop counts used by the framework, and then select the right one based on
requested loop count (keeping the work in the initialization phase constant).

Currently, the first measurement point selected is 1 (which should be
multiplied by 100 by the program). The second measurement point selected
is dynamically selected based on the program runtime, and will be either
10000, 1000 or 100. This is performed in order to avoid unnecessarily long
execution time for more complex programs. Limited evaluation of the effect
of reducing the loop count indicates that the quality is not reduced, at least
for programs with somewhat longer execution time. The formula used to
obtain the number of events for a single loop iteration is shown in Equation
3.1. More detailed information on the inner design of the test programs used
can be found in Section 3.3.1.

Countloop =
eventCount 100xx− eventCount 1

runCount100xx− 1
(3.1)

Multiple performance counter events are used and in the current version
51 different ones are collected. In order to get precise counts neither
multiplexing or statistical sampling is used, only basic counting of a single
process. This requires multiple repeated runs, each with a single set of events.

Each run will normally gather measurements of different ”precise events”.
Precise events in this context are not necessarily PEBS2 based, but
events with small variations between repeated runs of the same pro-
gram. Some examples are BRANCH INSTRUCTIONS RETIRED,
SIMD COMP INST RETIRED:PACKED DOUBLE and
SIMD INST RETIRED:ANY.

2Precise Event Based Sampling

9

Each run can also gather extra samples of unstable events. These are events
that show larger fluctuations between runs. Currently this is only performed
for selected events like RAT STALLS:ANY, RESOURCE STALLS:ANY,
RESOURCE STALLS:LD ST and RS UOPS DISPATCHED NONE. Sev-
eral other events belong in this category, but are only sampled once. The
main reason is to reduce the total execution time, sacrificing accuracy for
less informative events. When more information is needed, or if fluctuations
seem too high, it might be useful to add more samples of that type of events.
Events types like RAT STALLS and RESOURCE STALLS are likely candi-
dates for this.

Every run also gathers extra samples of the most unstable events.
Currently this is only performed for UNHALTED CORE CYCLES and
UNHALTED REFERENCE CYCLES. Both of these events have dedicated
counters, so the cost of including them for each rerun is minimal. Since the
event INSTRUCTIONS RETIRED also has a dedicated counter, it is also
sampled in every run, even when it is very stable.

3.3.1 Benchmark Program Design

When creating small programs for performance evaluation, a constant
problem is to avoid having the compiler optimize away too much. Often,
several parts of the code can be identified as ”useless” or invariant. This
leads to benchmarks with little or no value. Having a section of code (like
a loop) without any of the answers used might therefore be removed by the
compiler, except when optimization is turned off. To avoid this behavior it is
possible to print parts of the answer, or return it at the end of the program.
Unfortunately, this is not always enough.

If only parts of the calculation are needed to create the output, only those
parts might be actually performed. This works in several ways. First,
consider a loop that performs floating-point vector-vector addition. After the
loop is completed one prints a single value of the answer vector. This means
that only one specific index of the resulting sum needs to be computed, the
other parts might be removed. Too avoid this, one might sum up all the values
in the vector after the loop, touching every element. Second, if the answer (or
part of it) in every loop iteration is the same, it might be performed only once.
One way to avoid this is that every loop iteration should work on different
input values. Using large arrays of random data, with a different (small)

10

part every iteration is possible, but might create cache related performance
artifacts. Third, reusing the values produced in the previous iteration might
solve the second issue, but might introduce a new ones. A problem is that
this reuse might lead to over/under-flows or Inf/NaN’s, which may affect
performance. Also, with vector-vector addition it is possible to rewrite the
calculation, replacing the looped additions with a single multiplication. This
removes the loop, gives the correct answer (possibly with less round-off error),
and makes the benchmark useless. Fourth, using zeros (0 or 0.0) in math
calculations will avoid overflows, but are also excellent targets for removal.
To some extent this is also true for 1.0 and any other constants, depending
on the context.

The extent of compiler code removal depends on several factors, but two
factors play a critical role. As the complexity of the code goes up, tracking
of data dependencies is lost. This means that complex benchmarks suffer less
from the problems mentioned above, as the repeated work is not detected. A
different factor is the vendor and version of the compiler. Some vendors have
better and more extensive analytical capabilities, leading to potentially big
performance differences in benchmarks. Typically, newer compilers also have
better analytical capabilities, leading to problems where old benchmarks no
longer behave as intended. To some extent optimization flags will modify this
behavior, but the common -O2 will typically turn on all removal features.
Using either -O0 or -O1 might prevent code removal, but the usefulness of
benchmarks is lost (unless the final program is compiled with the same flags).

In order to create a future-proof, side-effect free, low overhead, stable and
fair way of creating benchmark code, several designs have been tested. To
prevent code from being removed in low level drivers, operating systems and
libraries the use of volatile data is common. This instructs the compiler to
assume that the associated data is modified by external means. By using
volatile, it becomes possible to force the compiler to perform specific tasks.
Program 1 shows this technique. Every loop iteration requires loading the
variable zero T, and writing it to the vector vec. The index zero is also read
every iteration. Both loads must be performed and the compiler must assume
they have different values every time. This means that it is not possible to
remove any of the computations. Note that the data size given by #define
DIM L 5, reflecting the data size used in the graphs, is updated as needed
in the framework (being constant at compile time).

11

Program 1 Usage of volatile to modify an SMatrix array. First attempt.

#de f i n e DIM L 5
volat i le int zero = 0 ;
volat i le double zero T = 0 ;
volat i le double one T = 1 ;

SVector<double , DIM L> vec ;
SVector<double , DIM L> vect ;

vec [ze ro] = one T ;
vect [ze ro] = one T ;

for (int i = 0 ; i < 100∗ runs ; ++i)
{

vec [ze ro] = zero T ; // Force compi ler to not remove any code
vec += vect ;

}
outputAcc += vec [ze ro] ;
return s t a t i c c a s t <int>(outputAcc) ;

While the code in Program 1 behaves theoretically correctly (unless carefully
evaluated), there are some problems. With the Core 2 processor the write
address will be correctly predicted (it is effectively constant), and the data
can be forwarded directly into the following load. Unfortunately, it leads to
performance issues with packed instructions as shown in Figure 3.1. A read
from vec[0] creates a stall if and only if it is a packed one, giving a penalty
to code with packed instructions, because forwarding can not be performed
when the the size of data being read (two doubles) is larger that the written
data (a single double) see in Figure 3.2. The problem is made worse because
the write and following read most likely are very close to each other.

12

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

zero_vecAddVec - UNHALTED_CORE_CYCLES

icc111_O3 icc111_O2

Figure 3.1: Cycle count for a single loop iteration of vector-vector addition
in Program 1.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

zero_vecAddVec - LOAD_BLOCK:OVERLAP_STORE

icc111_O3 icc111_O2

Figure 3.2: Partial data forwarding stall caused by a scalar write into the
first element in Program 1.

14

A somewhat better method can be shown in Program 2 where the write is
performed into the last element of the array. This increases the time between
the write and the load, allowing the read to be performed only from the cache
without any partial forwarding. The new performance can be shown in Figure
3.3, and the associated forwarding stalls in Figure 3.4. Now the forwarding
only affects even data sizes, with the odd sizes using a scalar load for the last
element.

Program 2 Usage of volatile to modify an SMatrix array. Second attempt.

#de f i n e DIM L 5
volat i le int zero = 0 ;
volat i le int DIM L minus 1 = DIM L−1;
volat i le double zero T = 0 ;
volat i le double one T = 1 ;

SVector<double , DIM L> vec ;
SVector<double , DIM L> vect ;

vec [ze ro] = one T ;
vect [ze ro] = one T ;

for (int i = 0 ; i < 100∗ runs ; ++i)
{

vec [DIM L minus 1] = one T ; // Force compi ler to not remove
any code

vec += vect ;
}
outputAcc += vec [ze ro] ;
return s t a t i c c a s t <int>(outputAcc) ;

This solution is not perfect as can be seen by the uneven performance graph
in Figure 3.3. Several tricks have been tried in order to fix this problem.
Third attempt to force code generation, with minimal impact, is shown in
Program 3. This code creates a piece of inline assembly that can not be
moved or removed. It also uses the vec array as output, telling the compiler
it might change. Finally, it marks all memory modified by the inline assembly.
The inline assembly is just a comment so it will not have any effect at all.
Combined, this forces the compiler to reload and recalculate everything in
each loop. The new performance is shown in Figure 3.5. For the small data
sizes the performance gain is significant, and Figure 3.6 confirms that the
forwarding issue is totally gone.

15

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

last_vecAddVec - UNHALTED_CORE_CYCLES

icc111_O3 icc111_O2

Figure 3.3: Performance when writing to the last array element every
iteration.

Program 3 Usage of volatile to modify an SMatrix array. Third attempt.

#de f i n e DIM L 5
volat i le int zero = 0 ;
volat i le double one T = 1 ;

SVector<double , DIM L> vec ;
SVector<double , DIM L> vect ;

vec [ze ro] = one T ;
vect [ze ro] = one T ;

for (int i = 0 ; i < 100∗ runs ; ++i)
{

asm v o l a t i l e (”# Nothing . Just t r i c k the compi ler . ”
: ”=o” (∗ vec . Array ()) // Now the data in vec i s marked as

output .
:
: ”memory”) ; // A l l the data (in vec) might change

unpred i c tab l y , so re l oad .
vec += vect ;

}
outputAcc += vec [ze ro] ;
return s t a t i c c a s t <int>(outputAcc) ;

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

last_vecAddVec - LOAD_BLOCK:OVERLAP_STORE

icc111_O3 icc111_O2

Figure 3.4: Partial data forwarding stalls, only created when the last array
element is read by a packed instruction.

While the third method works, the reason was found to be different than
intended. All data was marked as modified, not only the listed output. This
leads to both arrays being reloaded from memory (Figure 3.7) every iteration.

The fourth way to force code generation with minimal impact is shown in
Program 4. Here only the data in vec is marked as being changed in external
ways. This enables the compiler to retain the data in vect in registers every
loop iteration. As long as the size of the data structure listed is known by
the compiler, this will work correctly. Also, if the compiler finds that vect is
all zero, it might eliminate the addition totally (as it will have no effect). By
using the same method on vect before the loop any static analysis like this
is prevented. This method is the one utilized in the latest evaluation.

Figure 3.8 shows the number of load operations performed with the final
volatile design. For size 1-5, 8-9 and 16-17 the number of loads are halved
compared to the old number in Figure 3.7; however this is not the case for the
other data sizes. The cause of this is the use of branches (see Section 3.5.1),
and those will prevent vect from remaining in registers - forcing a reload.

17

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - UNHALTED_CORE_CYCLES

icc111_O3 icc111_O2

Figure 3.5: Performance of the third volatile design.

Program 4 Usage of volatile to modify an SMatrix array. Fourth attempt.

#de f i n e DIM L 5
volat i le int zero = 0 ;
volat i le double one T = 1 ;

SVector<double , DIM L> vec ;
SVector<double , DIM L> vect ;

vec [ze ro] = one T ;
vect [ze ro] = one T ;

// Make sure t ha t v e c t i s cons idered to conta in unknown (non
zero) va l u e s .

asm v o l a t i l e (”# Nothing . Just t r i c k the compi ler . ”
: ”=o” (vect) // Now the data in vec t i s marked as output .
: ”o” (vect) // Now the data in vec t i s marked as input .
:) ;

for (int i = 0 ; i < 100∗ runs ; ++i)
{

asm v o l a t i l e (”# Nothing . Just t r i c k the compi ler . ”
: ”=o” (vec) // Now the data in vec i s marked as output .
: ”o” (vec) // Now the data in vec i s marked as input .
:) ;

vec += vect ;
}
outputAcc += vec [ze ro] ;
return s t a t i c c a s t <int>(outputAcc) ;

18

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - LOAD_BLOCK:OVERLAP_STORE

icc111_O3 icc111_O2

Figure 3.6: Partial data forwarding stalls are not created as all overlapping
loads and stores use the same size.

19

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - INST_RETIRED:LOADS

icc111_O3 icc111_O2

Figure 3.7: Number of loads performed with the third volatile design.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - INST_RETIRED:LOADS

icc111_O3 icc111_O2

Figure 3.8: Number of loads performed with the fourth volatile design.

20

3.4 Usage

Only a basic overview is presented of its usage as the framework is in very
early alpha state. There are three parts: one for evaluating single programs,
one for gathering performance data from many programs and compilers, and
one for visualizing data.

3.4.1 Single Program Evaluation

runSingleAndCalulate.sh

This script takes a single program, and makes statistics for a fixed number
of loop iterations. The output is a list of non zero event counts that needs to
be scaled by the loop multiplication factor inside the program. All example
programs currently use a scale factor of 100, so that obtaining the values for
a single loop iteration requires dividing by 100.

Sample output:

BRANCH_INSTRUCTIONS_RETIRED: 18500

BR_CALL_EXEC: 100

DIV: 500

FP_COMP_OPS_EXE: 11000

INSTRUCTIONS_RETIRED: 159900

INST_RETIRED:LOADS: 26000

INST_RETIRED:OTHER: 124800

INST_RETIRED:STORES: 9600

LOAD_BLOCK:STA: 1226

LOAD_BLOCK:STD: 2952

MUL: 7608

RAT_STALLS:ANY: 2031

RESOURCE_STALLS:ANY: 21705

RESOURCE_STALLS:BR_MISS_CLEAR: 220

RESOURCE_STALLS:LD_ST: 217

RESOURCE_STALLS:ROB_FULL: -48

RS_UOPS_DISPATCHED: 179816

RS_UOPS_DISPATCHED_CYCLES:ANY: 61817

RS_UOPS_DISPATCHED_NONE: 2082

21

SB_DRAIN_CYCLES: 14

SIMD_COMP_INST_RETIRED:SCALAR_DOUBLE: 10900

SIMD_INST_RETIRED:ANY: 19300

SIMD_INST_RETIRED:SCALAR_DOUBLE: 19300

SIMD_UOPS_EXEC: 6701

SIMD_UOP_TYPE_EXEC:LOGICAL: 4700

UNHALTED_CORE_CYCLES: 65439

UNHALTED_REFERENCE_CYCLES: 65415

UOPS_RETIRED:ANY: 161924

UOPS_RETIRED:FUSED: 17600

UOPS_RETIRED:NON_FUSED: 144368

Note that many values are precisely dividable by 100 while others are not
explanations for this behavior is presented in Section 3.3. Also note that
RESOURCE STALLS:ROB FULL shows a (relative) small negative value,
this indicates two issues. The event type is very unstable between runs and
the event count in each loop iteration is below what can be measured for
that event, without adding more sampling runs. When these events show
relatively small numbers, either positive and negative, the real value is most
likely zero.

Output can also be written to files, giving 3 files at the same location as the
program. The important one, with the statistics, is called programName.txt.
The two other files contains the raw output from each execution of pfmon.

3.4.2 Parametric Performance Gathering

compileAndCalulateSetList.sh

This script compiles all benchmark programs and benchmarks them for the
entire set of compilers and data sizes selected. It was used to generate all
the data underlying the graphs in this report. The first parameter is a text
file with compiler setup names, paths and names of the compilers and lists
of compiler flags to use. The second and third parameters control the data
size to iterate over. This script uses a set of other scripts in order to perform
its task, delegating each part out to more specialized scripts. This reduces
the complexity in each script, and enables faster testing and development.
Reruns will not recalculate or recompile existing data, but any completely
missing or new benchmarks will be performed.

22

verifySetList.sh

This script checks for the existence output files generated by compileAnd-
CalulateSetList.sh, and reports any missing file after a faulty, incomplete
or canceled run. It can also optionally remove incomplete files, enabling
compileAndCalulateSetList.sh to fill in the missing parts.

recalculateSetList.sh

If different statistical tools are to be used (or a bug is found in the current
design), this script will take all the raw data from every benchmark run and
recalculate the statistics.

3.4.3 Visualization

makePlotSet2.sh

The script was used for creating all the graphs in this report. All the
performance data must first be generated with compileAndCalulateSetList.sh
in order to use this tool. The first time a compiler/program combination is
used a cache is created, enabling quicker graph generation later on.

The first parameter is the name(s) of compilers setups that are to be used for
plotting the graphs. The second parameter is a simple regexp to select one
or more benchmark program names. The third (optional) parameter selects
which event type to show, defaulting to UNHALTED CORE CYCLES if not
given. This parameter can either be a preselected name (like cpi, mathop,
mathopf, packedratio, ...), the name of an event, or the event index number.
Aggregated event types can also be constructed by combining several events
into more complex expressions.

Examples with an interactive window output:

23

$./makePlotSet2.sh "icc111_O2 " invert

$./makePlotSet2.sh "icc111_O2 " invert cpi

$./makePlotSet2.sh "gcc..._O2 " invertP INSTRUCTIONS_RETIRED

$./makePlotSet2.sh "icc110_O3" invertP (\$1)

$./makePlotSet2.sh "icc111_O. " invertP "(RS_UOPS_DISPATCHED

/(UOPS_RETIRED:ANY+UOPS_RETIRED:FUSED)-1)"

Example with postscript output is turned on, giving pdf files for reports
(must be enabled inside makePlotSet3.sh):

$./makePlotSet2.sh "icc111_O. " invertP cpi && epstopdf out.ps

--outfile=invertP_cpi.pdf

3.5 Examples

Two examples are used to demonstrate various possibilities, both using ICC
11.1. The first example requires that auto-vectorisation is used with the
smallest data sizes, and unfortunately this is not the case for GCC - as it
seems to have a hardcoded limit preventing auto-vectorisation with the code
used here (multiple attempts were made to change this behaviour, but the
relevant flags either gave no effect or generated errors). The second example
uses ICC 11.1 only by chance, but it should not affect the analysis.

3.5.1 Vector-Vector Addition

Evaluation of ICC 11.1 using -O3 on an old version of the vector-vector
addition test program (using the third volatile design). First look at the
performance graph in Figure 3.9.

Figure 3.10 and 3.11 shows that only the expected amount of data is loaded
and written, increasing stepwise as scalar operations are replaced by packed.
Note that that all the data from both vectors are loaded, not only one.

24

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - UNHALTED_CORE_CYCLES

icc111_O3

Figure 3.9: Very strange performance. The spikes and the very flat region at
the start.

25

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - INST_RETIRED:LOADS

icc111_O3

Figure 3.10: All the loads are there, one for each vector, but no excess.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - INST_RETIRED:STORES

icc111_O3

Figure 3.11: All the stores are there, one for the answer vector, but no excess.

26

All the math see is performed too, as shown in Figure 3.12. But a clue can
be found by looking at the number of other instructions (not loads/stores)
performed; Figure 3.13. Note that for some sizes its very low. Math
instructions are fused with loads; see Figure 3.14. It seems all the math
instructions are fused, so there are some other instructions being performed.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - Math Ops double

icc111_O3

Figure 3.12: Verification of the count of math operations performed.

Figure 3.15 shows that many of the excess instructions are branch
instructions. This means that branches are the reason for the low
performance, a single vector-vector addition is not always unrolled. But this
should only create a performance graph similar to the branch instruction
count, and not the sharp spikes (as seen in Figure 3.9). Looking at branch
miss-predictions, in Figure 3.16, we see that they match the sharp spikes.
Those misses give a performance cost that comes in addition to the extra
instructions used by the branches. Now the spikes are explained, but not the
flat performance for small vector sizes.

27

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - INST_RETIRED:OTHER

icc111_O3

Figure 3.13: Count of other (non load/store) instructions.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - UOPS_RETIRED:FUSED

icc111_O3

Figure 3.14: Count of fused instructions, here math and load are fused.

28

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - BRANCH_INSTRUCTIONS_RETIRED

icc111_O3

Figure 3.15: Count of branch instructions, indicating non-unrolled code.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - MISPREDICTED_BRANCH_RETIRED

icc111_O3

Figure 3.16: Count of branch misses.

29

In Figure 3.17 the number of blocked loads is shown. This is a key factor for
explaining the fixed performance for the small data sizes. When one stores
and loads rapidly from the same location, there can be performance issues.
With the small vector sizes this becomes a limiting factor. The loads stall
because they need data written in the previous iteration. The extent of the
stalls can be seen in Figure 3.18, showing the number of cycles without any
useful work (started). Note that these are absolute values and not scaled in
any way.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - LOAD_BLOCK:STD

icc111_O3

Figure 3.17: Count of load stalls rereading data recently written.

Looking into the details of the Out of Order Engine is also possible. Figure
3.19 show how often any type of resource stall occurs. In Figure 3.20 the
number of times there are too few resources for handling memory load
instructions is shown. When there are no extra instructions related to
branches it seems that there might be too many load instructions (size 8-
9 and 16-17) .

30

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - RS_UOPS_DISPATCHED_NONE

icc111_O3

Figure 3.18: Count of cycles without any dispatched instructions.

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - RESOURCE_STALLS:ANY

icc111_O3

Figure 3.19: Number of any resource stalls.

31

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

trick_vecAddVec - RESOURCE_STALLS:LD_ST

icc111_O3

Figure 3.20: Count of load port resource stalls.

32

3.5.2 Inversion

Taking a different example, inversion of matrices, several possibilities are
shown. There are three versions of inversion in SMatrix, and it is useful to
compare them using a symmetrical matrix. The first algorithm ’Fast’ gives
somewhat lower precision using specialized code for small matrix sizes (the
default Bunch-Kaufman (B-K) is used for larger sizes). The second is based
on Cholesky decomposition, using specialized code for small matrices and
more general code for larger sizes. The last is the default B-K which has no
specialized code paths. Figure 3.21 show that the CPI is neither very bad or
good, and the number of cycles in Figure 3.22 show no issues either.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - Cycles/Instruction

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.21: The CPI for three versions of symmetrical matrix inversion.

This basic analysis show that there is no obvious problem with the code,
but it is not very efficient. The smallest data sizes are not very efficient,
as expected. More in-depth evaluation can then be performed. Figure 3.23
show that the CPU is wasting time, performing no work.

Figure 3.24 shows that a large fraction of the uops started are later cancelled,
representing useless work.

33

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - UNHALTED_CORE_CYCLES

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.22: Processor cycles spent to perform a single invert function.

The first candidate to check for generating all the useless uops is
misspredicted branches. Figure 3.25 shows there are many.

Looking at the ratio of mispredicts per instruction in Figure 3.26 shows a
very good correlation with the wasted work.

34

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - RS_UOPS_DISPATCHED_NONE

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.23: Cycles without any dispatched uops.

35

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - (RS_UOPS_DISPATCHED/(UOPS_RETIRED:ANY+UOPS_RETIRED:FUSED)-1)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.24: Fraction of uops that are started, but cancelled before
completion.

36

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - MISPREDICTED_BRANCH_RETIRED

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.25: Counts of branch misses.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - (MISPREDICTED_BRANCH_RETIRED/BRANCH_INSTRUCTIONS_RETIRED)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.26: Branch misses/branch ratio.

37

The CPI profile (Figure 3.21) does match the amount of useless work and
mispredictions if one excludes data size 1-2 where overhead and the tight
loop skews the results. This indicates that they most likely prevent the CPI
from improving. Figure 3.27 shows the fraction of cycles where no new uops
were started. This graph matches the CPI, and gives a good indication of
the main performance limitation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - (RS_UOPS_DISPATCHED_NONE/UNHALTED_CORE_CYCLES)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.27: Fraction of cycles where no new instructions/upos are issued.

More analysis is possible. Looking at the ratio of SIMD (SSE) instructions in
Figure 3.28 indicates that there is much overhead as well as all float/double
computations and moves should use SSE instructions. Both the ratio of load
instructions (Figure 3.29) and store instructions (Figure 3.30) are low. This
indicates that some different type of instruction is the main part, and this
can be seen in Figure 3.31. Identifying the issue involves more decomposing
of the instructions. Figure 3.32 shows the ratio of branch instructions.
This is a relative high amount considering that branches often requires 2-
3 instructions, one for the branch itself, one for a test/compare and one for
an increment counter. While the test/compare can be avoided, there are
normally instructions related to pointer arithmetic and register setup in or
before loops. This indicates that removing the mispredictions might improve
the CPI, but it might also be better to reduce the number of loops.

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - ((SIMD_INST_RETIRED:ANY)/INSTRUCTIONS_RETIRED)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.28: SSE instructions pr. any instruction.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - ((INST_RETIRED:LOADS)/INSTRUCTIONS_RETIRED)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.29: Load instructions pr. any instruction.

39

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - ((INST_RETIRED:STORES)/INSTRUCTIONS_RETIRED)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.30: Store instructions pr. any instruction.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - ((INST_RETIRED:OTHER)/INSTRUCTIONS_RETIRED)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.31: Other instructions pr. any instruction.

40

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invert - ((BRANCH_INSTRUCTIONS_RETIRED)/INSTRUCTIONS_RETIRED)

invertFastPosDefMatrix_R - icc111_O2
invertCholPosDefMatrix_R - icc111_O2

invertPosDefMatrix_R - icc111_O2

Figure 3.32: Branch instructions pr. any instruction.

41

Reducing the loop count might help and can be tested using various compiler
flags. Figure 3.33 and 3.34 show invertPosDefMatrix R, and going from O2
to O3 reduces both the number of branches and mispredicts. Figure 3.35
shows the performance, and compared with either Figure 3.33 or Figure 3.34
it is clear that mispredictions explain the performance difference best. Note
that this analysis for comparing O2 and O3 is not complete, and is included
only to demonstrate possibilities.

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invertPosDefMatrix_R - (BRANCH_INSTRUCTIONS_RETIRED/INSTRUCTIONS_RETIRED)

icc111_O3 icc111_O2

Figure 3.33: Branch instructions pr. any instruction, with O2 and O3.

42

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invertPosDefMatrix_R - (MISPREDICTED_BRANCH_RETIRED/BRANCH_INSTRUCTIONS_RETIRED)

icc111_O3 icc111_O2

Figure 3.34: Branch miss pr. branch, with O2 and O3.

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

invertPosDefMatrix_R - UNHALTED_CORE_CYCLES

icc111_O3 icc111_O2

Figure 3.35: Branch miss pr. branch, with O2 and O3.

43

3.6 Limitations

There are several limitations in the design and method used. The single
biggest limitation is that the benchmark programs must be designed to fit
the framework, allowing control over loop counts. The second limitation is
that numerous runs are required in order to obtain all event types with good
accuracy. This limits the usability to smaller programs and tests.

A number of unsolved issues also exist, relating to the early stage of
development. There are several parts that use hard-coded values (like paths),
even while some are read from configuration file(s). There is currently no
code size detection, meaning that optimization and insight to instruction
size are missing. The feedback from compilers during compilation needs
to be analyzed, enabling graphs of auto-vectorization successes/failures. A
simple database needs to be utilized in order to handle the relatively large
amounts of data generated, currently more than 900MB of text files.

Too few events might be sampled, useful events might not sampled at all,
or be sampled to few times too eliminate fluctuations. A larger event
set is needed both for detailed analysis of problematic programs, and to
gain more insight into the nature of various events. Specifically, no event
related to the cache, data bus, Translation lookaside buffer (TLB) misses
and multiprocessor effects is currently used.

3.6.1 Performance Counter Bugs

A different type of problem is the accuracy and correctness of the performance
counters. During development several bugs of varying severity were
encountered. Some events have only inaccurate descriptions, while others
even count the wrong events. These issues have significantly slowed
development as each bug had to be found and verified in the disassembled
binaries, test programs written, and bug reports created. Because of the
nature of performance counter events it is advisable to carefully evaluate
data (and the description) from each new (unfamiliar) event, expecially on
new processors. If an event seems to behave in an unexpected way then
detailed analysis, with specially designed test programs, is recommended.

44

3.7 Current and Future Work

With the current raw but functioning implementation, one of the most
important requirements is a rewrite, both to remove significant script
overhead and increase usage flexibility. The possibility to dynamically control
both the number of iterations, and select which events to monitor is needed.
Having this kind of dynamic evaluation might significantly improve the data
quality of unstable events by adding more runs, and reducing the required
runtime by eliminating needless (re)counting of events.

Having all the data, the raw output from pfmon (from each run), the
processed values (for one program), version information of the include files
(name and MD5 sum), the (detailed) output from the compiler, compiler
flags, the C++ source code and the assembly language code (.s files) easily
available and searchable will enable a multitude of rapid analytical insight.
Automation of regression analysis, compiler efficiency trends, bug detection
and compiler flag suggestions is possible. With newer compiler support for
function specific optimization, automatic flag search and associated #pragma
control generation might be performed as well.

The addition of runs with statistical sampling indicating where in the code
issues appear is also possible. Merging the noisy statistical sampling data
with the accurate counts might significantly improve the value of both data
types. By using the precise count values, the scale and distribution from
statistical sampling could be corrected, giving a much more accurate picture.
Also the sampling intervals could automatically be selected to match the
number of events in the code, enabling the sampling triggers to occur either at
selected locations, or with periods providing statistically balanced sampling
points.

45

46

Chapter 4

ROOT

Much work has been performed on the SMatrix and SVector package in
ROOT1. Some of the changes and performance evaluation will be described in
this chapter. Only a brief overview of the work performed will be presented.

4.1 SMatrix and SVector Standalone Code

A number of standalone benchmark programs were designed; they fall
into two categories. The first are the ones that are extracted from the
original SMatrix and SVector benchmark programs. They have been made
independent from the rest of the ROOT package. This required both
extracting the relevant include files, and modifying the source code in the
benchmarks. Also, the timer functions used were deeply integrated into
ROOT, so new code was written for the timing functions. A total of 4
programs were converted in this way, and another benchmark program (with
the same style) was created as well.

A second set of benchmark programs was created for the framework described
in Chapter 3. Here a total of 21 different programs were created. Most of
these programs are very simple, and have a name indicating the function
performed. Some of them are described in more details later.

1http://root.cern.ch/

47

http://root.cern.ch/

4.1.1 Compiler Setups

Each of the standalone programs has been tested with a set of compilers.
With a total of 63 compiler configurations, the most common cases have
been covered. 29 configurations exist for GCC, spread over versions 4.2.4,
4.3.3 and 4.4.0. 32 configurations exist for ICC, spread over versions 11.0 and
11.1. Only 2 are used for LLVM2, mainly as it was only added for reference
and there was no time to investigate its options. For OpenCC there are
unfortunately no configurations in the latest run, as one of the programs
(with certain datasizes) generated an internal compiler assert error. Adding
support for single missing tests was not possible because of time constraints,
so it is currently left out.

4.1.2 Performance Tests

There are 4 sets of basic matrix multiply, namely C=A*B and
C=A*Transpose(B), in both double and single precision using square non-
symmetrical matrices. Intended to evaluate performance of transpose, no-
tably a speedup should be possible. Figure 4.1 and 4.2 show the in cycles
needed for the double and single precision respectively. Only sizes 1-5 are
shown as this range is the most common. Note that the performance differ-
ence between floats and doubles is quite small.

There are several versions of basic vector-vector addition, as shown in
Chapter 3. Two additional versions are hand coded using intrinsics, using
the same constraints as the fourth volatile design. The first uses aligned
loads and stores, which are faster, but requires that the data structures are
aligned to 16 bytes. The other design is identical except that loads and
stores are unaligned, representing the possibility that alignment guarantees
do not exist. Figure 4.3 show the performance difference between the two,
the vectors are aligned in both cases.

2http://llvm.org/

48

http://llvm.org/

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

C_Assign_A_mul - UNHALTED_CORE_CYCLES

C_Assign_A_mul_Trans_B - gcc440_O3
C_Assign_A_mul_Trans_B - gcc440_O2

C_Assign_A_mul_B - gcc440_O3
C_Assign_A_mul_B - gcc440_O2

Figure 4.1: Performance of C=A*B and C=A*Transpose(B), double
precision.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

C_float_Assign_A_mul - UNHALTED_CORE_CYCLES

C_float_Assign_A_mul_B - gcc440_O3
C_float_Assign_A_mul_B - gcc440_O2

C_float_Assign_A_mul_Trans_B - gcc440_O3
C_float_Assign_A_mul_Trans_B - gcc440_O2

Figure 4.2: Performance of C=A*B and C=A*Transpose(B), single precision.

49

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

hand - UNHALTED_CORE_CYCLES

hand_vecAddVec - gcc440_O2
handunaligned_vecAddVec - gcc440_O2

Figure 4.3: Vector-vector addition using intrinsics with identical design,
except the alignment requirement.

50

Several parts of the Kalman filter (CMS version) were decomposed into
separate test programs giving insight to which parts can benefit most from
optimizations (or a different compiler). Figure 4.4 show the cycle cost for
these parts, Figure 4.5 shows the CPI, and Figure 4.6 shows the possibly
more important Cycles Per Math Instruction (CPMI). Note that the CPMI
might not be a good measure in all of the cases, see Chapter 2.2 for more
information.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

Kalman parts - UNHALTED_CORE_CYCLES

fse_Assign_Sim_M_C_add_Sim_K_V - gcc424_O2
SMatDD_R_Assign_V_add_meMeasuredError - gcc424_O2

vec5_Assign_vec5_add_K_mul_r - gcc424_O2
M_Assign_I_sub_K_mul_H - gcc424_O2

K_Assign_C_mul_Trans_H_mul_R - gcc424_O2
invertPosDefMatrix_R - gcc424_O2

vectorAssign_vec_minus_vec - gcc424_O2

Figure 4.4: Cycles spent on different parts of a Kalman filter.

51

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

Kalman parts - Cycles/Instruction

fse_Assign_Sim_M_C_add_Sim_K_V - gcc424_O2
SMatDD_R_Assign_V_add_meMeasuredError - gcc424_O2

vec5_Assign_vec5_add_K_mul_r - gcc424_O2
M_Assign_I_sub_K_mul_H - gcc424_O2

K_Assign_C_mul_Trans_H_mul_R - gcc424_O2
invertPosDefMatrix_R - gcc424_O2

vectorAssign_vec_minus_vec - gcc424_O2

Figure 4.5: The CPI of different parts of a Kalman filter.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

Kalman parts - Cycles/Math instruction (double)

fse_Assign_Sim_M_C_add_Sim_K_V - gcc424_O2
SMatDD_R_Assign_V_add_meMeasuredError - gcc424_O2

vec5_Assign_vec5_add_K_mul_r - gcc424_O2
M_Assign_I_sub_K_mul_H - gcc424_O2

K_Assign_C_mul_Trans_H_mul_R - gcc424_O2
invertPosDefMatrix_R - gcc424_O2

vectorAssign_vec_minus_vec - gcc424_O2

Figure 4.6: The Cycles pr. Math Instruction of different parts of a kalman
filter.

52

An overview of the performance of the most expensive part (fse - Similarity)
using different compilers can be used to select a better compiler version.
Figure 4.7 shows the performance achieved by different compilers using
only the O2 flag, indicating that GCC 4.4.0 might be a good candidate.
Evaluating possible flag combinations for GCC 4.4.0, Figure 4.8 shows that
unrolling improves performance and requesting code generation for Core 2
processors reduces performance. A look at what O3 might give is shown in
Figure 4.9.

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

fse_Assign_Sim_M_C_add_Sim_K_V - UNHALTED_CORE_CYCLES

llvm25_O2
icc111_O2

icc110_O2
gcc440_O2

gcc433_O2
gcc424_O2

Figure 4.7: Cycles spent on similarity using O2 with several compilers.

53

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

fse_Assign_Sim_M_C_add_Sim_K_V - UNHALTED_CORE_CYCLES

gcc440_O2core2fastVect
gcc440_O2core2

gcc440_O2

gcc440_O2unroll
gcc440_O2fastVect

Figure 4.8: Performance using GCC 4.4.0 with O2 and a set of extra flags.

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 1 2 3 4 5

E
ve

nt
 c

ou
nt

Data size

fse_Assign_Sim_M_C_add_Sim_K_V - UNHALTED_CORE_CYCLES

gcc440_O3List
gcc440_O3core2fastVect

gcc440_O3core2

gcc440_O3
gcc440_O3unroll

gcc440_O3fastVect

Figure 4.9: Performance of GCC 4.4.0 with O3 and a set of extra flags.

54

4.2 Performance Issues

Several issues which reduce performance have been identified. The most
important is the non-linear runtime increase with long SMatrix expressions.
A test program, testExpressions.cxx, demonstrating this behaviour was made.
A somewhat modified version was also used as basis for a compiler bug
report, where compilation time varied from 1 second to around 20 minutes.
Three different ways of writing a chain of matrix multiplications are shown
in Equations 4.1, 4.2 and 4.3 (from slowest to fastest), showing orders of
magnitude difference in performance.

ANS = A ∗B ∗ A ∗B ∗ A ∗B (4.1)

ANS = (A ∗B) ∗ (A ∗B) ∗ (A ∗B) (4.2)

ANS = A ∗B; ANS∗ = A; ANS∗ = B; ANS∗ = A; ANS∗ = B; (4.3)

4.3 Auto-Vectorization Evaluation

While both ICC and GCC are capable of auto-vectorization, they have
limitations. One of the problems is that they often report successful auto-
vectorization but no packed math instructions are generated. In order to
evaluate the amount of packed math instructions generated Equation 4.4 has
been used.

Packed Ratio =
Packed math instructions ∗ 2

Packed math instructions ∗ 2 + Scalar math instructions
(4.4)

Figure 4.10 shows that the amount of packed math with the costly ”fse” code
is non existent for all versions and flags with GCC, except for an unneeded
data size of 8. Looking at ICC, Figure 4.11 shows that plain O2 generates
some degree of packed math instructions. Even if there are some packed
math, the performance was not better than GCC (as seen in Figure 4.7).

55

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

fse_Assign_Sim_M_C_add_Sim_K_V - Ratio of packed double computations

gcc440_O3List
gcc440_O3core2fastVect
gcc440_O2core2fastVect

gcc440_O3core2
gcc440_O2core2

gcc440_O3
gcc440_O2

gcc440_O3unroll
gcc440_O2unroll

gcc440_O3fastVect
gcc440_O2fastVect

gcc433_O3core2fastVect
gcc433_O2core2fastVect

gcc433_O3core2
gcc433_O2core2

gcc433_O3
gcc433_O2

gcc433_O3fastVect
gcc433_O2fastVect

gcc424_O3sse3fastVect
gcc424_O2sse3fastVect

gcc424_O3nativefastVect
gcc424_O2nativefastVect

gcc424_O3native
gcc424_O2native

gcc424_O3
gcc424_O2

gcc424_O3fastVect
gcc424_O2fastVect

Figure 4.10: Fraction of packed math with several versions of GCC, each
with several flags.

4.4 Optimizations

For several of the root test cases, both gcc and icc reported numerous
successful auto-vectorizations. When using the feedback to track down the
code being auto-vectorized most were data copy, constructors and other data
initializations. Most computational code was either not considered or deemed
too complex for analysis.

In order to help the compilers numerous changes were attempted. Some were
simple and quite straight forward, while others were somewhat complex. Due
to time constrains only a brief overview of some of the changes performed is
explained in this report.

4.4.1 Simple Changes

Usage of attribute ((aligned (16))): the debug information from gcc
indicates that this attribute was utilised. However, it was found not to be
the reason auto-vectorization failed.

56

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ve

nt
 c

ou
nt

Data size

fse_Assign_Sim_M_C_add_Sim_K_V - Ratio of packed double computations

icc111_O2 icc110_O2

Figure 4.11: Fraction of packed math with two versions of ICC, using only
the O2 flag.

4.4.2 Symmetrical Matrix Storage

When symmetrical matrices are used, SMatrix utilizes a packed storage
layout to reduce the required storage space. In order to access elements in
the packed storage a separate translation table is used, one for each matrix
size. The translation table is created the first time a symmetrical matrix is
used, requiring an if test in every function - testing if the table has been
made. While the performance impact of the test itself is small, this design
requires that all matrix accesses use one table access as well (unless the
table is fully cached in registers). This indirect access pattern also prevents
possible optimisations as the compiler cannot identify that almost half of the
accesses use the same data. A number of other optimisation strategies might
also fail, especially auto-vectorisation.

In order to prevent the runtime usage of the translation table, an optimized
version was created. By pre-calculating the tables and making them both
const and static, the access method could be improved. With the new design
the compiler has access to the translation table at compile time, eliminating

57

its usage at runtime. This reduces the number of memory references needed,
removing a layer of indirection. This change was submitted to the author of
SMatrix, its performance improvement verified, and will be included in the
next release version.

4.5 Current and Future Work

From preliminary evaluations of SMatrix and SVector it seems that the
possibilities for performance improvement are substantial. The main problem
is to find ways to extract this potential, without major rewrites of the current
template design. Several modifications were initially tested, but obtaining
an accurate overview of their performance impact proved to be problematic.
Solving these problems in a way that gives a broad enough picture, so
that robust performance gains across all relevant compilers and data sizes
could be verified, was not possible until after the framework in Section
3 had been completed. Because of time constraints this evaluation still
remains to be finished. Only the symmetrical storage modification seemed to
give a consistent improvement, and therefore remains the only contribution
to SMatrix. Several other modifications gave only isolated improvements.
Performing a broad comparison using cycle cost as the basis, it is possible
to find and isolate changes that will improve the overall performance. By
summing the cycle cost of each function or expression, corrected for the
number of times they are used, a more unbiased performance scale can be
designed. This approach will therefore (correctly) increase the importance of
time consuming matrix operations, while the performance of simple vector
operations will have little impact.

58

Chapter 5

Hand Optimization

Several functions where selected for hand optimization. This gives some
insight to both the performance gain possible and the work needed to achieve
it.

5.1 G4AffineTransform

Hand-optimized versions of the InverseProduct function in the G4AffineTransform
class have been created using various methods. Several versions were made
using enumerated data indexes, enabling changes to the data layout without
rewriting the code preforming the calculations. No speedup was achieved us-
ing this approach, but it formed the foundation for an intrinsic version that
was consequently developed. This version uses only packed instructions,
cutting the number of math instructions almost in half (a few redundant op-
erations are performed). Unfortunately, the straightforward intrinsic version
gave only a relative small speedup. The reason for the small performance
gain seemed to arise from the overall design in which all the memory loads
are performed first followed by blocks of sequential calculation chains. This
might therefore lead to two stall phases, first from the block of load instruc-
tions and second from data dependencies in the calculation. In order to test
this, a version with some manually interleaved operations was made, showing
some performance improvements.

59

Using the framework (Chapter 3) a quick evaluation was performed,
indicating that there are bottlenecks related to partial data forwarding (see
Section 3.3.1). This and related issues might therefore artificially limit the
performance in the original benchmark design. A redesign of the benchmark
according to the findings in Section 3.3.1 was not performed because of time
constraints.

5.1.1 Optimization Method

A quick description of the method used to make intrinsic code will be
described in the following section.

Data Layout

Make a struct that is a union between an array and the original values. The
array is aligned, and provides a way to read and write data with vector SSE
instructions. The original values maintains compatibility with old code, that
use the named variables.

Data Access

The code reads all data into SSE registers first, then shuffles values around
in the registers. Each SSE register hold a pair of variables. When two
pairs of data variables are stored in two registers, a vector math operation is
performed on the two pairs.

Calculation Phase

Key code has been constructed in phases:

• 1. Data layout in the struct was selected, so that sequential values
could be calculated at the same time.

60

• 2. Modify the old code to update the array directly, so that every value
is correct with new array layout. (Remember to verify!)

• 3. Load all values with SSE instructions, into a set of registers. Give
all pair of variables the name of the two original variables, except for
calculation temporaries. (It helps debugging)

• 4. Select two values to be calculated by vector instructions.

• 5. When a needed variable pair is found to be missing, construct if from
the original loaded variables using shuffles (or any other data movement
instruction). Note that some shuffle combinations are hard to create.

• 6. Perform vector math operation on the needed variable pair(s).

• 7. After all calculations are performed on a pair, store it to the answer
array.

• 8. Comment out the old code for updating the two values.

• 9. Rerun code, check answer to be the same. (note: remember to
initialize the calculation data with a full range of values, and NOT just
0 or 1’s)

• 10. If more variables GOTO: 3

• 11. Done (with the first version).

• 12. Reorder the calculations, so that loads, adds, multiplications and
shuffles are interleaved (and tight dependency chains are eliminated).
This can be hard to do manually.

61

62

Bibliography

[1] Intel R© Corporation. Intel R© 64 and IA-32 Architectures Optimization
Reference Manual, December 2008.

63

	Introduction
	Technical Background and Concepts
	Hardware Performance Counters
	Theoretical Performance
	Hardware Test Beds

	Framework for Performance Evaluation
	The Basic Idea
	Possibilities
	Implementation
	Benchmark Program Design

	Usage
	Single Program Evaluation
	Parametric Performance Gathering
	Visualization

	Examples
	Vector-Vector Addition
	Inversion

	Limitations
	Performance Counter Bugs

	Current and Future Work

	ROOT
	SMatrix and SVector Standalone Code
	Compiler Setups
	Performance Tests

	Performance Issues
	Auto-Vectorization Evaluation
	Optimizations
	Simple Changes
	Symmetrical Matrix Storage

	Current and Future Work

	Hand Optimization
	G4AffineTransform
	Optimization Method

	Bibliography

