
 CERN openlab 
 

 

Page 1 of 18 

oTN-2008-01 openlab Technical Note
 Multi-threaded Geant4 with Shared Detector 

Author: Xin, Dong 
Supervisor: Sverre, Jarp 

2 August 2008 
Version 1 

Distribution:: Public 
1 Introduction .............................................................................................................................. 1 
2 Parallel computing on many-core machines and relevant technologies ........................... 2 

2.1 Methodology for scalable parallel computing on many-core machines ........................... 2 
2.2 Thread-Local Storage (TLS) ............................................................................................ 4 
2.3 Semi-automatically transforming C++ code using a C++ parser ..................................... 5 
2.4 TOP-C parallelism for Geant4 .......................................................................................... 5 
2.5 Recognizing read-write data and Valgrind/Helgrind ........................................................ 6 

3 Unconditionally thread-safe Geant4 ....................................................................................... 7 
3.1 How to make variables thread-local ................................................................................. 7 
3.2 Collecting what should be changed .................................................................................. 8 
3.3 Automatically making all variables thread-local .............................................................. 9 
3.4 Several additional changes ............................................................................................. 10 

4 Implementation with shared detector data .......................................................................... 11 
4.1 Data model for shared detector ....................................................................................... 11 
4.2 Safely sharable data ........................................................................................................ 12 
4.3 Sharing part of data members for C++ instances in a given class .................................. 13 
4.4 Private data initialization ................................................................................................ 14 

5 Summary and future work ..................................................................................................... 17 
6 References .............................................................................................................................. 18 
 
 

1 Introduction 
Geant4[4] is million-line software toolkit to simulate the interaction of particles with matter.  It is widely 
used in many fields such as high energy, nuclear and accelerator physics, medical science, and space science.  
To improve the throughput of a simulation, the end user splits the input data (the input events) into multiple 
subsets, and starts multiple simultaneous processes, with each process simulating a different subset of input 
events. 
  
To enhance Geant4 applications with parallel computing, a more sophisticated method is ParGeant4[9] based 
on the free TOP-C[1,2] (Task Oriented Parallel C/C++) distribution.  TOP-C adopts a master/worker 
architecture.  The master takes responsibility to monitor the state of each worker, and generate and assign a 
task for any idle worker.  Workers wait for tasks from the master, execute the tasks and send the results 
back to the master. In ParGeant4, a task is a single event (event-level parallelism).  In this way, ParGeant4 
implements both event-level parallelism and load-balancing. 
 
Each event is associated with a unique number which is used as the random generator seed for this event.  
This number itself comes from a repeatable sequence of pseudo-random random numbers.  This ensures 
that the result of a parallel computation is reproducible.  This reproducibility is important for determining 
and maintaining program correctness.  If the original sequential implementation uses the same set of seeds 
for a simulation, then for the same input events, a simulation result returned by a sequential computation will 
correspond to the simulation result of the parallel computation. 
 
As we move toward modern multi-core machines, we must again implement the same process parallelism, 
whether by scripts or the use of ParGeant4.  It then becomes crucial that memory is sufficient for master 
and workers.  For large experiments in high energy physics such as ATLAS, CMS and ALICE[6], detector 
data is huge:  up to 1 GB.  It is important for master and worker processes to reduce image size by sharing 
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data.  Since detector data is initialized dynamically in the process heap, it is impractical for processes to 
share this data simply through the use of virtual memory and the UNIX mmap system call. 
 
To share dynamically initialized data, one possible solution is to utilize the copy-on-write mechanism 
associated with the UNIX fork system call.  The methodology is that all child processes are forked after the 
main process has initialized most (or all) of its dynamic data.  Using the copy-on-write technique, child 
processes inherit the same resources as their parent including the same content of the page table.  A child 
process does not duplicate the parent's resources, but instead shares physical pages with its parent until one 
of them tries to write to a page.  At that time, a copy of the page is made and assigned to the writing 
process. 
 
Although copy-on-write works successfully with many other applications, it does not work well with Geant4.  
The reason is that the size of C++ objects in Geant4 is usually small compared with the page size.  (A 
typical page size is 4 KB.) In addition, few object instances are purely read-only. Whenever even one data 
member of an instance is changed by a process, the operating system must duplicate the entire page 
containing that instance for that process. The likely outcome is that that the whole instance is duplicated 
along with the page on which it resides.  In the end, almost all detector data is duplicated for every process 
as a result. 
 
In this work, our objective is to implement a multi-threaded Geant4 with shared detector data.  This 
implementation allows application developers to launch a single multi-threaded process, instead of multiple 
processes.  A multi-threaded Geant4 that shares detector data (and corresponding object instances) will 
consume less memory.  The goal is achieved in two phases. 

1. First, we semi-automatically generate an unconditionally thread-safe Geant4.  This version is 
called unconditional because any thread can call any function of Geant4.   Each thread has a 
thread-private copy of the entire data.  There is no data sharing in this multi-threaded version.  But 
threads also never conflict or influence each other. 

2. Second, we determine the data that can be shared among threads during the parallel computation. 
Starting from the unconditionally thread-safe Geant4, we modify it step by step to share more and 
more data.  Using this methodology, most detector data can be shared by all threads.  This reduces 
image size tremendously. Finally, we obtain a multi-threaded version of Geant4 that is scalable on 
multi-core machines. 

 
A secondary goal is to create the multi-threaded version of Geant4 in a semi-automatic manner.  This 
allows us to take new versions of the sequential Geant4 code and automatically transform them into multi-
threaded code.  We wish to avoid the necessity of maintaining multiple versions of Geant4. 
 
This report is organized as follows.  Chapter 2 briefly introduces parallel computing on many-core 
machines and relevant technologies.   Chapter 3 presents the implementation of unconditionally thread-safe 
Geant4.  Chapter 4 shows how to change the first thread-safe Geant4 gradually to share more and more 
data.  Chapter 5 discusses a future implementation. 

2 Parallel computing on many-core machines and relevant technologies 

2.1 Methodology for scalable parallel computing on many-core machines 
Many-core machines are different from computer clusters in two aspects.  On the one hand, from a cluster 
with hundreds of thousands of processors, we obtain the commensurate quantity of memory and disk space.  
For many-core machines, it is an incorrect assumption that memory and disk space are always sufficient 
when thousands of cores allow many processes reside in one machine.  On the other hand, on many-core 
machines, we no longer count on network to organize parallel computing.  It helps to achieve as much 
performance for applications, which we could not expect from clusters.  In the HPC world of scientific 
computation on clusters with a large number of processors, IPC between nodes becomes bottleneck when 
computing granularity is decreased for load-balancing among all processors.  This bottleneck limits the 
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optimal number of processors for effectively speeding up the computing of a given application because the 
communication complexity is square of the number of processors and communication overload increases 
rapidly when the number of processors increases. 
 
Consider machines with a few cores, for example, dual, quad and eight cores. They are generally treated as 
machines with two, four and eight processors. For these machines, process parallelism based on sequential 
computing still works.  We just integrate a proper IPC method with the original sequential algorithm for a 
given application.  In this case, job size granularity is sufficient for load-balancing among a few cores.  
But the same parallelism does not squeeze more performance from abundance cores for two reasons.  First, 
processes are not lightweight and consume lots of resources, which form a heavy burden for both operating 
system and hardware when the number of processes is large.  Second, job size granularity is too coarse to 
allow sufficient number of jobs needed to make all cores busy. 
 
Faced with a many core or massive core future, our effort concentrates on task-oriented thread parallelism.  
For any application, tasks are identified by studying the original sequential algorithm and are flexible units 
for computing.  It can be one step or several steps in a loop.  Or it is associated to a bunch of processing to 
a block of data.  Task is always generated by master thread dynamically.  The only requirement is that the 
generated task should be independent on all tasks that are being processed by worker threads.  Task size 
granularity is generally small enough to make the number of tasks sufficient for load-balancing.  All threads 
should be independent on each other and there is no data race among all threads in the computing of tasks.  
So we do not need any thread synchronization mechanism.  This feature is critical for parallel computing on 
many core machines.  Thread synchronization results in sequential computing for critical section.  It hurts 
performance when the number of threads is large. 
 
Although some applications do not satisfy conditions mentioned above, we obtain task-oriented thread 
parallelism in many other applications.  Whether we use thread model or process model does not influence 
task-oriented parallelism.  The parallelism for process model is still applicable to thread model.  
Therefore, given an application, the parallel algorithm for clusters can be ported to many core machines 
using thread model.  TOP-C is very helpful for developers to move from the computing on clusters to the 
computing on many core machines using thread model.  The discussion in section 2.4 can be considered as 
an example of TOP-C parallelism for both process model and thread model. 
 
To move from process parallelism to thread parallelism, one problem is that any global variable changed in 
the course of processing one task may be changed by all threads, which is not allowed in our model.  The 
solution to this problem is to make all global variables thread-private by thread-local storage (TLS) 
technology.  This technology is introduced in section 2.2.  Based on this technology, all global variables 
are transformed into thread-private variables.  Therefore, any memory unit touched by each thread is 
proprietary to this thread.  If the programming pattern of a C++/C application is good, this transformation 
can be achieved semi-automatically.  In section 2.3 and section 3, this method is explained implicitly by its 
use in Geant4. 
 
Consider the parallel computing of applications.  There are three cases: computation intensive applications, 
memory access intensive applications and message passing intensive applications.  If an application is 
message passing intensive, then thread parallelism is expected to achieve more performance on many-core 
machines because it does not need any IPC mechanism.  Inter-thread communication can be implemented 
by newly introduced global variables.  If an application is computation intensive only, then process 
parallelism on clusters, process parallelism on many-core machines and thread parallelism on many-core 
machines obtain similar performance.  The most difficult case is memory access intensive applications.  
For many-core machines, each thread compete memory bandwidth with others to access memory. 
 
It is important for memory access intensive applications to reduce total image size no matter what model 
they adopts.  For thread model, we expect to share read-only data in the course of processing one task.  
These data include read-only global data that resides in data segment.  There is only one copy for such kind 
of data and they are shared naturally by all threads.  For read-only data allocated dynamically, to share only 
the pointer to this data is not enough.  We expect to share the data itself especially for some applications 
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where dynamically allocated data is far more than those in data segment.  To this end, three things need to 
be considered.  
 
First, we must answer precisely what read-only variables are.  Consider a read-only variable which does not 
change in the course of processing one task.  There is no write access happens to this variable when any 
task is processed, which is not observable.  We figure out what data is read-write and can not be shared 
safely because changes to a variable are observable by helgrind--one valgrind option.  Two threads are 
started deliberately to execute subroutines of processing one task.  If a variable is read-write, it must be 
changed by two threads.  Because no thread holds any lock, helgrind thinks that it is not a correct pattern 
and will issue an error message.  In section 2.5 and section 4.2, we show how helgrind works for this 
purpose. 
 
Second, no compiler provides any mechanism to put dynamically allocated data in TLS or somewhere 
outside Heap.  Following our methodology, we require read-only data has one copy shared by all threads 
while read-write data has one copy per thread.  Therefore, read-write data members must be separated from 
read-only data members as a new instance if they exist in one instance.  For a set of shared instances of a 
given class type, a TLS pointer is used as the base address to access those read-write instances.  This TLS is 
defined as a static member of the given class.  Otherwise, we can not claim it as a TLS variable.  
Accordingly, all read-write instances are organized as an array.  In addition, we associate to each instance 
an ID, which is used as the index to this array.  Inside a class method, when a read-write data member is 
accessed, the program follows the TLS pointer and instances ID to access thread-private units.  This is 
implemented simply by a macro definition if each data member has a globally unique name. 
 
Third, data initialization should be changed after we separate thread-private data members from shared data 
members.  A shared instance has one copy and there is only one thread (usually master thread) to take the 
responsibility of constructing it.  Other threads must have different behaviour from this thread when they 
initialize data.  Therefore, all threads are no longer equal when they initialize data.  The class whose 
instances are shared should implement more methods to support worker thread initialization.  A more 
detailed description about the initialization for thread-private data refers to the example in section 4.4. 

2.2 Thread-Local Storage (TLS) 
Thread-Local Storage (TLS) is the critical technology for this work. If a variable is declared as thread-local, 
the compiler will reserve space for this variable in the TLS of each newly created thread.  As a result, 
different threads may refer to the same thread-local variable by name, and yet access a thread-local copy of 
that variable in its own TLS.  The TLS syntax is simple.  The magic keyword is "__thread".  This 
keyword was introduced in the ISO C++ 98 standard, and is supported by recent versions of GNU g++.  
Below is an example to explain the usage of TLS. 
 
#include <stdio.h> 
#include <pthread.h> 
__thread int gvar = 0; 
void *increase(void *) 
{ 

gvar++; 
printf("Value in child thread: \%d\n", gvar); 

} 
 
int main(int argc, char* argv[]) 
{ 

pthread_t tid; 
printf("Value in main thread: %d\n", gvar); 
pthread_create( \&tid, NULL, increase, NULL ); 
pthread_join(tid, NULL); 
printf("Value in main thread: %d\n", gvar); 
return 0; 

} 
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In this example, both the main thread and a second, dynamically created thread access the variable gvar.  
Because this variable is declared as thread-local, the two threads actually access their thread-local memory in 
TLS.  There is no data race when they access this variable simultaneously.  So the output of this program 
appears as follows: 
 
Value in main thread: 0 
Value in child thread: 1 
Value in main thread: 0 

 
In addition to the term thread-local, we will often refer to thread-private data.  A thread may create a new 
object, which is stored on the common heap shared by all threads.  If the pointer to the new object is stored 
in the thread's thread-local data, then no other thread can access this new object on the heap.  In this 
situation, we refer to both the new object and the thread-local pointer to the new object as being thread-
private.  However, only the pointer is thread-local, since only the pointer is stored in TLS. 

2.3 Semi-automatically transforming C++ code using a C++ parser 
To obtain the initial, unconditionally thread-safe Geant4, a semi-automatic method is adopted to transform 
the original Geant4 source code to be thread-safe.  This method has been applied to Geant4 9.0 and 
Geant4 9.1.p01.  For each of them, it requires less than one day to build the corresponding thread-safe 
version.  This method includes two steps. 
 
First, we collect all occurrences of "static" and global variables.  For each global variable, we also collect 
all occurrences of external references to it.  It is achieved by patching some code in the C++ parser.  The 
patched code just prints out the declaration with its location for each occurrence of "static" variables, global 
variables and their external references.  The information for one declaration looks like: 
 
G4StateManager.hh: 135 : static G4StateManager* theStateManager; 

 
Second, we developed a program to change declarations collected in the first step.  The above example is 
the simplest case.  It becomes: 
 
static __thread G4StateManager* theStateManager; 

 
In most cases, the program transforms those declarations correctly and automatically.  In a few special 
cases, we have to change source code manually.  For the second step, another C++ parser (not the GNU 
C++ parser, g++) is employed to read declaration words.  This parser need not to be a powerful one.  
Currently, we use the open source C++ parser Elsa[3].  For more detailed information about this parser, 
refer to its webpage. 
 
There are about 10,000 lines of code that need to be changed.  It is time-consuming and painful to change 
them for a human being.  Furthermore, to maintain such huge software by hand is error-prone.  This semi-
automatic method is very helpful here. 

2.4 TOP-C parallelism for Geant4 
TOP-C is free open source software to support parallel computing.  The goal of the TOP-C philosophy is to 
parallelize sequential code while making minimal changes to the original sequential code.  The resulting 
parallel algorithm is derived by identifying tasks to be computed in parallel from the original sequential 
algorithm.  In addition, the parallel code works for both distributed-memory machines and shared-memory 
machines.  For shared-memory machines, TOP-C adopts the POSIX multi-threading model. 
 
ParGeant4 for distributed-memory machines takes advantage of TOP-C parallelism, which is internally 
implemented on top of MPI[5,7,8].  It achieves parallel computation without any change to the Geant4 
source code, by re-implementing certain virtual methods.  ParGeant4 application developers need only to 
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use a parallel version of run manager class.  This class implements a parallelized DoEventLoop method, 
which is illustrated in Figure 1. 
 

 
 
In the figure above, master and workers first register two callback functions.  One callback function is 
myCheckEventResult, which is used by master; another callback function is MyDoEvent, which is used by 
workers.  The master submits tasks to workers until there are no more tasks or until no worker is idle.  
Then, it waits for any result from any of the active workers.  After a result is received and handled, the 
master loops to submit tasks.  Idle workers wait for any task from the master, and then call MyDoEvent 
function and send the result for this task back to master. Here, the parallel computation happens when all 
workers process the assigned event simultaneously. 
 
Multi-threaded Geant4 adopts a methodology similar to that of ParGeant4.  However, it requires the 
unconditionally thread-safe Geant4 as a starting point. 

2.5 Recognizing read-write data and Valgrind/Helgrind 
From unconditionally thread-safe Geant4 to the current implementation, we must consider the methodology 
to share detector data in order to reduce the image size.  The first question is what data can be shared safely.  
From what we have said in last section, parallel computation occurs only in the MyDoEvent method of the 
parallel run manager class.  This method encapsulates functions for task message unpacking, event 
generating, event processing and results message packing.  TOP-C ensures that task message unpacking and 
results message packing are thread-safe.  Event generating (GenerateEvent) is naturally thread-safe because 
it just creates some instances and initializes them for the current event.  Therefore, event processing 
(ProcessOneEvent) is the only source of data races.  Furthermore, the data that is not changed by the 
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method ProcessOneEvent can be safely shared by all threads.  However, in the case of Geant4, few 
instances are purely read-only.  In most cases, only some data members of a given instance are read-only 
while others are read-write.  When this instance is shared by all threads, each thread should still hold its 
own thread-private copy of read-write data members.  So, all accesses to read-write data members need to 
be changed. 
 
To figure out what data is changed by ProcessOneEvent method and hence cannot be shared safely, one 
could expand this method to expose all variable accesses. However, it is not feasible currently because of 
complicated inheritance relationships and usage of virtual function in Geant4.  Virtual functions are 
dynamically linked to Geant4 applications and can only be checked at runtime. 
 
Another way is to utilize valgrind[10] with the option --tool=helgrind.  The original objective of this tool is 
to check whether a computation by many threads employs a correct pattern.  It can be used to check data 
races -- accessing memory without adequate locking.  If two threads pass through and change the same 
variable without adequate locking, this tool will issue an error message.  In our usage of this tool, we 
deliberately start two threads to pass through some functions used by the ProcessOneEvent method.  This 
causes each read-write data is accessed by two threads without any lock.  Helgrind complains about all 
accesses of this kind.  From the Geant4 source code, we can find the name of the read-write variable 
corresponding to a particular error message.  For more detailed information on valgrind, refer to its 
webpage. 

3 Unconditionally thread-safe Geant4 

3.1 How to make variables thread-local 
Local variables are already thread-local and hence thread-safe, since they are stored on the stack of the 
thread that invokes them.  However, global variables (including those declared in namespace) and "static" 
variables are generally not thread-safe.  When two threads access the same global or "static" variable, they 
influence each other by changing the value of the variable.  One exception is static const variables. They 
can be regarded as constants and are not used as l-values. 
 
If we put __thread in front of each variable declaration, all variables become thread-safe, i.e., each thread 
has its own copy of global or "static" variables.  In this sense, multi-threading is the same as the multi-
processing and threads do not influence each other.  In ParGeant4, TOP-C and MPI have been introduced to 
support the master/worker model based on process-parallelism.  If Geant4 is thread-safe, it is trivial to 
move from the process parallelism to the thread parallelism following the TOP-C philosophy.  So our 
change to Geant4 is to make all "static" variables, global variables and their external reference declarations 
have a "__thread" prefix or infix keyword. 
 
The difficulty is that we cannot place "__thread" in front of all types of dynamic variables.  Because the 
C++ compiler handles "__thread" at compile time only, it is difficult for the compiler to determine when 
dynamic initialization for a variable should happen after a new thread is created.  As a result, most TLS 
implementations do not support thread-local variables of class type, since this would requires dynamic 
initialization of the variable whenever a new thread is created.  (Whenever a global or static variable of 
class type is declared, an implicit call to its constructor must be executed prior to executing the "main" or 
"startup" function.)   So currently, "__thread" can only be used for a plain old datatype (POD) variable.  
For the same reason, C++ does not support using the "__thread" keyword with dynamic initializers in 
general, even for POD variables.  For example, consider the declaration below 
 
static __thread int variable1 = variable2; 

 
It is not valid for the GNU g++ compiler. 
 
To solve this problem, we can change any type into a pointer type pointing to the original type. For example, 
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we change 
 
std::vector<...> variable; 

 
to 
 
std::vector<...> *variable_NEW_PTR_; 

 
For this kind of change, three extra considerations need to be handled carefully.  First, the pointer variable 
must be initialized before its first use.  Second, this pointer should be initialized only once.  Third, all 
references to the original name "variable" should be changed to the expression "(*variable_NEW_PTR_)". 
 
As an example, consider this scenario:  we'd like to declare a TLS variable that is initialized by another 
variable.  We already mentioned that the declaration below is not correct. 
 
static __thread int variable1 = variable2; 

 
However, it can be implemented by the following code: 
 
static __thread int *variable1_NEW_PTR_ = 0; 
if (!variable1_NEW_PTR_) 
{ 

variable1_NEW_PTR_ = new int; 
*variable1_NEW_PTR_ = variable2; 

} 
int &variable1 = *variable1_NEW_PTR_; 

 
Here, _NEW_PTR_ can be any string that never previously occurred in Geant4. 
 
The above code works not only for POD variables, but it works for variables of any type including class 
type.  One just changes "new int" to "new class-name".   If there is never an assignment to variable1, we 
can optionally delete the statement "*variable1_NEW_PTR_ = variable2;".   For global variables and 
"static" class members, the above code must be added to the beginning of all relevant functions.  
Fortunately, the compiler is sensitive to type changes, since C/C++ is a language of strongly typed.  If we 
make any mistake and forget to change any relevant function, the compiler will complain and let us know. 

3.2 Collecting what should be changed 
We need to collect 4 kinds of declarations. 
 

1. "static" declarations:  Some static declarations define class members.  Some static declarations 
define variables used in a function or a method.  Generally, functions and methods can be 
considered as constants.  However, functions or methods containing declarations of static variables 
have state, which consists of the values of all static variables.  In addition, some other static 
variables are declared and valid in one particular file.  They are part of the state for this compilation 
unit. 

 
2. global declarations:  Most of them initialize "static" members defined in a given class.  They are 

part of the state of the class.  The rest are a few truly global variables.  They can be used by other 
files through external reference declarations.  They are part of state of the resulting binary. 

 
3. "extern" declarations:  When we change a global variable to be a thread-local variable, we should 

also change the corresponding external reference declarations to be external thread-local reference 
declarations (using __thread), in order to introduce thread-local variables from other files. 

 
4. "static const" declarations:  They are relevant to singleton classes.  If a class is a singleton, then 
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there is only one instance for this class.  Therefore we regard the address of this instance as a 
constant.  However, when we make each thread hold one instance of this singleton class, the pointer 
to hold the address for instances of this class should be a variable and is no longer constant.  We 
also push this kind of variable into TLS rather than treat it as a constant. 

 
A natural way to collect the above information is to patch some code in the C++ parser to print out the 
information.  In our case, we change the GNU (g++ version 4.2.2) C++ parser source code.  It is 
./gcc/cp/parser.c in the gcc source directory.  We just patch some output statements there.  For "static", 
"extern" and "static const" cases, there are corresponding keywords in this file.  For "global" case, there is 
no corresponding keyword.  A global variable is defined in a file and outside of any function but just like an 
ordinary one.  We create a new function cp_parser_declaration_seq_opt_toplevel in the file parser.c and 
replace the function cp_parser_declaration_seq_opt with this new function in the g++ functions 
cp_parser_translation_unit and cp_parser_namespace_body.  For the GNU C++ parser, the translation unit 
and namespace body are the top level containers:  the only place where some global variables may reside.  
 
After the GNU C++ parser file has been changed, we re-compile gcc-4.2.2.  We then use the patched 
compiler to build Geant4 once more.  This time all declarations concerned and their locations are collected 
as part of the build process. 

3.3 Automatically making all variables thread-local 
A tool has been developed to change the Geant4 source file automatically following the information 
collected in the above step.  This tool utilizes an open source C++ parser, Elsa. For each declaration that 
should be changed, this tool will open the corresponding source file, read the declaration from the source file 
and write it into a temporary file.  Then it uses Elsa to parse it and change the source file accordingly.  
What kind of change should be made depends on the pattern of the declaration.  Whether the type is POD, 
and whether there is an assignment, influences the way it is changed.  In the case of an assignment, the 
syntax of this assignment also influences how it is changed.  For a small number of array assignments, the 
change must be hard-coded in the Geant4 source code. 
 
The change to a declaration for a non-class member is completely different from the change to a declaration 
for a class member. The change for a class member declaration is generally more complicated. For example, 
we have two declarations below. The second declaration is dynamically initialized using the first declaration. 
 
G4double     G4VEnergyLoss::dRoverRange    = 20*perCent; 
G4double     G4VEnergyLoss::c1lim = dRoverRange;  
 
Because TLS can not be used for a dynamically initialized variable, we have to expand dRoverRange as 
follows when we declare the second class data member as a TLS variable. 
 
__thread G4double     G4VEnergyLoss::c1lim =(20*perCent); 

 
Another case happens when we add "__thread" for some non-POD class members.  We can not initialize 
them immediately in their declarations.  We postpone the initialization for a non-POD class member to the 
time when any class method is called.  One more issue for this case is that sometimes we need to change the 
methods operator= and operator<<.  They have a parameter whose type is the class itself.  These two 
methods may use this parameter to access "static" class members.  Under such a circumstance, the tool still 
works well if we merely change member names for this class.  However, we must hard-code this change in 
the Geant4 source code. 
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A more complicated case is to change a hierarchy classes in Figure 2. For each A4.* class, the declaration 
 
G4XDeltaDeltaTable *G4ConcreteNNToDeltaDelta::theSigmaTable; 

 
should be changed to 
 
__thread G4XDeltaDeltaTable *G4ConcreteNNToDeltaDelta::theSigmaTable_NEW_PTR_ = 0; 
 
However, the declared class member ''theSigmaTable'' is used by the constructor of the parent class A3. We 
must ensure that it is initialized before the constructor of the parent class is called. 
 
The solution here is: 
 

1. Add an empty constructor in all ancestor classes A1, A2 and A3. 
2. Add a method that simulates the constructor for each A1, A2 and A3. 
3. In each A4.* class, force the constructor to use the empty constructor of the parent class A3 added in 

the first step. 
4. Change the constructor for each A4.* class, to implement the method described as below. 

 
First allocate space for the pointer theSigmaTable_NEW_PTR_ if it is 0.  Then define a reference variable 
as "G4XDeltaDeltaTable &theSigmaTable = *theSigmaTable_NEW_PTR_;".  Finally call the method 
added in step 2.  
 
For this case, the whole change is also hard-coded in the Geant4 source code. 

3.4  Several additional changes 
Consider the names below: 
 
G4ProductionCuts.cc: gammaDef, electDef, positDef 
G4EnergyLossTables.cc : lastParticle 

 
They belong to the fourth kind of declaration discussed in section 3.2.  So we must replace "const" with 
"__thread".  Furthermore, for some local variables declared as "static const" type, it is not trivial to 
determine whether a previous constant has been used as an l-value.  Hence these static local variables can 
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no longer be considered as constants.  This case is handled carefully. 
 
More extra changes result from our change to the names of "static" class members.  Although any reference 
to a "static" class member directly hurts encapsulation, it is more convenient for Geant4 developers to use 
them in some special situations.  In addition to making local change to the implementation of a given class, 
we change global references to "static" class members by hard-coding it in the Geant4 source code, similarly 
to the case discussed in section 3.1.  The compiler complains about name changes and tells us what should 
be changed. 
 
To generate this unconditionally thread-safe system, all relevant libraries should also be transformed to be 
unconditionally thread-safe.  Geant4 uses CLHEP in addition to C++ standard library.  The current usage 
of CLHEP in Geant4 is through the static interface of the class HepRandom.  We merely apply the same 
methodology to CLHEP and make it unconditionally thread-safe on the condition that the GNU 
implementation of the C/C++ standard library is thread-safe.  CLHEP also provides non-static interface by 
defining different generator objects by means of the various engines available.  If the future version of 
Geant4 replaces the static interface with this non-static interface, then it does not matter whether CLHEP is 
unconditionally thread-safe or not. 

4 Implementation with shared detector data 

4.1 Data model for shared detector 
To transform from the original Geant4 to the unconditionally thread-safe Geant4 implemented in section 3, 
we push part of the data segment into TLS.  Only constants reside in the data segment.  Following this 
methodology, each thread still initializes and holds its own data.  So, all threads are independent.  They 
completely simulate process-parallelism in a thread-parallel context.  Since multiple independent processes 
are a form of "embarrassingly trivial parallelism", we typically obtain the expected linear speedup for Geant4 
as more CPU cores and threads are provided.  Hence, the software is scalable. 
 
However, this scalability does not hold if the memory is insufficient on multi-core machines.  This can 
easily occur, since the image size is proportional to the number of workers.  This is especially true, for 
example, for fullCMS, which is a simplified version of CMS experiments.  For the current implementation, 
we manage to move some data from TLS (in the unconditional thread-safe Geant4) back to the data segment 
and therefore share it, as illustrated in Figure 3. 
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The above paradigm is attained in three steps: 
 

1. Figure out what data can be shared. 
2. Provide a solution on how to share some of data members for a set of a given C++ instance of a 

particular class. 
3. Determine the behavior of master and workers in data initialization. 

4.2 Safely sharable data 
The tool helgrind is utilized to recognize read-write data, which is complementary to safely sharable data.  
This tool works directly with binary code.  It sets up the state for each memory unit and monitors status 
transitions.  For this reason, it is impractical to check how much data is updated by multi-threaded 
ProcessOneEvent, for example in fullCMS, whose image size is about 150M.  Hence, we use helgrind with 
Geant4 unit tests for some of its modules. 
 
For the geometry module, test programs for navigator and navigation can be use to check what data is 
changed.  Here, we use the original sequential Geant4 (not the unconditionally thread-safe version) to 
deliberately produce data races. The programs are modified to create multiple threads that all run the same 
test case.  The multi-threaded test programs look as follows. 
 
G4VPhysicalVolume *myTopNode; 
int sleepTime = 10;     
void *worker(void *waitTime_ptr) 
{ 
  testG4Navigator1(myTopNode); 
  testG4Navigator2(myTopNode); 
  //sleep a while, so valgrind can analyze it 
  sleep(sleepTime); 
} 
 
int main() 
{ 
  myTopNode=BuildGeometry(); 
  CloseGeometry(false); 
  … 
pthread_create( &tid1, NULL, worker, NULL); 
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  pthread_create( &tid2, NULL, worker, NULL); 
  … 
} 

 
One compiles them as ordinary Geant4 applications and then starts executable files using valgrind as 
follows. 
 
valgrind --tool=helgrind --log-file=output a.out 
 
As the last step, one analyzes the output from helgrind.  For example, we see the following complaints. 
 
==538== Possible data race during write of size 4 at 0x56360A0 
==538==    at 0x42B944: G4PVReplica::SetCopyNo(int) (G4PVReplica.cc:180) 
… 
==538==   Old state: owned exclusively by thread #2 
==538==   New state: shared-modified by threads #2, #3 
==538==   Reason:    this thread, #3, holds no locks at all 

 
In the above message, helgrind says that the second thread (worker thread 1) changes data member fcopyNo 
(integer number) for a G4PVReplica instance. Because we do not use any lock, helgrind sets up the state of 
fcopyNo to be ''owned exclusively by worker thread 1''.  Just like the second thread, the third thread (worker 
thread 2) also changes the same variable.  Then helgrind understands that fcopyNo is shared-modified by 
two threads.  However, helgrind thinks that it is an error for two threads to modify the same variable 
without any lock. 
 
After all complaints from helgrind have been analyzed, we discover those data members that are changed by 
the navigator (and therefore also by ProcessOneEvent) for three kinds of instances:  physical volumes, 
logical volumes and solids, which are expected to be shared.  Threads only share read-only data members 
and keep read-write data as thread-private. 

4.3 Sharing part of data members for C++ instances in a given class 
We use class G4PVReplica as an example to explain how threads share some data members for a set of C++ 
instances of a given class.  Suppose we have three replicas.  As described in Figure 4, they reside in the 
common process heap.  All threads share these replicas while fcopyNo is kept thread-private. 
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To share replicas, first we add one integer class member to G4PVReplica.  This new member is used as an 
ID for each G4PVReplica instance.  Second, we delete class member fcopyNo from G4PVReplica. Third 
we use a pointer of integer which points to an array of integers (fcopyNos). This pointer is declared as 
''static'' thread local member of class G4PVReplica.  This array is indexed by replica IDs.  When a thread 
accesses fcopyNo for a particular instance, it follows this pointer and the instance ID to access thread-private 
memory regions. 
 
In summary, we must separate safely sharable part from thread-private portion for any class whose instances 
are expected to be shared.  In addition, we need an object counter for this class to assign an ID to each 
instance.  For this purpose, we must change all constructors of this class to touch this object counter in 
order for each newly created instance to get an ID. 

4.4 Private data initialization 
After data members of shared instances of a given class are separated into a shared part and a thread-private 
part, the initialization must be changed accordingly.  For the master thread, initialization is re-implemented 
by changing only constructor(s) for this class in order to allocate space for private-data.  However, worker 
threads must skip some routines -- especially those methods implemented by the detector construction class. 
It should not generate more thread-private copies of those instances of the detector.  But it must initialize its 
own thread-private part of the data.  So workers should coordinate with the master to finish initialization 
correctly.  Here, we assume that the workers do not start to initialize data until the master has finished the 
data initialization. 
 
To explain how instances, object counter, master thread and worker threads interact with each other, we 
introduce some names below. 
 
SI: a representation of shared instances. 
SC: the class of SI. (After thread-private data members has been removed and data member instance ID has 
been added) 
TPC: a new class to contain all thread-private data members 
ID: new class member added to SC as instance ID. 
OC: object counter for SC. 
 
OC holds a TLS pointer−offsetP−which points to an array of TPC type pointers. The pointer offsetP, whose 
initial value is 0, is allocated dynamically.  OC implements the method newInstance.  This method returns 
the minimal unused instance ID.  In order for worker threads to share offsetP with the master thread and 
then set the value of workers' thread-private data based on the master thread-private data, another 
pointer−shadowP−is defined as a static member (not thread-local) of OC.  The value of shadowP always 
equals to offsetP. 
 
In the master thread, when a new SI is created, the constructor must finish some additional actions before 
instance initialization.  First, it calls OC::newInstance to get an instance ID and use the returned value to set 
SI.ID.  Second, it allocates memory of type TPC and set OC::offsetP[ID] to the address of the newly 
allocated memory.  Third, this constructor initializes the new instance in a standard way.  Furthermore, we 
must re-define the access to original data members to be access to thread-private data.  The definition using 
C preprocessor macros works perfectly if each thread-private member has a globally unique name.  If so, 
we just use "#define CMname (OC::offsetP[ID]->CMname)", where CMname is the corresponding class 
member name. 
 
For worker threads, all SIs are shared and should not be constructed once again.  Any worker thread just 
sets up for each SI its thread-private data.  The programming pattern used by Geant4 team enables worker 
threads to access SIs.  Because the number of SIs is huge, it is worthwhile to share these instances.  For 
exactly the same reason, Geant4 usually uses a storage class to register all instances.  We can enumerate 
each element in this storage class to handle all SIs uniformly. 
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First, worker threads allocate space for their own offsetP.  Then for each SI, they allocate memory of TPC 
type and set OC::offsetP[ID] to the address of new created TPC instance.  Finally, they initialize thread-
private data using instructions similar to SC constructor(s).  If all constructors are idempotent, it does not 
matter if we execute the entire SC constructor(s). 
 
Sometimes, there are different subclasses for SC.  Under such circumstance, worker threads dynamically 
cast SC to the exact subtype and handle the initialization particular to this subtype.  Some typical examples 
in Geant4 are listed below. 
 
Figure 5 is the data model for shared logical volumes.  For each G4LogicalVolume instance, both master 
thread and worker threads have their own thread-private data. 
 

 
 
Figure 6 is the data model for shared physical volumes.  There are three subtypes.  For a 
G4VPhysicalVolume instance, master thread and worker threads share the whole instance even the thread-
private data, which does not change.  G4PVReplica is a subclass of G4VPhysicalVolume.  For a 
G4PVReplica instance, both master thread and worker threads have two examples of thread-private data:  
the thread-private data as a G4VPhysicalVolume instance; and the thread-private data as a G4PVReplica 
instance.  G4PVParameterised is a subclass of G4PVReplica.  Just like the class G4PVReplica, both 
master thread and worker threads hold two examples of thread-private data for each G4PVParameterised 
instance. 
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Consider a thread-private data member of pointer type.  In our methodology, it will be moved to TPC.  If 
only a pointer is changed, there is nothing special thing to do.  However, if the instance pointed by this 
pointer is changed (mutated), then in each worker thread, we must give this private pointer a clone of the 
instance held by the master thread. 
 
For a G4PVParameterised instance, the solid pointer in the corresponding logical volume belongs to this 
case.  Figure 7 illustrates the data model to handle this solid pointer.  In this figure, logical volume q is 
used by a G4PVParameterised instance, whose ID is 0.  The solid pointer of logical volume q is thread-
private.  Furthermore, for each worker thread, a cloned solid is associated to the solid pointer of logical 
volume q. 
 

 
 

To avoid the need for end-user programming for worker thread initialization, we require that any Geant4 
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class which has the usage mentioned above must support a clone method.  For example, G4VSolid 
subclasses that are allowed to be used by any G4PVParameterised instance should implement a clone 
method. 

5 Summary and future work 
To implement multi-threading for Geant4 applications, we make Geant4 thread-safe with no change to the 
original application logic and design.  First, Geant4 is semi-automatically transformed to be absolutely 
thread-safe.  Then we manage to move some data back to data segment and share it.  If all inward and 
outward pointers are set up correctly between shared data and private data, it is still thread-safe.  In order to 
share data in multi-threaded Geant4 applications, we provide a methodology to share some data members for 
a set of C++ instances of a given class.  This methodology has been used to share three kinds of geometry 
instances:  physical volumes, logical volumes, and solids.  Moreover, materials are shared completely. 
 
For fullCMS, the image size for single thread is 30MB for text, 70MB for geometry and 50MB for physics.  
In geometry, about 50MB data belongs to voxelization, i.e., tracking optimization of geometry.  Taking 
advantage of this work, almost all geometry data can be shared by threads except those thread-private data.  
However, the size of thread-private data is very small.  Therefore, the memory consumption for each 
worker thread is expected to be 50MB, which is the size of physics.  On a 32-bit machine with 4GB 
memory, we are able to start 50-70 worker threads given sufficient cores.  Currently, Geant4 team is 
implementing clone method for solid subclasses that are used by G4PVParameterised instances.  We will 
see the effect of shared geometry on image size reduction for fullCMS in the near future. 
 
The above result is better than the result of process-parallel Geant4 using the copy-on-write technique. In 
process-parallel Geant4 case, each process has 80MB shared data which are dirty.   Following the same 
methodology, we continue to reduce the image size by sharing more instances in multi-threaded Geant4 
applications.  In future implementation, instances from region to particles are shared among all threads, as 
described in Figure 8. 
 
When all threads share particle tables, the process manager for each particle should be thread-private.  
Because the type of particle table is Map, any access to it should hold a thread lock.  In this aspect, ions 
influence the way to share particles greatly.  Some ions are initialized by run manager.  Therefore, worker 
threads must treat this kind of ions as the ordinary particles and initialize process manager for them when 
they initialize thread-private data.  Other ions are inserted into particle table on the fly.  We must consider 
two cases when one ion of this kind is inserted into particle table.  If this ion is not in particle table, it is 
inserted into particle table in a standard way.  If this ion has been in particle table, the current thread only 
initializes thread-private process manager for this ion and for itself. 
 
If we are able to share particles successfully, we can go one step further to share physics tables and physics 
vectors.  To this end, we require that each process is able to clone itself while the clone shares physics table 
with the original process.  All these efforts toward greater data sharing make multi-threaded Geant4 more 
scalable on multi-core machines. 
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